1
|
Zhang J, Li SP, Li QQ, Zhang YT, Dong GH, Canchola A, Zeng X, Chou WC. Development of a Physiologically Based Pharmacokinetic (PBPK) Model for F-53B in Pregnant Mice and Its Extrapolation to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18928-18939. [PMID: 39394996 PMCID: PMC11500426 DOI: 10.1021/acs.est.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Chlorinated polyfluorinated ether sulfonic acid (F-53B), a commonly utilized alternative for perfluorooctane sulfonate, was detected in pregnant women and cord blood recently. However, the lack of detailed toxicokinetic information poses a significant challenge in assessing the human risk assessment for F-53B exposure. Our study aimed to develop a physiologically based pharmacokinetic (PBPK) model for pregnant mice, based on toxicokinetic experiments, and extrapolating it to humans. Pregnant mice were administered 80 μg/kg F-53B orally and intravenously on gestational day 13. F-53B concentrations in biological samples were analyzed via ultraperformance liquid chromatography-mass spectrometry. Results showed the highest F-53B accumulation in the brain, followed by the placenta, amniotic fluid, and liver in fetal mice. These toxicokinetic data were applied to F-53B PBPK model development and evaluation, and Monte Carlo simulations were used to characterize the variability and uncertainty in the human population. Most of the predictive values were within a 2-fold range of experimental data (>72%) and had a coefficient of determination (R2) greater than 0.68. The developed mouse model was then extrapolated to the human and evaluated with human biomonitoring data. Our study provides an important step toward improving the understanding of toxicokinetics of F-53B and enhancing the quantitative risk assessments in sensitive populations, particularly in pregnant women and fetuses.
Collapse
Affiliation(s)
- Jing Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Acacia
Lab for Implementation Science, Institute for Global Health, Dermatology Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yun-Ting Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Alexa Canchola
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Xiaowen Zeng
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Wu J, Zhuang Y, Dong B, Wang F, Yan Y, Zhang D, Liu Z, Duan X, Bo Y, Peng L. Spatial heterogeneity of per- and polyfluoroalkyl substances caused by glacial melting in Tibetan Lake Nam Co due to global warming. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135468. [PMID: 39151357 DOI: 10.1016/j.jhazmat.2024.135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) in high-latitude polar regions and the Tibetan Plateau have received widespread international attention. Here, we measured 18 PFASs and 11 major isomers in the lake water, sediment, and surrounding runoff of Lake Nam Co in 2020. The concentrations of ultrashort-chain trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) and major isomers of perfluoooctanoic acid (PFOA) and perfluoooctane sulfonate acid (PFOS) in water bodies in high-latitude polar regions and the Tibetan Plateau are reported for the first time. The results showed that the concentration of ∑PFASs in glacial runoff was approximately 139 % greater than that in nonglacial runoff. The concentrations of ∑PFASs in the lake water and sediment in the southern lake with multiple glacial runoff events were approximately 113 % and 108 % higher, respectively, than those in the northern lake. The concentrations of short-chain perfluorobutanoic acid (PFBA) and ultrashort-chain TFA and PFPrA, which may be indicators of ice and snow melt, exhibited significant spatial heterogeneity. Overall, the spatial heterogeneity of PFAS concentrations in the water, sediment and surrounding runoff of Lake Nam Co may be caused mainly by glacial melting.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Yiru Zhuang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Bingqi Dong
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Fan Wang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yulong Yan
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Dayu Zhang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhuocheng Liu
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Duan
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Bo
- CAS Key Laboratory of Regional Climate and Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lin Peng
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
3
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
4
|
Soriano Y, Gimeno-García E, Campo J, Hernández-Crespo C, Andreu V, Picó Y. Exploring organic and inorganic contaminant histories in sediment cores across the anthropocene: Accounting for site/area dependent factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134168. [PMID: 38603905 DOI: 10.1016/j.jhazmat.2024.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Sedimentary records help chronologically identify anthropogenic contamination in environmental systems. This study analysed dated sediment cores from L'Albufera Lake (Valencia, Spain), to assess the occurrence of heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), perfluoroalkyl substances (PFASs), organophosphorus flame retardants (OPFRs), pesticides and pharmaceuticals and personal care products (PPCPs). The results evidence the continuing vertical presence of all types of contaminants in this location. The sediment age was difficult to establish. However, the presence of shells together with an historical estimation and the knowledge of sedimentary rates could help. HMs contents are higher in the upper layer reflecting the most recent increase of the industrial and agricultural practices in the area since the middle 20th century. Higher availability index of these HMs in the upper sediment layers is associated with point and diffuse contamination sources in the area. PAHs and OPFRs were homogeneous distributed through the sediments with few exceptions such as phenanthrene in the North and fluoranthene in the South. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were detected throughout the sediment core while short-chain PFASs (except perfluoropentanoic acid (PFPeA)) were detected only in the top layer. Pesticides and PPCPs showed appreciable down-core mobility. The vertical concentration profiles of organic contaminants did not exhibit a clear trend with depth, then, it is difficult to develop a direct relationship between sediment age and contaminant concentrations, and to elucidate the historical trend of contamination based on dated sediment core. Consequently, linking contaminant occurrence in sediments directly to their historical use is somewhat speculative at least in the conditions of L'Albufera Lake.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain.
| | - Eugenia Gimeno-García
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Julián Campo
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Carmen Hernández-Crespo
- Water and Environmental Engineering University Research Institute (IIAMA), Polytechnic Universitat Politècnica de València, Valencia, Spain
| | - Vicente Andreu
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| |
Collapse
|
5
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
6
|
Bartley MC, Tremblay T, De Silva AO, Michelle Kamula C, Ciastek S, Kuzyk ZZA. Sedimentary records of contaminant inputs in Frobisher Bay, Nunavut. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100313. [PMID: 37860827 PMCID: PMC10582354 DOI: 10.1016/j.ese.2023.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Contaminants, such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and per and polyfluoroalkyl substances (PFASs), primarily reach the Arctic through long-range atmospheric and oceanic transport. However, local sources within the Arctic also contribute to the levels observed in the environment, including legacy sources and new sources that arise from activities associated with increasing commercial and industrial development. The City of Iqaluit in Frobisher Bay, Nunavut (Canada), has seen rapid population growth and associated development during recent decades yet remains a site of interest for ocean protection, where Inuit continue to harvest country food. In the present study, seven dated marine sediment cores collected in Koojesse Inlet near Iqaluit, and from sites in inner and outer Frobisher Bay, respectively, were analyzed for total mercury (THg), major and trace elements, PAHs, PCBs, and PFASs. The sedimentary record in Koojesse Inlet shows a period of Aroclor 1260-like PCB input concurrent with military site presence in the 1950-60s, followed by decades of input of pyrogenic PAHs, averaging about ten times background levels. Near-surface sediments in Koojesse Inlet also show evidence of transient local-source inputs of THg and PFASs, and recycling or continued slow release of PCBs from legacy land-based sources. Differences in PFAS congener composition clearly distinguish the local sources from long-range transport. Outside Koojesse Inlet but still in inner Frobisher Bay, 9.2 km from Iqaluit, sediments showed evidence of both local source (PCB) and long-range transport. In outer Frobisher Bay, an up-core increase in THg and PFASs in sediments may be explained by ongoing inputs of these contaminants from long-range transport. The context for ocean protection and country food harvesting in this region of the Arctic clearly involves both local sources and long-range transport, with past human activities leaving a long legacy insofar as levels of persistent organic pollutants are concerned.
