• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643933)   Today's Articles (5137)   Subscriber (50652)
For: Wen C, Liu S, Yao X, Peng L, Li X, Hu Y, Chi T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci Total Environ 2019;654:1091-1099. [PMID: 30841384 DOI: 10.1016/j.scitotenv.2018.11.086] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 05/28/2023]
Number Cited by Other Article(s)
1
Liao Q, Zhu M, Wu L, Wang D, Wang Z, Zhang S, Cao W, Pan X, Li J, Tang X, Xin J, Sun Y, Zhu J, Wang Z. Probing the capacity of a spatiotemporal deep learning model for short-term PM2.5 forecasts in a coastal urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;950:175233. [PMID: 39102955 DOI: 10.1016/j.scitotenv.2024.175233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
2
Dong J, Zhang Y, Hu J. Short-term air quality prediction based on EMD-transformer-BiLSTM. Sci Rep 2024;14:20513. [PMID: 39227685 PMCID: PMC11372107 DOI: 10.1038/s41598-024-67626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]  Open
3
Wang K, Liu L, Ben X, Jin D, Zhu Y, Wang F. Hybrid deep learning based prediction for water quality of plain watershed. ENVIRONMENTAL RESEARCH 2024;262:119911. [PMID: 39233036 DOI: 10.1016/j.envres.2024.119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
4
Gündoğdu S, Elbir T. Elevating hourly PM2.5 forecasting in Istanbul, Türkiye: Leveraging ERA5 reanalysis and genetic algorithms in a comparative machine learning model analysis. CHEMOSPHERE 2024;364:143096. [PMID: 39146993 DOI: 10.1016/j.chemosphere.2024.143096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
5
Zhou S, Wang W, Zhu L, Qiao Q, Kang Y. Deep-learning architecture for PM2.5 concentration prediction: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024;21:100400. [PMID: 38439920 PMCID: PMC10910069 DOI: 10.1016/j.ese.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
6
Iwaszenko S, Smolinski A, Grzanka M, Skowronek T. Airborne particulate matter measurement and prediction with machine learning techniques. Sci Rep 2024;14:18999. [PMID: 39152189 PMCID: PMC11329646 DOI: 10.1038/s41598-024-70152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]  Open
7
McCracken T, Chen P, Metcalf A, Fan C. Quantifying the impacts of Canadian wildfires on regional air pollution networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;928:172461. [PMID: 38615767 DOI: 10.1016/j.scitotenv.2024.172461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
8
Tao C, Jia M, Wang G, Zhang Y, Zhang Q, Wang X, Wang Q, Wang W. Time-sensitive prediction of NO2 concentration in China using an ensemble machine learning model from multi-source data. J Environ Sci (China) 2024;137:30-40. [PMID: 37980016 DOI: 10.1016/j.jes.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
9
Chen Y, Huang L, Xie X, Liu Z, Hu J. Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;912:168672. [PMID: 38016563 DOI: 10.1016/j.scitotenv.2023.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
10
Zhang X, Ding C, Wang G. An Autoregressive-Based Kalman Filter Approach for Daily PM2.5 Concentration Forecasting in Beijing, China. BIG DATA 2024;12:19-29. [PMID: 37134205 DOI: 10.1089/big.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
11
Ma J, Qu Y, Yu Z, Wan S. Climate modulation of external forcing factors on air quality change in Eastern China: Implications for PM2.5 seasonal prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;905:166989. [PMID: 37751842 DOI: 10.1016/j.scitotenv.2023.166989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
12
Mokarram M, Taripanah F, Pham TM. Using neural networks and remote sensing for spatio-temporal prediction of air pollution during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:122886-122905. [PMID: 37979107 DOI: 10.1007/s11356-023-30859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
13
Liu K, Zhang Y, He H, Xiao H, Wang S, Zhang Y, Li H, Qian X. Time series prediction of the chemical components of PM2.5 based on a deep learning model. CHEMOSPHERE 2023;342:140153. [PMID: 37714468 DOI: 10.1016/j.chemosphere.2023.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
14
Wen C, Lin X, Ying Y, Ma Y, Yu H, Li X, Yan J. Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023;170:93-102. [PMID: 37562201 DOI: 10.1016/j.wasman.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
15
Lu Y, Li K. Multistation collaborative prediction of air pollutants based on the CNN-BiLSTM model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:92417-92435. [PMID: 37490250 DOI: 10.1007/s11356-023-28877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
16
Xu J, Wang S, Ying N, Xiao X, Zhang J, Jin Z, Cheng Y, Zhang G. Dynamic graph neural network with adaptive edge attributes for air quality prediction: A case study in China. Heliyon 2023;9:e17746. [PMID: 37456022 PMCID: PMC10345359 DOI: 10.1016/j.heliyon.2023.e17746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]  Open
17
Yan X, Zuo C, Li Z, Chen HW, Jiang Y, He B, Liu H, Chen J, Shi W. Cooperative simultaneous inversion of satellite-based real-time PM2.5 and ozone levels using an improved deep learning model with attention mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023;327:121509. [PMID: 36967005 DOI: 10.1016/j.envpol.2023.121509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
18
Li J, Crooks J, Murdock J, de Souza P, Hohsfield K, Obermann B, Stockman T. A nested machine learning approach to short-term PM2.5 prediction in metropolitan areas using PM2.5 data from different sensor networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;873:162336. [PMID: 36813194 DOI: 10.1016/j.scitotenv.2023.162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
19
Teng M, Li S, Xing J, Fan C, Yang J, Wang S, Song G, Ding Y, Dong J, Wang S. 72-hour real-time forecasting of ambient PM2.5 by hybrid graph deep neural network with aggregated neighborhood spatiotemporal information. ENVIRONMENT INTERNATIONAL 2023;176:107971. [PMID: 37220671 DOI: 10.1016/j.envint.2023.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
20
Elbaz K, Shaban WM, Zhou A, Shen SL. Real time image-based air quality forecasts using a 3D-CNN approach with an attention mechanism. CHEMOSPHERE 2023;333:138867. [PMID: 37156287 DOI: 10.1016/j.chemosphere.2023.138867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
21
Nandi BP, Singh G, Jain A, Tayal DK. Evolution of neural network to deep learning in prediction of air, water pollution and its Indian context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023:1-16. [PMID: 37360564 PMCID: PMC10148580 DOI: 10.1007/s13762-023-04911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
22
Wu CL, He HD, Song RF, Zhu XH, Peng ZR, Fu QY, Pan J. A hybrid deep learning model for regional O3 and NO2 concentrations prediction based on spatiotemporal dependencies in air quality monitoring network. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023;320:121075. [PMID: 36641063 DOI: 10.1016/j.envpol.2023.121075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
23
A novel spatiotemporal multigraph convolutional network for air pollution prediction. APPL INTELL 2023. [DOI: 10.1007/s10489-022-04418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
24
A hybrid deep learning framework for air quality prediction with spatial autocorrelation during the COVID-19 pandemic. Sci Rep 2023;13:1015. [PMID: 36653488 PMCID: PMC9848720 DOI: 10.1038/s41598-023-28287-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]  Open
25
Li Y, Hong T, Gu Y, Li Z, Huang T, Lee HF, Heo Y, Yim SHL. Assessing the Spatiotemporal Characteristics, Factor Importance, and Health Impacts of Air Pollution in Seoul by Integrating Machine Learning into Land-Use Regression Modeling at High Spatiotemporal Resolutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:1225-1236. [PMID: 36630679 DOI: 10.1021/acs.est.2c03027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
26
Zhang K, Yang X, Cao H, Thé J, Tan Z, Yu H. Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial-temporal attention and residual learning. ENVIRONMENT INTERNATIONAL 2023;171:107691. [PMID: 36516675 DOI: 10.1016/j.envint.2022.107691] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
27
Ayus I, Natarajan N, Gupta D. Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China. ASIAN JOURNAL OF ATMOSPHERIC ENVIRONMENT 2023;17:4. [PMCID: PMC10214349 DOI: 10.1007/s44273-023-00005-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 09/07/2023]
28
Peng S, Zhu J, Liu Z, Hu B, Wang M, Pu S. Prediction of Ammonia Concentration in a Pig House Based on Machine Learning Models and Environmental Parameters. Animals (Basel) 2022;13:ani13010165. [PMID: 36611774 PMCID: PMC9817777 DOI: 10.3390/ani13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]  Open
29
Xiong Q, Wang W, Wang M, Zhang C, Zhang X, Chen C, Wang M. Prediction of ground-level ozone by SOM-NARX hybrid neural network based on the correlation of predictors. iScience 2022;25:105658. [PMID: 36505938 PMCID: PMC9732375 DOI: 10.1016/j.isci.2022.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]  Open
30
Zhao L, Li Z, Qu L. Forecasting of Beijing PM2.5 with a hybrid ARIMA model based on integrated AIC and improved GS fixed-order methods and seasonal decomposition. Heliyon 2022;8:e12239. [PMID: 36590504 PMCID: PMC9800338 DOI: 10.1016/j.heliyon.2022.e12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]  Open
31
Peng J, Han H, Yi Y, Huang H, Xie L. Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations. CHEMOSPHERE 2022;308:136353. [PMID: 36084831 DOI: 10.1016/j.chemosphere.2022.136353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