Collapse
Affiliation(s)
- Meaghan C. Bartley
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Department of Environment and Geography, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tommy Tremblay
- Canada-Nunavut Geoscience Office, Iqaluit, Nunavut, X0A 0H0, Canada
| | - Amila O. De Silva
- Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - C. Michelle Kamula
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Stephen Ciastek
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Zou Zou A. Kuzyk
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Department of Environment and Geography, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Department of Earth Sciences, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
7
|
Dunn M, Vojta S, Soltwedel T, von Appen WJ, Lohmann R. Passive Sampler Derived Profiles and Mass Flows of Perfluorinated Alkyl Substances (PFASs) across the Fram Strait in the North Atlantic. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:166-171. [PMID: 38405271 PMCID: PMC10883200 DOI: 10.1021/acs.estlett.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a family of pollutants of high concern due to their ubiquity and negative human health impacts. The long-range marine transport of PFAS was observed during year-long deployments of passive tube samplers in the Fram Strait across three depth transects. Time weighted average concentrations ranged from 2.4-360 pg L-1, and 10 different PFAS were regularly observed. PFAS profiles and concentrations were generally similar to those previously characterized for polycyclic aromatic hydrocarbons (PAHs) at these sites. The detection of several anionic PFAS in "old" water demonstrated that they are not perfect water mass tracers, but are also transported to depth via settling particles. Mass flows of PFAS through the Fram Strait in and out of the Arctic Ocean were basically similar (112 ±82 Mg year-1 northward flow, 100 ±54 Mg year-1 southward flow). For FOSA, export from the Arctic Ocean via the Fram Strait exceeded import by Atlantic Water, likely due to preferential transport and deposition in the Arctic Ocean. These observations suggest PFAS in the Arctic are governed by the feedback loop previously described for PAHs in the region - with additional atmospheric transport delivering volatile PFAS to the Arctic, which then get exported further.
Collapse
Affiliation(s)
- Matthew Dunn
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| | - Simon Vojta
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| | - Thomas Soltwedel
- Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Wilken-Jon von Appen
- Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Rainer Lohmann
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| |
Collapse
|
8
|
Ahrens L, Rakovic J, Ekdahl S, Kallenborn R. Environmental distribution of per- and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. CHEMOSPHERE 2023; 345:140463. [PMID: 37852382 DOI: 10.1016/j.chemosphere.2023.140463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The environmental distribution of per- and polyfluoroalkyl substances (PFAS) in water, snow, sediment and soil samples taken along the west coast of Spitsbergen in the Svalbard archipelago, Norwegian Arctic, was determined. The contribution of potential local primary sources (wastewater, firefighting training site at Svalbard airport, landfill) to PFAS concentrations and long-range transport (atmosphere, ocean currents) were then compared, based on measured PFAS levels and composition profiles. In remote coastal and inland areas of Spitsbergen, meltwater had the highest mean ΣPFAS concentration (6.5 ± 1.3 ng L-1), followed by surface snow (2.5 ± 1.7 ng L-1), freshwater (2.3 ± 1.1 ng L-1), seawater (1.05 ± 0.64 ng L-1), lake sediments (0.084 ± 0.038 ng g-1 dry weight (dw)) and marine sediments (
Collapse
Affiliation(s)
- Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden.
| | - Jelena Rakovic
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden; Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Siri Ekdahl
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway; University Centre in Svalbard, Box 156, NO-9171, Longyearbyen, Norway
| |
Collapse
|
9
|
Casas G, Iriarte J, D'Agostino LA, Roscales JL, Martinez-Varela A, Vila-Costa M, Martin JW, Jiménez B, Dachs J. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122608. [PMID: 37742857 DOI: 10.1016/j.envpol.2023.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.
Collapse
Affiliation(s)
- Gemma Casas
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain; Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain; BETA Tech Center, University of Vic, Catalonia, Vic, Spain
| | - Jon Iriarte
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Lisa A D'Agostino
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain
| | - Alicia Martinez-Varela
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Jonathan W Martin
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain.
| |
Collapse
|
10
|
Liang LX, Liang J, Li QQ, Zeeshan M, Zhang Z, Jin N, Lin LZ, Wu LY, Sun MK, Tan WH, Zhou Y, Chu C, Hu LW, Liu RQ, Zeng XW, Yu Y, Dong GH. Early life exposure to F-53B induces neurobehavioral changes in developing children and disturbs dopamine-dependent synaptic signaling in weaning mice. ENVIRONMENT INTERNATIONAL 2023; 181:108272. [PMID: 37890264 DOI: 10.1016/j.envint.2023.108272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Previous studies have shown that F-53B exposure may be neurotoxic to animals, but there is a lack of epidemiological evidence, and its mechanism needs further investigation. METHODS Serum F-53B concentrations and Wisconsin Card Sorting Test (WCST) were evaluated in 314 growing children from Guangzhou, China, and the association between them were analyzed. To study the developmental neurotoxicity of F-53B, experiments on sucking mice exposed via placental transfer and breast milk was performed. Maternal mice were orally exposed to 4, 40, and 400 μg/L of F-53B from postnatal day 0 (GD0) to postnatal day 21 (PND 21). Several genes and proteins related to neurodevelopment, dopamine anabolism, and synaptic plasticity were examined by qPCR and western blot, respectively, while dopamine contents were detected by ELISA kit in weaning mice. RESULTS The result showed that F-53B was positively associated with poor WCST performance. For example, with an interquartile range increase in F-53B, the change with 95 % confidence interval (CI) of correct response (CR), and non-perseverative errors (NPE) was -2.47 (95 % CI: -3.89, -1.05, P = 0.001), 2.78 (95 % CI: 0.79, 4.76, P = 0.007), respectively. Compared with the control group, the highest exposure group of weaning mice had a longer escape latency (35.24 s vs. 51.18 s, P = 0.034) and a lesser distance movement (34.81 % vs. 21.02 %, P < 0.001) in the target quadrant, as observed from morris water maze (MWM) test. The protein expression of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) levels were decreased, as compared to control (0.367-fold, P < 0.001; 0.366-fold, P < 0.001; respectively). We also observed the upregulation of dopamine transporter (DAT) (2.940-fold, P < 0.001) consistent with the trend of dopamine content (1.313-fold, P < 0.001) in the hippocampus. CONCLUSION Early life exposure to F-53B is associated with adverse neurobehavioral changes in developing children and weaning mice which may be modulated by dopamine-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Science, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Jiao Z, Yu N, Mao J, Yang Q, Jiao L, Wang X, Shi W, Yu H, Wei S. The occurrence, tissue distribution, and PBT potential of per- and polyfluoroalkyl substances in the freshwater organisms from the Yangtze river via nontarget analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131868. [PMID: 37343408 DOI: 10.1016/j.jhazmat.2023.131868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/01/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Numerous emerging per- and polyfluoroalkyl substances (PFASs) occur in the aquatic environment, posing a threat to aquatic ecosystems and human health. In this study, we conducted a nontarget analysis on 3 surface water samples and 92 tissue samples of 16 fish collected from the Yangtze River to investigate the patterns, tissue distribution, and environmental impacts of emerging PFASs. A total of 43 PFASs from 11 classes were identified, including 17 legacy PFASs and 26 emerging PFASs. Among the 43 PFASs, seven PFASs were reported in biota for the first time while five PFASs were reported in the environment for the first time. Chlorine substituted perfluoroalyl ether sulfonic acids were the major emerging PFASs detected in organisms. Our results showed that most emerging PFASs tended to accumulate in the liver whereas perfluorinated sulfonamides tended to accumulate in the blood, and all of the emerging PFASs accumulated less in the muscle. Methods for evaluating the persistence, bioaccumulation, and toxicity (PBT) of PFASs were developed by combining the in-silico methods and experimental methods. Long-chain PFASs were found to have extremely high PBT scores compared to short-chain PFASs. Additionally, most emerging PFASs exhibited comparable PBT characteristics with legacy PFASs, especially Cl-substituted PFASs.
Collapse
Affiliation(s)
- Zhaoyu Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Jiadi Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Qian Yang
- JiangYin QiuHao Testing Co.,Ltd, Nanjing, People's Republic of China
| | - Liping Jiao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Saritha VK, Krishnan KP, Mohan M. Perfluorooctanoic acid in the sediment matrices of Arctic fjords, Svalbard. MARINE POLLUTION BULLETIN 2023; 192:115061. [PMID: 37187001 DOI: 10.1016/j.marpolbul.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Per- and polyfluorinated chemicals (PFASs) are very toxic industrial compounds, and fewer studies have been conducted on their presence in the sedimentary environment of the polar region. The present study is a preliminary assessment of the concentration and distribution of PFOA (Perfluorooctanoic acid) in selected fjord systems of the Svalbard archipelago, Norwegian Arctic. The ∑PFOA observed for Smeerenburgfjorden, Krossfjorden, Kongsfjorden Hotmiltonbuktafjorden, Raudfjorden and Magdalenefjorden were 1.28 ng/g, 0.14 ng/g, 0.68 ng/g, 6.54 ng/g, 0.41 ng/g and BDL respectively. Of the twenty-three fjord samples studied, the sediments from Hotmiltonbuktafjorden exhibited the presence of a higher concentration of PFOA in the sediment matrices. More studies are needed to understand their fate in the sedimentary environment with respect to the physio-chemical properties of the sediments.
Collapse
Affiliation(s)
- V K Saritha
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403802, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kerala 686560, India.
| |
Collapse
|
13
|
Jin B, Liu H, Che S, Gao J, Yu Y, Liu J, Men Y. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. NATURE WATER 2023; 1:451-461. [PMID: 38405335 PMCID: PMC10888525 DOI: 10.1038/s44221-023-00077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/04/2023] [Indexed: 02/27/2024]
Abstract
Chlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination. Hydrolytic dechlorination was favored with increased Cl-substitutions. An isolated, highly enriched anaerobic defluorinating culture was dominated by two genomes closest to Desulfovibrio aminophilus and Sporomusa sphaeroides, both of which exhibited active defluorination of CTFE tetramer acid. It implies the critical role played by anaerobic non-respiratory hydrolytic dechlorination in the fate of chlorinated polyfluoro-chemicals in natural and engineered water environments. The greatly enhanced biodegradability by Cl-substitutions also sheds light on the design of cost-effective treatment biotechnologies, as well as alternative PFAS that are readily biodegradable and less toxic.
Collapse
Affiliation(s)
- Bosen Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Huaqing Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Shun Che
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| |
Collapse
|
14
|
Shen P, Song X, Li N, Zhao C. Concentrations and distributions of fluorotelomer alcohols and perfluoroalkane sulfonamido substances in the atmosphere in the Pearl River Delta, China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:183-190. [PMID: 36799430 DOI: 10.1080/10934529.2023.2174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/18/2023]
Abstract
Per and polyfluoroalkyl substances (PFASs) have attracted major global concerns because some of them are environmentally persistent, bioaccumulative, and toxic. Perfluoroalkyl acids (PFAAs) have been well-characterized in water, soil, and sediment; however, fluorotelomer alcohols and perfluoroalkane sulfonamido substances have been overlooked. In this study, concentrations of three fluorotelomer alcohols and four perfluoroalkane sulfonamido substances were determined in the air at nine locations representing urban, rural-urban transect, and urban areas in the Pearl River Delta region, China to investigate their seasonal and spatial distributions and potential sources. At least two of the targeted PFASs were detected in all air samples in the Pearl River Delta region, with concentrations ranging from 371 pg/sampler to 18700 pg/sampler. Fluorotelomer alcohols were dominant compounds (contributing 46% to the ∑7PFAS concentration on average) in the atmosphere in the Pearl River Delta region. The total concentrations of the seven targeted PFASs were significantly higher in summer than in other seasons in urban areas. PFAS concentrations were positively related to the population density in the Pearl River Delta region. Local diffusive emission and long range transport could be sources of the seven PFASs in the air in the Pearl River Delta region.
Collapse
Affiliation(s)
- Peng Shen
- Environmental Management Research Center, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaocong Song
- Environmental Management Research Center, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nankun Li
- Regional Appraisal Section, Appraisal Center for Environment & Engineering, Beijing, China
| | - Ci Zhao
- Environmental Management Research Center, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
15
|
Chen Y, Wei L, Luo W, Jiang N, Shi Y, Zhao P, Ga B, Pei Z, Li Y, Yang R, Zhang Q. Occurrence, spatial distribution, and sources of PFASs in the water and sediment from lakes in the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130170. [PMID: 36265376 DOI: 10.1016/j.jhazmat.2022.130170] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) are omnipresent globally and received increasing attention recently. However, there are limited data on PFASs in the Tibetan Plateau (TP), a remote high-altitude mountain region, which is regard as an important indicator region to study long-range transport behaviors of contaminants. This study investigates the occurrence, distribution, partitioning behavior, and sources of 26 PFASs in water and sediments from the four lakes of TP. The ΣPFAS concentrations ranged from 338 to 9766 pg L-1 in water, and 12.2-414 pg g-1 dry weight in sediments. Perfluorobutanonic acid (PFBA) and perfluorooctane sulfonate (PFOS) were detected in all samples. Qinghai Lake had the highest ΣPFAS concentrations in both water and sediments, while the Ranwu Lake had the lowest. The functional groups and CF2 moiety units were investigated as essential factors influencing the partition behavior. Principal component analysis (PCA) combined back-trajectory was used to infer possible sources of PFASs. The results suggested that the main source of PFASs in Yamdrok Lake, Namco Lake, and Ranwu Lake on southern TP were mainly originated from South Asia via long-range atmospheric transport (LRAT); while for the Qinghai Lake of northern TP, LRAT, local emissions, and tourism activities were the primary sources of PFASs.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Wei Luo
- University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ning Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Pin Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bila Ga
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Ren J, Yu M, Chen F, Cui L, Zhang Y, Li J, Chen M, Wang X, Fu J. Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159026. [PMID: 36167123 DOI: 10.1016/j.scitotenv.2022.159026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The Tibetan Plateau (TP) is home to the headwaters of major rivers in Asia, yet their water quality security on a large spatial scale is scarcely studied, especially in regard to emerging organic pollutants. In this study, a systematic field campaign was carried out along Yarlung Tsangpo River, Nu River, Lancang River and Jinsha River, and 13 perfluoroalkyl acids (PFAAs) were analyzed. The total concentrations of PFAAs in the river waters of the TP were in the range of 0.58-7.46 ng/L, containing a high proportion of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) with average values of 56.7 %. Elevated PFAA loadings were found for the midstream of Yarlung Tsangpo River in central Tibet. Geodetector results indicated that precipitation, solar radiation and vegetation type were the top three influential factors contributing to the observed spatial heterogeneity. When interactions with human activities were taken into account, the explanatory power was significantly enhanced and rose above 0.70, highlighting the increased risks for TP rivers from the combined effects of natural environments and anthropogenic activities. Risk assessments suggest a low risk is posed to the alpine aquatic ecosystems and human health. The discharge fluxes of PFAAs via riverine export were estimated at 94-425 kg/year, which is one to two orders of magnitude lower than their mass loadings in major rivers worldwide. Our study underlined the need for further attention to the increased risk of water resource quality on the central TP in the context of long-range transport, increased cryosphere melting and local emission.
Collapse
Affiliation(s)
- Jiao Ren
- Research Institute of Transition of Resource-Based Economics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengjiao Yu
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Feng Chen
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Liang Cui
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Yuzhi Zhang
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Junming Li
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengke Chen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjie Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
18
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
19
|
Logemann A, Reininghaus M, Schmidt M, Ebeling A, Zimmermann T, Wolschke H, Friedrich J, Brockmeyer B, Pröfrock D, Witt G. Assessing the chemical anthropocene - Development of the legacy pollution fingerprint in the North Sea during the last century. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119040. [PMID: 35202763 DOI: 10.1016/j.envpol.2022.119040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The North Sea and its coastal zones are heavily impacted by anthropogenic activities, which has resulted in significant chemical pollution ever since the beginning of the industrialization in Europe during the 19th century. In order to assess the chemical Anthropocene, natural archives, such as sediment cores, can serve as a valuable data source to reconstruct historical emission trends and to verify the effectiveness of changing environmental legislation. In this study, we investigated 90 contaminants covering inorganic and organic pollutant groups analyzed in a set of sediment cores taken in the North Seas' main sedimentation area (Skagerrak). We thereby develop a chemical pollution fingerprint that records the constant input of pollutants over time and illustrates their continued great relevance for the present. Additionally, samples were radiometrically dated and PAH and PCB levels in porewater were determined using equilibrium passive sampling. Furthermore, we elucidated the origin of lead (Pb) contamination utilizing non-traditional stable isotopic analysis. Our results reveal three main findings: 1. for all organic contaminant groups covered (PAHs, OCPs, PCBs, PBDEs and PFASs) as well as the elements lead (Pb) and titanium (Ti), determined concentrations decreased towards more recent deposited sediment. These decreasing trends could be linked to the time of introductions of restrictions and bans and therefor our results confirm, amongst possible other factors, the effectiveness of environmental legislation by revealing a successive change in contamination levels over the decades. 2. concentration trends for ΣPAH and ΣPCB measured in porewater correspond well with the ones found in sediment which suggests that this method can be a useful expansion to traditional bulk sediment analysis to determine the biologically available pollutant fraction. 3. Arsenic (As) concentrations were higher in younger sediment layers, potentially caused by emissions of corroded warfare material disposed in the study area after WW II.
Collapse
Affiliation(s)
- A Logemann
- Federal Maritime and Hydrographic Agency (BSH), Bernhard-Nocht-Str. 78, 20359, Hamburg, Germany; Universität Hamburg, Department of Earth Sciences, Bundesstraße 55, 20146, Hamburg, Germany
| | - M Reininghaus
- Hamburg University of Applied Sciences, Department of Engineering, Ulmenliet 20, 21033, Hamburg, Germany; RWTH University Aachen, Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074, Aachen, Germany
| | - M Schmidt
- Universität Hamburg, Department of Earth Sciences, Bundesstraße 55, 20146, Hamburg, Germany; Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - A Ebeling
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany; Universität Hamburg, Department of Chemistry, Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - T Zimmermann
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - H Wolschke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - J Friedrich
- Helmholtz-Zentrum Hereon, Institute of Carbon Cycles, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - B Brockmeyer
- Federal Maritime and Hydrographic Agency (BSH), Bernhard-Nocht-Str. 78, 20359, Hamburg, Germany
| | - D Pröfrock
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany.
| | - G Witt
- Hamburg University of Applied Sciences, Department of Engineering, Ulmenliet 20, 21033, Hamburg, Germany
| |
Collapse
|
20
|
Li QQ, Liu JJ, Su F, Zhang YT, Wu LY, Chu C, Zhou Y, Shen X, Xiong S, Geiger SD, Qian ZM, McMillin SE, Dong GH, Zeng XW. Chlorinated Polyfluorinated Ether Sulfonates and Thyroid Hormone Levels in Adults: Isomers of C8 Health Project in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6152-6161. [PMID: 35380809 DOI: 10.1021/acs.est.1c03757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorinated polyfluorinated ether sulfonates (Cl-PFESAs) are one kind of replacement chemistry for perfluorooctanesulfonate (PFOS). Recent studies have shown that Cl-PFESAs could interfere with thyroid function in animal models. However, epidemiological evidence on the link between Cl-PFESAs and thyroid function remains scarce. In this study, we focused on two representative legacy perfluoroalkyl substances (PFAS), including PFOS and perfluorooctanoic acid (PFOA), and two PFOS alternatives (6:2 and 8:2 Cl-PFESAs) in the general adult population from a cross-sectional study, the "Isomers of C8 Health Project in China". Three serum thyroid hormones (THs), thyroid stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxine (FT4), were measured. We fitted generalized linear regression, restricted cubic spline regression, and Bayesian kernel machine regression models to assess associations of individual Cl-PFESAs, legacy PFAS, and PFAS mixtures with THs, respectively. We found individual PFAS and their mixtures were nonlinearly associated with THs. The estimated changes of the TSH level (μIU/mL) at the 95th percentile of 6:2 Cl-PFESA and PFOS against the 5th percentile were -0.74 (95% CI: -0.94, -0.54) and -1.18 (95% CI: -1.37, -0.98), respectively. The present study provided epidemiological evidence for the association of 6:2 Cl-PFESA with thyroid hormone levels in the general adult population.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiao-Jiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanzhong Zhou
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xubo Shen
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Shimin Xiong
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Sarah Dee Geiger
- School of Nursing and Health Studies, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Lalonde B, Garron C. Perfluoroalkyl Substances (PFASs) in the Canadian Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:581-591. [PMID: 35347351 PMCID: PMC9079020 DOI: 10.1007/s00244-022-00922-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are anthropogenic substances that are very stable in the receiving environment. Legacy perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) are especially persistent and resistant to typical environmental degradation processes and therefore are distributed across all trophic levels and environmental compartments (soil, air, water). Since most uses of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and LC-long-chain PFCAs are banned in Canada, alternative PFASs have been in use for a number of years. Twenty-nine sites across Canada were sampled for PFASs to determine concentrations and trends. Overall, 13 PFASs were measured in 566 Canadian freshwater samples from 2013 to 2020 with a range from below the detection limit (LOD range: 0.4-1.6 ng/L) of the laboratory to a maximum of 138 ng/L (for PFBS). While PFOS and PFOA concentrations are declining significantly over time, other compounds such as PFPeA and PFBA have increased significantly over 2013-2020. Overall, the range of concentrations found in this study was similar to that of other Canadian and international studies. However, this study also found a higher frequency of detections of the replacement PFASs than that of the other, older, Canadian studies.
Collapse
Affiliation(s)
- Benoit Lalonde
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada.
| | - Christine Garron
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada
| |
Collapse
|
22
|
Zhang S, Li X, He D, Zhang D, Zhao Z, Si H, Wang F. Per- and poly-fluoroalkyl substances in sediments from the water-level-fluctuation zone of the Three Gorges Reservoir, China: Contamination characteristics, source apportionment, and mass inventory and loadings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118895. [PMID: 35085656 DOI: 10.1016/j.envpol.2022.118895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Sixteen paired surface sediment samples (0-5 cm, n = 32) covering upstream to downstream of water-level-fluctuation zone of Three Gorges Reservoir, China were collected in March 2018 (following six months of submergence) and September 2018 (after six months of exposure). Seventeen per- and poly-fluoroalkyl substances (PFASs) were quantified to evaluate contamination characteristics, apportion source categories and estimate mass inventory and loadings. The concentration of ΣPFASs ranged from 0.26 to 0.82 ng·g-1 at high water-level (HWL) and 0.46-1.53 ng·g-1 at low water-level (LWL). Perfluorooctanoic acid (PFOA, mean: 0.32 ng·g-1) and perfluorooctane sulfonate (PFOS, mean: 0.12 ng·g-1) dominated, accounting 44.9% and 16.3% of the total PFASs, respectively. The distribution of PFASs was more influenced by anthropogenic activities than physicochemical parameters of the sediments. Positive matrix factorization (PMF) identified PFOA-based products was the major sources (40.1% and 38.6%, respectively). Besides, the direct sources of PFOA-, PFOS-, PFNA-and PFBA-based products played the predominant role, while the indirect degradation of precursors contributed relatively little. The sediment (0-5 cm) mass inventory of PFASs at LWL (57.5 kg) was higher than HWL (39.3 kg). The annual mass loadings of the total PFASs, PFOA, PFOS, perfluoroundecanoic acid (PFUdA) and perfluorononanoic acid (PFNA) from the upstream to the middle-lower reaches of Yangtze River were 27.4 kg, 11.1 kg, 4.63 kg, 2.89 kg and 2.57 kg, respectively. This study could provide the basic datasets of PFASs in surface sediments of the TGR, and also indicate an important transport of PFASs from upstream to the lower reaches, which should be further studied as well.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, Chongqing, 400030, China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Xingquan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, Chongqing, 400030, China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Ding He
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, Chongqing, 400030, China
| | - Zhen Zhao
- Department of Environmental Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongtao Si
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| | - Fengwen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, Chongqing, 400030, China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Novel Fluorinated Nitrogen-Rich Porous Organic Polymer for Efficient Removal of Perfluorooctanoic Acid from Water. WATER 2022. [DOI: 10.3390/w14071010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mobility, durability, and widespread use of perfluorinated and polyfluoroalkyl substances (PFAS), notably perfluorooctanoic acid (PFOA), bring about serious contamination of many ground and surface waters. In this study, fluorine and amine-functionalized porous organic polymer (POP-4F) was designed and successfully synthesized as an adsorbent for PFOA removal in water. The characterization results showed that the synthesized material had an amorphous microporous structure, and the BET surface area was up to 479 m2 g−1. Its versatile adsorption property was evaluated by batch adsorption experiments using PFOA as a probe. The experiments show that the polymer was able to remove 98% of the PFOA in 5 min from water and then desorb within 3 min in methanol ([PFOA]0 = 1 mg L−1; [POP-4F] = 200 mg L−1). Specifically, the adsorption capacity of POP-4F is up to 107 mg g−1, according to the Langmuir fit. The rapid adsorption and desorption of PFOA by POP-4F offers the possibility of economical, environmentally friendly, and efficient treatment of real wastewater.
Collapse
|
24
|
He Y, Lv D, Li C, Liu X, Liu W, Han W. Human exposure to F-53B in China and the evaluation of its potential toxicity: An overview. ENVIRONMENT INTERNATIONAL 2022; 161:107108. [PMID: 35121495 DOI: 10.1016/j.envint.2022.107108] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESAs, trade name F-53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely used as a mist suppressant in the Chinese electroplating industry since the 1970 s. Due to greater restrictions on PFOS globally in recent years, the production and use of F-53B correspondingly increased, consequently causing more emissions into the environment. In China, an increasing number of studies report frequent detection and broad exposure to F-53B in the natural environment, various wildlife and the human body. In human blood, the detection rate of F-53B is almost 80%, accounting for 8.69 to 28% of ∑per- and polyfluoroalkyl substances (PFASs). F-53B is the most biopersistent PFAS in humans to date, with a half-life of 15.3 years. In addition, F-53B displays protein binding affinity and high human placental permeability. Recently, some epidemiological studies have reported the health risks associated with F-53B in humans, including abnormal serum lipid metabolism, vascular dysfunction, endocrine disorders and even adverse birth outcomes. Various in vivo and in vitro studies have demonstrated the toxicity of F-53B, such as hepatotoxicity, interference effects on the endocrine system, as well as reproductive and developmental toxicity. Our aims are to review studies on human F-53B exposure levels, trends and associated health effects; evaluate the potential toxicity; and predict directions for future research.
Collapse
Affiliation(s)
- Yanxia He
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Graduate School of Dalian Medical University, Dalian 116000, China
| | - Di Lv
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiuqin Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wendong Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wenchao Han
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China.
| |
Collapse
|
25
|
Gallocchio F, Mancin M, Belluco S, Moressa A, Angeletti R, Lorenzetto M, Arcangeli G, Ferrè N, Ricci A, Russo F. Investigation of levels of perfluoroalkyl substances in freshwater fishes collected in a contaminated area of Veneto Region, Italy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20996-21011. [PMID: 34750761 DOI: 10.1007/s11356-021-17236-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation of 12 perfluoroalkyl substances (PFASs) in 107 freshwater fishes collected during 2017 in waterbodies of a contaminated area in Veneto Region (Italy) was evaluated. The contamination had been previously ascribed to a fluorochemical manufacturing plant that discharged mainly perfluorooctanoic acid (PFOA), among other PFASs, into the surrounding environment. Perfluorooctane sulfonate (PFOS) was the most abundant compound, detected in almost 99% of the fish with an average concentration of 9.23 µg/kg wet weight (w/w). Other detected compounds were perfluoroundecanoic acid (PFUnA) (98%, 0.55 µg/kg w/w), perfluorodecanoic acid (PFDA) (98%, 2.87 µg/kg w/w), perfluorododecanoic acid (PFDoA) (93%, 1.51 µg/kg w/w), and PFOA (79%, 0.33 µg/kg w/w). Bioaccumulation of PFASs was species related, with Italian barbel being the most contaminated, followed by chub, wels catfish, and carp, reflecting animals' habitat use and feeding behavior. A significant negative linear relation between PFAS concentration and fish weight was observed no matter the considered species, with smaller fish having proportionally higher bioaccumulation. PFOS concentrations were strongly correlated with the concentrations of other PFASs, suggesting a similar source of contamination or a contamination from ubiquitous sources. Correlation analysis showed PFOA likely originated from a separated source, unlinked to other PFASs. Although the fishes studied are not usually consumed by local people, with the likely exception of freshwater anglers (and relatives), their consumption has been banned by Veneto Authority since the time this study was conducted. In fact, the study suggests that a medium/high consumption frequency (superior to 1 portion per month) of fish from the investigated area might result in a high exposure to PFASs.
Collapse
Affiliation(s)
| | - Marzia Mancin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Simone Belluco
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Alessandra Moressa
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Monica Lorenzetto
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Nicola Ferrè
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Antonia Ricci
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Francesca Russo
- Direzione Prevenzione, Sicurezza Alimentare, Veterinaria, Regione Veneto, Venice, Italy
| |
Collapse
|
26
|
MacInnis J, De Silva AO, Lehnherr I, Muir DCG, St Pierre KA, St Louis VL, Spencer C. Investigation of perfluoroalkyl substances in proglacial rivers and permafrost seep in a high Arctic watershed. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:42-51. [PMID: 34908076 DOI: 10.1039/d1em00349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We measured perfluoroalkyl substances (PFAS) in proglacial rivers and along a non-glacial freshwater continuum to investigate the role of snow and ice melting in their transport and fate within the Lake Hazen watershed (82° N). PFAS concentrations in glacial rivers were higher than those in surface waters of Lake Hazen, suggesting melting glacial ice increased PFAS concentrations in the lake. Stream water derived from subsurface soils along a non-glacial (permafrost thaw and snowmelt) freshwater continuum was a source of PFAS to Lake Hazen. Lower concentrations were found downstream of a meadow wetland relative to upstream locations along the continuum, suggesting PFAS partitioning into vegetation and soil as water flowed downstream towards Lake Hazen. Our estimations indicate that total PFAS inputs from glacial rivers and snowmelt were 1.6 kg (78%) and 0.44 kg (22%), respectively, into Lake Hazen, totalling 2.04 kg, and the output of PFAS from Lake Hazen was 0.64 kg. A positive net annual change of 1.4 kg indicates PFAS had notable residence times and/or net storage in Lake Hazen.
Collapse
Affiliation(s)
- John MacInnis
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto, Mississauga, ON L5L 1C6, Canada.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| | - Kyra A St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Christine Spencer
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| |
Collapse
|
27
|
Zhong H, Zheng M, Liang Y, Wang Y, Gao W, Wang Y, Jiang G. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. CHEMOSPHERE 2021; 282:131042. [PMID: 34111641 DOI: 10.1016/j.chemosphere.2021.131042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The Yellow Sea (YS), the East China Sea (ECS) and their coastal areas have undergone rapid urbanization and industrialization. These areas are important sinks for many persistent organic pollutants. In this study, the concentration of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in marine sediments from the YS and ECS were investigated. Nineteen PFAS were identified, ranging in concentration from 0.21 ng/g to 4.74 ng/g (mean: 1.60 ng/g). Legacy long-chain PFAS [e.g., perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS)] were the dominant contaminants. Alternative PFAS such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propanoic acid (HFPO-DA) were identified within the detection range of 16%-100%. HFPO-DA was measured in all sediments in equivalent levels to PFOS (0.119 ng/g and 0.139 ng/g, respectively). This is the first reported occurrence of perfluoro-1-butanesulfonamide (FBSA) and HFPO-DA in marine sediments, indicating a replacement in the production of PFAS from legacy to emerging ones along with eastern coastal cities of China. The results of the potential source identification demonstrated that metal plating plants, textile treatments, fluoropolymer products, food packaging, and the degradation of volatile precursor substances were the main sources of PFAS in the ECS and YS. The environmental risk assessment based on the risk quotient demonstrated that PFOA and PFOS in the ECS and YS may present a low to medium risk at most sampling points.
Collapse
Affiliation(s)
- Huifang Zhong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yingjun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
28
|
Yu S, Feng WR, Liang ZM, Zeng XY, Bloom MS, Hu GC, Zhou Y, Ou YQ, Chu C, Li QQ, Yu Y, Zeng XW, Dong GH. Perfluorooctane sulfonate alternatives and metabolic syndrome in adults: New evidence from the Isomers of C8 Health Project in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117078. [PMID: 33839621 DOI: 10.1016/j.envpol.2021.117078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), are ubiquitous alternatives to perfluorooctane sulfonate (PFOS), a widely used poly- and perfluoroalkyl substance (PFAS). Despite in vivo and in vitro evidence of metabolic toxicity, no study has explored associations of Cl-PFESAs concentrations with metabolic syndrome (MetS) in a human population. To help address this data gap, we quantified 32 PFAS, including 2 PFOS alternative Cl-PFESAs (6:2 and 8:2 Cl-PFESAs) in serum from 1228 adults participating in the cross-sectional Isomers of C8 Health Project in China study. The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS and its various components were estimated using individual PFAS as a continuous or categorical predictor in multivariate regression models. The association between the overall mixture of PFAS and MetS was examined using probit Bayesian Kernel Machine Regression (BKMR-P). Greater serum PFAS concentrations were associated with higher odds of MetS and demonstrated a statistically significant dose-response trend (P for trend < 0.001). For example, each ln-unit (ng/mL) increase in serum 6:2 Cl-PFESA was associated with a higher prevalence of MetS (OR = 1.52, 95% CI: 1.25, 1.85). MetS was also 2.26 (95% CI: 1.59, 3.23) times more common in the highest quartile of serum 6:2 Cl-PFESA concentration than the lowest, and particularly high among women (OR = 6.41, 95% CI: 3.65, 11.24). The BKMR-P analysis showed a positive association between the overall mixture of measured PFAS and the odds of MetS, but was only limited to women. While our results suggest that exposure to Cl-PFESAs was associated with MetS, additional longitudinal studies are needed to more definitively address the potential health concerns of these PFOS alternatives.
Collapse
Affiliation(s)
- Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Zi-Mian Liang
- Department of Prevention and Control of Infectious Diseases, Foshan Center for Disease Control and Prevention, Foshan, 528000, China
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, 22030, USA
| | - Guo-Cheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Arctic Freshwater Environment Altered by the Accumulation of Commonly Determined and Potentially New POPs. WATER 2021. [DOI: 10.3390/w13131739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical composition of Arctic freshwater ecosystems depends on several factors. They include characteristics of the surrounding landscape, its lithology, geomorphology, vegetation, and hydrological features, as well as accumulation of anthropogenic pollution. In the Arctic, the problem of environmental contamination is widespread. That is why research on lakes and river catchments in terms of their chemical composition has enjoyed increasing interest among scientists worldwide. The freshwater reservoirs of the Arctic are fragile and particularly vulnerable to the uptake of pollutants that become trapped in the water and sediments for an extended period. This review summarises selected studies of freshwater bodies in the Arctic to highlight the problem of the accumulation of pollutants in these reservoirs. Moreover, it emphasises the possible negative impact of chemical pollutants on both animal and human health.
Collapse
|
30
|
Zhu X, Song X, Schwarzbauer J. First insights into the formation and long-term dynamic behaviors of nonextractable perfluorooctanesulfonate and its alternative 6:2 chlorinated polyfluorinated ether sulfonate residues in a silty clay soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143230. [PMID: 33158517 DOI: 10.1016/j.scitotenv.2020.143230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and toxic contaminants that are ubiquitous in the environment. They can incorporate into soil as nonextractable residues (NER) which are not detectable with conventional analytical protocols but are still possible to remobilize with changes of surrounding conditions, and thus will be bioavailable again. Therefore, there is a need to investigate thoroughly the long-term fate of NER-PFAS. In this study, a 240-day incubation of perfluorooctanesulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in a silty clay topsoil was carried out. Solvent extraction, alkaline hydrolysis and sequential chemical degradation were applied on periodically sampled soil to obtain extractable, moderately bound and deeply bound PFAS, respectively. The results confirmed the formation of NER of both compounds but with different preferences of incorporating mechanisms. NER-PFOS was formed predominantly by covalent binding (via head group) and strong adsorption (via tail group). The formation of NER-F-53B was mainly driven by physical entrapment. Both bound compounds within the incubation period showed three-stage behaviors including an initial period with slight release followed by a (re) incorporating stage and a subsequent remobilizing stage. This work provides some first insights on the long-term dynamic behaviors of nonextractable PFAS and will be conducive to their risk assessment and remediation (e.g. estimating potential NER-PFAS level based on their free extractable level, and selecting remediation methods according to their prevailing binding mechanisms).
Collapse
Affiliation(s)
- Xiaojing Zhu
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr, 4-20, 52064 Aachen, Germany.
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China.
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr, 4-20, 52064 Aachen, Germany.
| |
Collapse
|
31
|
Wang Q, Ruan Y, Jin L, Zhang X, Li J, He Y, Wei S, Lam JCW, Lam PKS. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1045-1056. [PMID: 33395277 DOI: 10.1021/acs.est.0c06685] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been manufactured and widely used for over 60 years. Currently, there are thousands of marketed PFASs, but only dozens of them are routinely monitored. This work involved target, nontarget, and suspect screening of PFASs in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides), two resident marine mammals in the South China Sea, stranded between 2012 and 2018. Among the 21 target PFASs, perfluorooctane sulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) predominated in the samples, accounting for 46 and 30% of the total PFASs, respectively. Significantly higher total target PFAS concentrations (p < 0.05) were found in dolphin liver samples [3.23 × 103 ± 2.63 × 103 ng/g dry weight (dw)] than in porpoise liver samples (2.63 × 103 ± 1.10 × 103 ng/g dw). Significant increasing temporal trends (p < 0.05) were found in the concentrations of two emerging PFASs, perfluoroethylcyclohexane sulfonate and 2,3,3,3-tetrafluoro-2-propanoate in porpoises, indicating increasing pollution by these emerging PFASs. Forty-four PFASs from 9 classes were additionally identified by nontarget and suspect screening, among which 15 compounds were reported for the first time in marine mammals. A primary risk assessment showed that the emerging PFAS 6:2 Cl-PFESA could have possible adverse effects in terms of reproductive injury potential on most of the investigated cetaceans.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Jing Li
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Paul K S Lam
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
32
|
Liu Y, Robey NM, Bowden JA, Tolaymat TM, da Silva BF, Solo-Gabriele HM, Townsend TG. From Waste Collection Vehicles to Landfills: Indication of Per- and Polyfluoroalkyl Substance (PFAS) Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:66-72. [PMID: 37850075 PMCID: PMC10581401 DOI: 10.1021/acs.estlett.0c00819] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Municipal solid waste contain diverse and significant amounts of per- and polyfluoroalkyl substances (PFAS), and these compounds may transform throughout the "landfilling" process from transport through landfill degradation. Fresh vehicle leachates, from commercial and residential waste collection vehicles at a transfer station, were measured for 51 PFAS. Results were compared to PFAS levels obtained from aged landfill leachate at the disposal facility. The landfill leachate was dominated by perfluoroalkyl acids (PFAAs, including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs); 86% of the total PFAS, by median mass concentration), while the majority of PFAS present in commercial and residential waste vehicle leachate were PFAA-precursors (70% and 56% of the total PFAS, by median mass concentration, respectively), suggesting precursor transformation to PFAAs during the course of landfill disposal. In addition, several PFAS, which are not routinely monitored-perfluoropropane sulfonic acid (PFPrS), 8-chloro-perfluoro-1-octane sulfonic acid (8Cl-PFOS), chlorinated polyfluoroether sulfonic acids (6:2, 8:2 Cl-PFESAs), sodium dodecafluoro-3H-4,8-dioxanonanoate (NaDONA), and perfluoro-4-ethylcyclohexanesulfonate (PFECHS)-were detected. Potential degradation pathways were proposed based on published studies: transformation of polyfluoroalkyl phosphate diester (diPAPs) and fluorotelomer sulfonic acids (FTS) to form PFCAs via formation of intermediate products such as fluorotelomer carboxylic acids (FTCAs).
Collapse
Affiliation(s)
- Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Nicole M Robey
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering and Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Thabet M Tolaymat
- National Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Bianca F da Silva
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Timothy G Townsend
- Department of Environmental, Engineering Sciences, College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
33
|
Zhao Z, Cheng X, Hua X, Jiang B, Tian C, Tang J, Li Q, Sun H, Lin T, Liao Y, Zhang G. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114391. [PMID: 32213363 DOI: 10.1016/j.envpol.2020.114391] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) contamination in the Bohai Sea and its surrounding rivers has attracted considerable attention in recent years. However, few studies have been conducted regarding the distribution of PFASs in multiple environmental media and their distributions between the suspended particles and dissolved phases. In this study, surface water, surface sediment, and air samples were collected at the Bohai Sea to investigate the concentration and distribution of 39 targeted PFASs. Moreover, river water samples from 35 river estuaries were collected to estimate PFAS discharge fluxes to the Bohai Sea. The results showed that total ionic compound (Σi-PFASs) concentrations ranged from 19.3 to 967 ng/L (mean 125 ± 152 ng/L) in the water and 0.70-4.13 ng/g dw (1.78 ± 0.76 ng/g) in surface sediment of the Bohai Sea, respectively. In the estuaries, Σi-PFAS concentrations were ranged from 10.5 to 13500 ng/L (882 ± 2410 ng/L). In the air, ΣPFAS (Σi-PFASs + Σn-PFASs) concentrations ranged from 199 to 678 pg/m3 (462 ± 166 pg/m3). Perfluorooctanoic acid (PFOA) was the predominant compound in the seawater, sediment, and river water; in the air, 8:2 fluorotelomer alcohol was predominant. Xiaoqing River discharged the largest Σi-PFAS flux to the Bohai Sea, which was estimated as 12,100 kg/y. Some alternatives, i.e., 6:2 fluorotelomer sulfonate acid (6:2 FTSA), hexafluoropropylene oxide dimer acid (HFPO-DA), and chlorinated 6:2 polyfluorinated ether sulfonic acid (Cl-6:2 PFESA), showed higher levels than or comparable concentrations to those of the C8 legacy PFASs in some sampling sites. The particle-derived distribution coefficient in seawater was higher than that in the river water. Using high resolution mass spectrometry, 29 nontarget emerging PFASs were found in 3 river water and 3 seawater samples. Further studies should be conducted to clarify the sources and ecotoxicological effects of these emerging PFASs in the Bohai Sea area.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Cheng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
34
|
Stroski KM, Luong KH, Challis JK, Chaves-Barquero LG, Hanson ML, Wong CS. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134494. [PMID: 31791794 DOI: 10.1016/j.scitotenv.2019.134494] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Effective removal of organic contaminants in wastewater effluent poses a challenge to small communities worldwide, particularly in the Arctic due to infrastructure challenges and harsh climates. To understand better the efficacy of current treatment options and risks posed by pharmaceuticals and pesticides on receiving waters in the Arctic, four representative human communities in Nunavut, Canada were evaluated. Per- and polyfluorinated alkyl substances (PFASs) were also investigated in one community. These communities have treatment ranging from primary lagoons, engineered wetlands, and natural lakes. Pharmaceuticals and pesticides were measured using the organic diffusive gradients in thin film (o-DGT) passive sampler in summer 2018. Of the 34 compounds studied, seven pharmaceuticals were found at least once: atenolol, carbamazepine, metoprolol, naproxen, sulfapyridine, sulfamethoxazole, and trimethoprim. With the exception of 5210 ng naproxen/L in Iqaluit, most receiving waters showed negligible amounts of contamination. Iqaluit had the poorest overall system performance while Baker Lake had the best. Measured pharmaceutical concentrations do not appear to pose a significant acute hazard to receiving waters at this time, based on known toxicological endpoints. PFAS concentrations were found to be over 100-fold greater in Cambridge Bay wastewater than previously reported Arctic seawater. Results suggest that wastewater may be an important point source of PFASs in Arctic communities. The o-DGT passive samplers performed well in marine Arctic settings. We recommend further testing of wastewater efficiencies in Arctic communities along with evaluations of seasonal variations.
Collapse
Affiliation(s)
- Kevin M Stroski
- Richardson College for the Environment, University of Manitoba, Winnipeg, MB, Canada
| | - Kim Hoang Luong
- Department of Chemistry, The University of Winnipeg, Winnipeg, MB, Canada
| | - Jonathan K Challis
- Richardson College for the Environment, University of Manitoba, Winnipeg, MB, Canada
| | - Luis G Chaves-Barquero
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Charles S Wong
- Richardson College for the Environment, University of Manitoba, Winnipeg, MB, Canada; Department of Chemistry, The University of Winnipeg, Winnipeg, MB, Canada; Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica; School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Sun Y, De Silva AO, St Pierre KA, Muir DCG, Spencer C, Lehnherr I, MacInnis JJ. Glacial Melt Inputs of Organophosphate Ester Flame Retardants to the Largest High Arctic Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2734-2743. [PMID: 32013404 DOI: 10.1021/acs.est.9b06333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Organophosphate esters (OPEs) have been detected in the Arctic environment, but the influence of glacial melt on the environmental behavior of OPEs in recipient Arctic aquatic ecosystems is still unknown. In this study, water samples were collected from Lake Hazen (LH) and its tributaries to investigate the distribution of 14 OPEs in LH and to explore the input of OPEs from glacial rivers to LH and the output of OPEs from LH in 2015 and 2018. Σ14OPE concentrations in water of LH were lower than glacial rivers and its outflow, the Ruggles River. In 2015, a high melt year, we estimated that glacial rivers contributed 7.0 ± 3.2 kg OPEs to LH, compared to a 16.5 ± 0.3 kg OPEs output by the Ruggles River, suggesting that residence time and/or additional inputs via direct wet and dry deposition and permafrost melt likely result in OPE retention in the LH watershed. In 2018, a lower melt year, Σ14OPE concentrations in glacial rivers were much lower, indicating that the rate of glacier melt may govern, in part, the concentrations of OPEs in the tributaries of LH. This study highlights long-range transport of OPEs, their deposition in Arctic glaciers, landscapes, and lakes.
Collapse
Affiliation(s)
- Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, P. R. China
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Kyra A St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Christine Spencer
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Igor Lehnherr
- Department of Geography, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - John J MacInnis
- Department of Chemistry, Memorial University, St John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
36
|
MacInnis JJ, Lehnherr I, Muir DCG, St Pierre KA, St Louis VL, Spencer C, De Silva AO. Fate and Transport of Perfluoroalkyl Substances from Snowpacks into a Lake in the High Arctic of Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10753-10762. [PMID: 31412696 DOI: 10.1021/acs.est.9b03372] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The delivery of perfluoroalkyl substances (PFAS) from snowpacks into Lake Hazen, located on Ellesmere Island (Nunavut, Canada, 82° N) indicates that annual atmospheric deposition is a major source of PFAS that undergo complex cycling in the High Arctic. Perfluoroalkyl carboxylic acids (PFCA) in snowpacks display odd-even concentration ratios characteristic of long-range atmospheric transport and oxidation of volatile precursors. Major ion analysis in snowpacks suggests that sea spray, mineral dust, and combustion aerosol are all relevant to the fate of PFAS in the Lake Hazen watershed. Distinct drifts of light and dark snow (enriched with light absorbing particles, LAPs) facilitate the study of particle loads on the fate of PFAS in the snowpack. Total PFAS (ΣPFAS, ng m-2) loads are lower in snowpacks enriched with LAPs and are attributed to reductions in snowpack albedo combined with enhanced post-depositional melting. Elevated concentrations of PFCA are observed in the top 5 m of the water column during snowmelt periods compared to ice-covered or ice-free periods. PFAS concentrations in deep waters of the Lake Hazen water column were consistent between snowmelt, ice-free, and ice-covered periods, which is ascribed to the delivery of dense and turbid glacier meltwaters mixing PFAS throughout the Lake Hazen water column. These observations highlight the underlying mechanisms in PFAS cycling in High Arctic Lakes particularly in the context of increased particle loads and melting.
Collapse
Affiliation(s)
- John J MacInnis
- Department of Chemistry , Memorial University , St. John's , Newfoundland and Labrador A1B 3X7 , Canada
| | - Igor Lehnherr
- Department of Geography , University of Toronto , Mississauga , Ontario L5L 1C6 , Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - Kyra A St Pierre
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Vincent L St Louis
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Christine Spencer
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - Amila O De Silva
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| |
Collapse
|