32
Lin K, Zhao Y, Kuo JH. Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. CHEMOSPHERE 2022;307:136119. [PMID: 35998731 DOI: 10.1016/j.chemosphere.2022.136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
33
Aksangür İ, Eren B, Erden C. Evaluation of data preprocessing and feature selection process for prediction of hourly PM10 concentration using long short-term memory models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022;311:119973. [PMID: 35985430 DOI: 10.1016/j.envpol.2022.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
34
Mao YS, Lee SJ, Wu CH, Hou CL, Ouyang CS, Liu CF. A hybrid deep learning network for forecasting air pollutant concentrations. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
35
Gao M, Yang H, Xiao Q, Goh M. COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts. SOCIO-ECONOMIC PLANNING SCIENCES 2022;83:101228. [PMID: 35034989 PMCID: PMC8750743 DOI: 10.1016/j.seps.2022.101228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 05/17/2023]
36
Faraji M, Nadi S, Ghaffarpasand O, Homayoni S, Downey K. An integrated 3D CNN-GRU deep learning method for short-term prediction of PM2.5 concentration in urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;834:155324. [PMID: 35452742 DOI: 10.1016/j.scitotenv.2022.155324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
37
Lin S, Zhao J, Li J, Liu X, Zhang Y, Wang S, Mei Q, Chen Z, Gao Y. A Spatial-Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM2.5 Concentration Prediction. ENTROPY (BASEL, SWITZERLAND) 2022;24:1125. [PMID: 36010788 PMCID: PMC9407057 DOI: 10.3390/e24081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
38
Research on PM2.5 Concentration Prediction Based on the CE-AGA-LSTM Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
39
Sciannameo V, Goffi A, Maffeis G, Gianfreda R, Jahier Pagliari D, Filippini T, Mancuso P, Giorgi-Rossi P, Alberto Dal Zovo L, Corbari A, Vinceti M, Berchialla P. A deep learning approach for Spatio-Temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy. J Biomed Inform 2022;132:104132. [PMID: 35835438 PMCID: PMC9271423 DOI: 10.1016/j.jbi.2022.104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
40
Balogun AL, Tella A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. CHEMOSPHERE 2022;299:134250. [PMID: 35318016 DOI: 10.1016/j.chemosphere.2022.134250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/01/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
41
Dynamic graph convolution neural network based on spatial-temporal correlation for air quality prediction. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
42
A BP Neural Network Algorithm for Multimedia Data Monitoring of Air Particulate Matter. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022;2022:6393877. [PMID: 35685170 PMCID: PMC9173920 DOI: 10.1155/2022/6393877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
43
Wang J, Li X, Jin L, Li J, Sun Q, Wang H. An air quality index prediction model based on CNN-ILSTM. Sci Rep 2022;12:8373. [PMID: 35589914 PMCID: PMC9120089 DOI: 10.1038/s41598-022-12355-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022]  Open
44
Zhao X, Barber S, Taylor CC, Nie X, Shen W. Spatio-temporal forecasting using wavelet transform-based decision trees with application to air quality and covid-19 forecasting. J Appl Stat 2022. [DOI: 10.1080/02664763.2022.2064976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
45
A Hybrid Spatiotemporal Deep Model Based on CNN and LSTM for Air Pollution Prediction. SUSTAINABILITY 2022. [DOI: 10.3390/su14095104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
46
Regional Prediction of Ozone and Fine Particulate Matter Using Diffusion Convolutional Recurrent Neural Network. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;19:ijerph19073988. [PMID: 35409671 PMCID: PMC8997635 DOI: 10.3390/ijerph19073988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023]
47
Attention-Based Distributed Deep Learning Model for Air Quality Forecasting. SUSTAINABILITY 2022. [DOI: 10.3390/su14063269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
48
Zhang Q, Tian L, Fu F, Wu H, Wei W, Liu X. Real‐Time and Image‐Based AQI Estimation Based on Deep Learning. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
49
Self-Powered Wireless Sensor Matrix for Air Pollution Detection with a Neural Predictor. ENERGIES 2022. [DOI: 10.3390/en15061962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
50
Shi L, Zhang H, Xu X, Han M, Zuo P. A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation. CHEMOSPHERE 2022;291:133124. [PMID: 34861262 DOI: 10.1016/j.chemosphere.2021.133124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA