1
|
Liu X, Fan Q, Li F, Wu C, Yi S, Lu H, Wu Y, Liu Y, Tian J. Assessing foodborne health risks from dietary exposure to antibiotic resistance genes and opportunistic pathogens in three types of vegetables: An in vitro simulation of gastrointestinal digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136731. [PMID: 39644844 DOI: 10.1016/j.jhazmat.2024.136731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Foodborne health risks posed by antibiotic resistant genes (ARGs) and pathogenic bacteria have garnered increasing global attention. However, the patterns of their propagation and reduction, as well as the resulting health risks in the human gastrointestinal tract, remain unknown. We employed leafy vegetables (water spinach), solanaceous vegetables (pepper), and root vegetables (radish) to investigate the propagation and reduction patterns of ARGs and pathogenic bacteria within an in vitro simulated digestion system. This system mimicked the soil-vegetable-stomach-small intestine (SVSTI) transmission chain. We found that kan, oqxA, and multidrug resistance genes were enriched by 1.10-fold, 11.2-fold, and 2.21-fold, respectively, along the transmission chain. The succession of bacterial communities and horizontal gene transfer mediated by intl1 were identified as the primary drivers of ARG accumulation. Notably, certain pathogenic bacteria (Bacillus cereus, Klebsiella pneumoniae) accumulated in the intestinal environment. According to our proposed health risk assessment system, Bacillus species, as potential ARG hosts, and multidrug ARGs are at a higher risk of exposure to intestinal environment through the transmission chain. Our findings highlight the significant health risks associated with the intake of ARGs and pathogenic bacteria carried by vegetables, emphasizing an urgent need to implement effective biological control measures in vegetable production and consumption.
Collapse
Affiliation(s)
- Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
2
|
Chao H, Zhong L, Schaefer I, Sun M, Junggebauer A, Hu F, Scheu S. Litter quality modulates changes in bacterial and fungal communities during the gut transit of earthworm species of different ecological groups. ISME COMMUNICATIONS 2025; 5:ycae171. [PMID: 39882509 PMCID: PMC11778916 DOI: 10.1093/ismeco/ycae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species. Here, we analyse the effect of food (litter) quality on gut microbiota and their changes during the gut passage (from foregut to hindgut) of earthworms of different ecological groups. The endogeic (soil living) species Aporrectodea caliginosa and the anecic (litter feeding) species Lumbricus terrestris were fed with high- (rape leaves) and low-quality litter (wheat straw) in a microcosm experiment for 18 weeks. Irrespective of earthworm species, alpha diversity of bacterial and fungal communities changed little during the gut passage, with the composition and diversity of microbial communities in the gut generally resembling those in soil more than in litter. In addition, the low-quality litter supported higher alpha diversity and more complex communities than high-quality litter. Further, gut microbial communities of the anecic L. terrestris changed less during gut passage than those of the endogeic A. caliginosa, especially when fed low-quality litter. Our findings indicate that earthworm gut microbial communities are predominantly shaped by the soil they ingest, but are modulated by the quality of litter they feed on and earthworm ecological group. Overall, the results suggest that earthworms primarily influence soil microbiota by mixing and spreading microorganisms from different microhabitats through bioturbation rather than by digesting microorganisms.
Collapse
Affiliation(s)
- Huizhen Chao
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Zhong
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Loewe Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt Main, Germany
- Senckenberg Biodiversity Climate Research Center, 60325 Frankfurt Main, Germany
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - André Junggebauer
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Wang L, Fan Y, Zou L, Ge L, Jiang W, Chao S, Lv B, Zhao K, Chen J, Li P. Bt toxins alter bacterial communities and their potential functions in earthworm intestines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125591. [PMID: 39725196 DOI: 10.1016/j.envpol.2024.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides can result in ecological hazards. Earthworms are one of the most frequently used bioindicators for soil ecological monitoring, characterization, and risk assessment. However, the effects of Bt toxins on earthworm bacterial communities have conversely rarely been studied. Here, the dynamics of exposure to exogenous Bt toxins in earthworm intestines were investigated alongside the impacts of Bt toxins on intestinal bacterial community diversity, stability, and potential function. The intestinal concentration of water-dissolved Bt toxins drastically decreased with increased incubation time. Intestinal bacterial community compositions in earthworm intestines were affected by the concentration of Bt toxin that was added and incubation time. Moreover, lower bacterial community α diversity (i.e., based on Sobs and ACE indices) and significantly higher predicted relative abundances of microbial enzymes in the Bt toxin treatment compared with the control were observed alongside differences in bacterial taxonomic and functional compositional profiles after Bt toxin exposure. The observed changes were most strongly associated with variation in overall functional redundancy. Intestinal bacterial taxa probably played pivotal roles in the degradation and transformation of Bt toxins via nitrogen, phosphorus, and polysaccharide hydrolysis metabolic pathways. Although the application of Bt toxin led to lower intestinal community α diversity and stability after 14 days, these community characteristics were restored upon further incubation to 21 days. Thus, these results suggest that earthworm intestinal microbial communities confer strong resilience and the ability to adapt to Bt toxin stress. Consequently, persistent adverse effects of Bt toxins on intestinal microbiomes were not observed after earthworm exposure to Bt toxins.
Collapse
Affiliation(s)
- Luyao Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Yixuan Fan
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Lingli Zou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Lei Ge
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Wei Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengqian Chao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Beibei Lv
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Chen
- East China University of Technology, Nanchang, 330013, China.
| | - Peng Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China.
| |
Collapse
|
4
|
Fang L, Wang S, Sun X, Wang K. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107144. [PMID: 39520844 DOI: 10.1016/j.aquatox.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Lanjin Fang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Shuangshuang Wang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Xingbin Sun
- College of Forest, Northeast Forest University, Harbin 150040, China.
| | - Kejing Wang
- Ecological and Environmental Monitoring Centre of Heilongjiang Province, Harbin 150056, China.
| |
Collapse
|
5
|
Simbanegavi TT, Makuvara Z, Marumure J, Alufasi R, Karidzagundi R, Chaukura N, Musvuugwa T, Okiobe ST, Rzymski P, Gwenzi W. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface? A One-Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173882. [PMID: 38866146 DOI: 10.1016/j.scitotenv.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The transfer of antibiotics and antibiotic resistance (AR) to the soil systems poses ecological hazards to various organisms, including earthworms. Understanding the complex interactions between earthworms, antibiotics, and AR in the soil system requires a comprehensive assessment. Hence, the present review investigates the behaviour, fate, impacts, and mechanisms involved in the interaction of earthworms with antibiotics and AR. The antibiotics and AR detected in earthworms and their associated media, such as vermicompost, are presented, but several other antibiotics and AR widely detected in soils remain understudied. As receptors and bioassay organisms, earthworms are adversely affected by antibiotics and AR causing (1) acute and chronic toxicity, and (2) emergence of AR in previously susceptible earthworm gut microbiota, respectively. The paper also highlights that, apart from this toxicity, earthworms can also mitigate against antibiotics, antibiotic-resistant bacteria and antibiotic-resistance genes by reducing bacterial diversity and abundance. The behaviour and fate processes, including biodegradation pathways, biomarkers of antibiotics and AR in earthworms, are discussed. In addition, the factors controlling the behaviour and fate of antibiotics and AR and their interactions with earthworms are discussed. Overall, earthworms mitigate antibiotics and AR via various proximal and distal mechanisms, while dual but contradictory functions (i.e., mitigatory and facilitatory) were reported for AR. We recommend that future research based on the One-World-One-Health approach should address the following gaps: (1) under-studied antibiotics and AR, (2) degradation mechanisms and pathways of antibiotics, (3) effects of environmentally relevant mixtures of antibiotics, (4) bio-augmentation in earthworm-based bioremediation of antibiotics, (5) long-term fate of antibiotics and their metabolites, (6) bio-transfers of antibiotics and AR by earthworms, (7) development of earthworm biomarkers for antibiotics and AR, (8) application of earthworm-based bioremediation of antibiotics and AR, (9) cascading ecological impacts of antibiotics and AR on earthworms, and (10) pilot-scale field applications of earthworm-based bioremediation systems.
Collapse
Affiliation(s)
- Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119, Mount Pleasant, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Tendai Musvuugwa
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Simon Thierry Okiobe
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Formerly Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany; Formerly Alexander von Humboldt Fellow and Guest Professor, Grassland Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
6
|
Wang K, Yuan N, Zhou J, Ni H. Comparative Analysis of Bacterial Community Structures in Earthworm Skin, Gut, and Habitat Soil across Typical Temperate Forests. Microorganisms 2024; 12:1673. [PMID: 39203516 PMCID: PMC11357350 DOI: 10.3390/microorganisms12081673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Earthworms are essential components in temperate forest ecosystems, yet the patterns of change in earthworm-associated microbial communities across different temperate forests remain unclear. This study employed high-throughput sequencing technology to compare bacterial community composition and structure in three earthworm-associated microhabitats (skin, gut, and habitat soil) across three typical temperate forests in China, and investigated the influence of environmental factors on these differential patterns. The results indicate that: (1) From warm temperate forests to cold temperate forests, the soil pH of the habitat decreased significantly. In contrast, the physicochemical properties of earthworm skin mucus exhibited different trends compared to those of the habitat soil. (2) Alpha diversity analysis revealed a declining trend in Shannon indices across all three microhabitats. (3) Beta diversity analysis revealed that the transition from warm temperate deciduous broad-leaved forest to cold temperate coniferous forest exerted the most significant impact on the gut bacterial communities of earthworms, while its influence on the skin bacterial communities was comparatively less pronounced. (4) Actinobacteria and Proteobacteria were the predominant phyla in earthworm skin, gut, and habitat soil, but the trends in bacterial community composition differed among the three microhabitats. (5) Mantel tests revealed significant correlations between bacterial community structures and climatic factors, physicochemical properties of earthworm habitat soil, and physicochemical properties of earthworm skin mucus. The findings of this study offer novel perspectives on the interplay between earthworms, microorganisms, and the environment within forest ecosystems.
Collapse
Affiliation(s)
- Kang Wang
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Ning Yuan
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Jia Zhou
- School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (K.W.); (N.Y.)
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150081, China
| |
Collapse
|
7
|
Du S, Bi L, Lin D, Zheng XQ, Neilson R, Zhu D. Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13961-13972. [PMID: 39037720 DOI: 10.1021/acs.est.4c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Bi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Da Lin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian-Qing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland DD2 5DA, United Kingdom
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
8
|
Zang X, He M, Xu Y, Che T, Wang F, Xu J, Zhang H, Hu F, Xu L. Metaphire guillelmi exhibited predominant capacity of arsenic efflux. CHEMOSPHERE 2024; 361:142479. [PMID: 38815813 DOI: 10.1016/j.chemosphere.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Earthworm could regulate their body concentration of arsenic via storage or excretion, and the ability of As efflux among different earthworms is not consistent. Here, whole and semi As exposure patterns with 0-10-30-60-100 mg kg-1 exposure concentrations were set to characterize the As efflux in geophagous earthworm, Metaphire guillelmi. Cast As (As-C) and earthworms' antioxidative responses were monitored to explore the efflux mechanisms under 30 mg kg-1 As-spiked soil (As30), besides, As concentration in earthworm tissue after egestion and dissection depurations were compared. In the whole exposure pattern, As concentration in gut content (As-G, 19.2-120.3 mg kg-1) surpassed that in the tissue (As-T, 17.2-53.2 mg kg-1), and they both increased with exposure concentrations. With the prolong time, they firstly increased and kept stable between day 10-15, then As-G increased while As-T decreased between day 15-20. In the semi-exposure pattern, both As-G and As-T decreased when M. guillelmi was transferred to clean soil for 5 days. During the 42-day incubation in As30, the antioxidative responses including reactive oxygen species (ROS), glutathione (GSH) and glutathione-S-transferase (GST) were firstly increased and then decreased, and As-C (13.9-43.9 mg kg-1) kept higher than As-G (14.2-35.1 mg kg-1). Significantly positive correlations were found between As-T and GSH, As-C and GST. Moreover, tissue As after dissection (11.6-22.9 mg kg-1) was obviously lower than that after egestion (11.4-26.4 mg kg-1), but significantly related to ROS and GSH. Taken together, M. guillelmi exhibited excellent capacity of As efflux, and GSH explained tissue As accumulation while GST facilitated the As elimination via cast. Besides, dissection instead of egestion revealed the As efflux in M. guillelmi more accurately. These findings contributed to a better understanding of how geophagous earthworm M. guillelmi regulated tissue As accumulation for As stress tolerance, and recommended an optimal depuration mode to characterize As accumulation.
Collapse
Affiliation(s)
- Xiayun Zang
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Mingyue He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Che
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Hu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Li Xu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
9
|
Zhang Y, He W, Shi X, Chen M, Bao C, Ji Y. Effects of earthworms on antibiotic resistance genes in different soil-plant systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33580-33590. [PMID: 38683428 DOI: 10.1007/s11356-024-33352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Earthworms play an important role in the soil environment. To explore the difference in earthworms influence on various media in different soil-plant systems, the abundance of tetracycline, sulfonamide and quinolone resistance genes and the structure of the bacterial community were analysed from five different media including non-rhizosphere soil, rhizosphere soil, phyllosphere, root endophytes and earthworm intestine by real-time quantitative PCR and high-throughput 16S rRNA sequencing. Studies have shown that earthworms can reduce the absolute abundance of antibiotic resistance genes (ARGs) in non-rhizosphere soil. Root endophytes in the soil-cabbage system and rhizosphere soil in the soil-setaria system had the same findings. Earthworms can change the bacterial community structure, especially that of Proteobacteria and Cyanobacteria in the phyllosphere and root endophytes. Redundancy analysis (RDA) results that bacterial community change was the main factor affecting ARGs. In addition, earthworms increased the proportion of Cyanobacteria in root endophytes, and Cyanobacteria was significantly positively correlated with sul3. This study provides a scientific basis for controlling the migration and diffusion of ARGs and reducing environmental risks in soil-plant systems in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wencheng He
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xincheng Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Canxin Bao
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Ji
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
10
|
Zhou H, Jiao X, Li Y. Exploring the Toxicity of Oxytetracycline in Earthworms ( Eisenia fetida) Based on the Integrated Biomarker Response Method. TOXICS 2024; 12:310. [PMID: 38787089 PMCID: PMC11125748 DOI: 10.3390/toxics12050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic contamination has become a global environmental issue of widespread concern, among which oxytetracycline contamination is very severe. In this study, earthworm (Eisenia fetida) was exposed to oxytetracycline to study its impact on the soil environment. The total protein (TP), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), glutathione S-transferase (GST), and glutathione peroxidase (GPX) oxidative stress indicators in earthworms were measured, and the integrated biomarker response (IBR) approach was used to evaluate the toxic effect of oxytetracycline on earthworms. A Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and a path analysis model were used to explore the physiological and metabolic processes of earthworms after stress occurs. The results showed that SOD, GPX, and GST play important roles in resisting oxytetracycline stress. In addition, stress injury showed a good dose-effect relationship, and long-term stress from pollutants resulted in the most serious damage to the head tissue of earthworms. These results provide a theoretical basis for understanding the toxic effect of oxytetracycline on soil animals, monitoring the pollution status of oxytetracycline in soil, and conducting ecological security risk assessment.
Collapse
Affiliation(s)
- Haoran Zhou
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
11
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
12
|
Ju X, Zhu Y, Xiong P, Lei L, Wu Y, Zhang Y, Zhang R. Characterization of a bla NDM-1-positive Citrobacter freundii strain isolated from earthworms. J Glob Antimicrob Resist 2024; 36:33-35. [PMID: 38013133 DOI: 10.1016/j.jgar.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES Earthworms are one of the key components of soil, and they play a crucial role in the transformation of various nutrients and pollutants in the soil. The purpose of this study is to characterize the NDM-1-producing C. freundii isolated from soil-dwelling earthworms near a hospital, exploring their potential role as carriers of carbapenem-resistant genes. METHODS Isolates were isolated from the intestines of earthworms and identified by MALDI-TOF MS. The presence of NDM enzyme was verified through the CARBA-5 Assay. Whole genome sequencing was conducted using the Illumina NovaSeq PE150 platform. Antimicrobial susceptibility testing and conjugation experiment were performed for phenotypic analysis. RESULTS This isolate exhibited a multidrug-resistant profile, including resistance to imipenem, meropenem, and ertapenem and successfully transferred blaNDM-1 gene to Escherichia coli. Whole genomic sequencing showed that blaNDM-1 gene was located on an IncFIIY-type plasmid. Phylogenetic analysis revealed a close relationship between the QY221001 strain obtained from earthworms and the human isolate F2021 in the NCBI database, both of which were collected in Hangzhou, China. CONCLUSION To our knowledge, this is the first report of an NDM-1-producing bacteria isolated from the intestine of an earthworm. Our finding suggested that earthworms could be a potential reservoir of carbapenem resistance genes, emphasizing the importance of enhanced environmental monitoring of antimicrobial resistance.
Collapse
Affiliation(s)
- Xiaoyang Ju
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang Province, China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang Province, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Soni K, Kothamasi D, Chandra R. Municipal wastewater treatment plant showing a potential reservoir for clinically relevant MDR bacterial strains co-occurrence of ESBL genes and integron-integrase genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119938. [PMID: 38171124 DOI: 10.1016/j.jenvman.2023.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a milieu for co-occurrence of multiple antibiotic resistance genes (ARGs). This facilitates mixing and genetic exchange; and promotes dissemination of multidrug resistance (MDR) to wastewater bacterial communities which is hazardous for the effluent receiving environment. This study investigated the co-occurrence of extended-spectrum beta-lactamase (ESBL) genes (blaTEM, blaCTX-M, blaSHV, blaOXA), and integron-integrase genes (intI1, intI2, intI3) in MDR bacteria isolated from the Bharwara MWWTP in Lucknow, India. Thirty-one MDR bacterial colonies resistant to three or more antibiotics were isolated from three treatment stages of this MWWTP. Six of these: Staphylococcus aureus, Serratia marcescens, Salmonella enterica, Shigella sonnei, Escherichia coli, and Bacillus sp. Had co-occurrence of ESBL and integron-integrase genes. These six isolates were examined for the occurrence of MDR efflux genes (qacA, acrB) and ARGs (aac(3)-1, qnrA1, tetA, vanA) and tested for resistance against 12 different antibiotics. The highest resistance was against penicillin-G (100%) and lowest for chloramphenicol (16.66%). Bacillus sp. Isolate BWKRC6 had the highest co-occurrence of antibiotic resistance-determining genes and was resistant to all the 12 antibiotics tested. The co-occurrence of ESBL, integron-integrase, antibiotic resistance-determining and MDR efflux genes in bacteria isolated from the Bharwara MWWTP indicates that the wastewaters of this treatment plant may have become a hotspot for MDR bacteria and may present human and environmental health hazards. Therefore, there is need for a rapid action to limit the spread of this threat. Public regulatory authorities must urgently implement measures to prevent MWWTPs becoming reservoirs for evolution of antibiotic resistance genes and development of antibiotic resistance.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - David Kothamasi
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, G4 0LT, United Kingdom
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
14
|
Luo F, Zhao Y, Xu JY, Wang HT, Zhu D. Network complexity of bacterial community driving antibiotic resistome in the microbiome of earthworm guts under different land use patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132732. [PMID: 37813029 DOI: 10.1016/j.jhazmat.2023.132732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Recently, the study of antibiotic resistance in the soil animal microbiome has attracted extensive attention; however, the patterns of antibiotic resistance genes (ARGs) in soil and soil animals related to different land use types remain poorly studied. In the present study, soil and earthworms were collected from four different land-use types (farmland, hospital, park land, and mountain park), and 162 ARGs in the microbiomes of the soil and earthworms were quantified using high-throughput quantitative PCR. Our study showed that the abundance and number of ARGs were higher in soil samples than in earthworm guts, but earthworms as the living organisms created relatively isolated ambient surroundings, which allowed for a more heterogeneous ARGs profile. Meanwhile, land use significantly influenced the abundance, number and co-occurrence pattern of ARGs in the soil and earthworm samples. Furthermore, abiotic and biotic factors had significant effects on the ARGs profile, among which pH had a negative effect on the ARGs profiles of both soil and earthworm microbiomes, and bacterial network complexity had a positive effect on the earthworm ARGs profile. Our study provides new insights into the distribution and dispersal of ARGs in the soil animal gut microbiome under different land use patterns.
Collapse
Affiliation(s)
- Fang Luo
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
15
|
Duan Z, Zhu Y, Xia H, Huang K, Peng L. A novel strategy for eliminating antibiotic resistance genes during fertilization of dewatered sludge by earthworms: Vermicomposting practice using Chinese herbal residues derived from Lianhua Qingwen as a bulking material. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119444. [PMID: 39492387 DOI: 10.1016/j.jenvman.2023.119444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Vermicomposting is a sustainable sludge recycling technology that utilizes an eco-friendly composting using earthworms and microorganisms. However, a high abundance of antibiotic resistance genes (ARGs) remains in dewatered sludge that is not satisfactorily eliminated by vermicomposting. Chinese herbs have played a major role in curing many diseases in East Asia, leading to a large amount of Chinese herbal residues (CHRs) are difficult to dispose of. The present study investigated the feasibility of CHRs on the ARGs reduction in dewatered sludge during vermicomposting. The CHRs derived from Lianhua Qingwen were added separately to sludge with weight ratios of 0%, 10%, 30%, and 50%; sludge was then vermicomposted for 30 days. The results showed that co-vermicomposting of sludge and CHRs is a feasible strategy. The CHR treatments significantly (P < 0.05) decreased antibiotic concentration and bacterial population by 23.64%-49.68% and 42.58%-93.07%, respectively, compared to counterpart. Compared to the control, the CHR addition lowered the absolute abundances of macrolide, tetracycline, and sulfonamide ARGs by 42.69%-85.15%, 22.03%-75.24%, and 23.59%-90.66%, respectively. In addition, sludge containing 30% CHRs showed significant (P < 0.05) elimination of intⅠ-1 and tnpA-4 genes with abundance reductions of 71.40% and 52.33%, respectively, relative to the control. This study suggests that the CHRs can effectively reduce ARGs content in sludge by decreasing the bacterial population and horizontal gene transfer capacity during vermicomposting.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yangchun Zhu
- Ecological College, Lishui University, Lishui, 323000, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| | - Lansheng Peng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
16
|
Chang X, Fu F, Sun Y, Zhao L, Li X, Li Y. Coupling multifactor dominated the biochemical response and the alterations of intestinal microflora of earthworm Pheretima guillelmi due to typical herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94126-94137. [PMID: 37526832 DOI: 10.1007/s11356-023-29032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The excessive application of herbicides on farmlands can substantially reduce labor costs and increase crop yields, but can also have undesirable effects on terrestrial ecosystems. To evaluate the ecological toxicity of herbicides, metolachlor and fomesafen, two typical herbicides that are extensively used worldwide were chosen as target pollutants, and the endogeic earthworm Pheretima guillelmi, which is widely distributed in China, was selected as the test organism. A laboratory-scale microcosmic experiment was set, and energy resources, enzymes, and the composition and connections of intestinal microorganisms in earthworms were determined. Both herbicides depleted the energy resources of the earthworms, especially glycogen contents; increased the levels of antioxidant enzymes; and inhibited acetylcholinesterase. Moreover, the richness and diversity of the intestinal bacterial community of the earthworms were suppressed. Additionally, the bacterial composition at the genus level changed greatly and the connections between dominant bacteria increased dramatically. Most interactions among the bacterial genera belonging to the same and different phyla showed mutualism and competition, respectively. Importantly, metolachlor with higher toxicity had a transitory effect on these indicators in earthworms, whereas fomesafen, with lower toxicity but stronger bioaccumulation potential, exerted a sustaining impact on earthworms. Collectively, these results indicate that the toxic effects of herbicides on terrestrial organisms should be comprehensively considered in combination with biological toxicity, persistence, bioaccumulation potential, and other factors.
Collapse
Affiliation(s)
- Xingping Chang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Furong Fu
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
17
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
18
|
Xiao Z, Han R, Su J, Zhu Z, Zhao Y, Chen Q, Zhao J, Li G, Zhu YG. Application of earthworm and silicon can alleviate antibiotic resistance in soil-Chinese cabbage system with ARGs contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120900. [PMID: 36581242 DOI: 10.1016/j.envpol.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Organic fertilization is a major contributor to the spread of antibiotic resistance genes (ARGs) in the agroecosystem, which substantially increases the risk of ARGs acquisition and their transmission into human food chains. Earthworms are among the most vital soil faunas involved in the link between belowground and aboveground, and silicon is beneficial for soil health and plant stress resistance. This study aims to explore the effect of different amendment strategies (earthworm and/or silicon) and the related influencing factors on the alleviation of ARGs using high-throughput qPCR. The results showed that the application of earthworms and silicon fertilizers reduced the absolute abundance of ARGs in the rhizosphere soils, either singly or in combination. According to the structural equation model and random forest analysis, mobile genetic elements are the major factors enhancing ARGs transfers and the treatment affects ARGs in direct or indirect ways. Our results highlight the role of "rhizosphere effect" in alleviating antibiotic resistance and suggest that silicon fertilizers, together with the earthworms, can be considered as a sustainable and natural solution to mitigate high-risk ARGs spread in the soil-plant systems. Our findings provide guidance in formulating strategies for halting the spread of ARGs in the agroecosystem.
Collapse
Affiliation(s)
- Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhe Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, PR China
| | - Yi Zhao
- School of Water Resources and Environment, China University of Geosciences, Beijing, 10083, PR China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| | - Junyi Zhao
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China.
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| |
Collapse
|
19
|
Zhang J, Zhang L, He M, Wang Y, Zhang C, Lin D. Bioresponses of earthworm-microbiota symbionts to polychlorinated biphenyls in the presence of nano zero valent iron in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159226. [PMID: 36202358 DOI: 10.1016/j.scitotenv.2022.159226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Both earthworms and nano zero-valent iron (nZVI) have been recently regarded as important approaches for in-situ remediation of polychlorinated biphenyls (PCBs) in soil. However, the combined action of earthworms and nZVI toward PCBs, and the biological responses of earthworm-microbiota symbionts to nZVI-PCBs co-exposure in soil remediation systems remain unclear. In this study, a 28-d exposure with different levels of polychlorinated biphenyls (PCBs) and nZVI was applied to earthworm Eisenia fetida in an agricultural soil. Both physiological responses of earthworms and their surrounding microbiota in gut and soil were examined. Kinetic modelling parameters showed a doubled PCB accumulation in earthworms with the presence of nZVI. Meanwhile, nZVI-PCBs coexposure synergistically stimulated the activities of superoxide dismutase (SOD) and catalase (CAT), along with the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) in earthworms. Based on integrated metabolomic and 16S rRNA analysis, it was found that earthworms provided certain metabolites, e.g., S-(2-hydroxyethyl)glutathione, 16-hydroxypalmitic acid, and formamide, beneficial to PCB-degrading microbiota (Novosphingobium and Achromobacter) in the intestine. Our findings of nZVI-enhanced PCB bioaccumulation and the defense mechanism afforded by the earthworm-microbiota symbionts toward PCB-nZVI exposure show the promise of combining earthworms with nZVI for the remediation of PCBs-contaminated soil.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lei Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yifan Wang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, TX 77058, United States
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
20
|
Li Z, Chen C, Zhang K, Zhang Z, Zhao R, Han B, Yang F, Ding Y. Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14475. [PMID: 36361352 PMCID: PMC9658359 DOI: 10.3390/ijerph192114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance pollution in livestock manure is a persistent issue that has drawn public attention. Vermicomposting is an ecofriendly biological process that can render livestock manure harmless and resourceful. However, little is known about the impact of vermicomposting on antibiotic resistance in livestock manure under stress caused by potentially toxic arsenic levels. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift in antibiotic resistance genes (ARGs) and related microorganisms in fresh earthworm casts as well as vermicompost product health (i.e., nutrient availability and enzyme activity) when they were fed on arsenic-contaminated cow manure. The results showed that the earthworms' interaction with cow dung led to a significant reduction in ARG concentrations, especially for tetracycline ARGs (tet-ARGs), β-lactam ARGs (bla-ARGs), and quinolone ARGs (qnr-ARGs). However, arsenic significantly enhanced ARG accumulation in earthworm casts in a dose-dependent manner. Moreover, vermicomposting increased the percentage of Bacteroidota in the converted products. Furthermore, arsenic exposure at low concentrations promoted the proliferation of Proteobacteria, whereas high concentrations had little effect on Proteobacteria. Our study provides valuable insight into the changes in the antibiotic resistome and related microorganisms during vermicomposting of arsenic-amended cow manure, and it is crucial to explain the environmental impact of earthworms and improve our understanding of the reciprocal benefits of soil invertebrates.
Collapse
Affiliation(s)
- Zijun Li
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB15 8QH, UK
| | - Ran Zhao
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjun Han
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
21
|
Abstract
As important ecosystem engineers in soils, earthworms strongly influence carbon cycling through their burrowing and feeding activities. Earthworms do not perform these roles in isolation, because their intestines create a special habitat favorable for complex bacterial communities. However, how the ecological functioning of these earthworm-microbe interactions regulates carbon cycling remains largely unknown. To fill this knowledge gap, we investigated the bacterial community structure and carbon metabolic activities in the intestinal contents of earthworms and compared them to those of the adjacent soils in a long-term fertilization experiment. We discovered that earthworms harbored distinct bacterial communities compared to the surrounding soil under different fertilization conditions. The bacterial diversity was significantly larger in the adjacent soils than that in the earthworm gut. Three statistically identified keystone taxa in the bacterial networks, namely, Solirubrobacterales, Ktedonobacteraceae, and Jatrophihabitans, were shared across the earthworm gut and adjacent soil. Environmental factors (pH and organic matter) and keystone taxa were important determinants of the bacterial community composition in the earthworm gut. Both PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and FAPROTAX (Functional Annotation of Prokaryotic Taxa) predicted that carbon metabolism was significantly higher in adjacent soil than in the earthworm gut, which was consistent with the average well color development obtained by the Biolog assay. Structural equation modeling combined with correlation analysis suggested that pH, organic matter, and potential keystone taxa exhibited significant relationships with carbon metabolism. This study deepens our understanding of the mechanisms underlying keystone taxa regulating carbon cycling in the earthworm gut. IMPORTANCE The intestinal microbiome of earthworms is a crucial component of the soil microbial community and nutrient cycling processes. If we could elucidate the role of this microbiome in regulating soil carbon metabolism, we would make a crucial contribution to understanding the ecological role of these gut bacterial taxa and to promoting sustainable agricultural development. However, the ecological functioning of these earthworm-microbe interactions in regulating carbon cycling has so far not been fully investigated. In this study, we revealed, first, that the bacterial groups of Solirubrobacterales, Ktedonobacteraceae, and Jatrophihabitans were core keystone taxa across the earthworm gut and adjacent soil and, second, that the environmental factors (pH and organic carbon) and keystone taxa strongly affected the bacterial community composition and exhibited close correlations with microbial carbon metabolism. Our results provide new insights into the community assembly of the earthworm gut microbiome and the ecological importance of potential keystone taxa in regulating carbon cycling dynamics.
Collapse
|
22
|
Alteration of Manure Antibiotic Resistance Genes via Soil Fauna Is Associated with the Intestinal Microbiome. mSystems 2022; 7:e0052922. [PMID: 35938729 PMCID: PMC9426575 DOI: 10.1128/msystems.00529-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Livestock wastes contain high levels of antibiotic resistance genes (ARGs) and a variety of human-related pathogens. Bioconversion of livestock manure using larvae of the beetle Protaetia brevitarsis is an effective technique for waste reduction and value creation; however, the fate of manure ARGs during gut passage and interaction with the gut microbiome of P. brevitarsis remains unclear. To investigate this, we fed P. brevitarsis with dry chicken manure for 6 days and measured bacterial community dynamics and ARG abundance and diversity along the P. brevitarsis gut tract using high-throughput quantitative PCR and metagenomics approaches. The diversity of ARGs was significantly lower in larval midgut, hindgut, and frass than in raw chicken manure, and around 80% of pathogenicity-related genes (PRGs) exhibited reduced abundance. Network analysis demonstrated that Bacteroidetes and Firmicutes were the key bacterial phyla associated with ARG reduction. Metagenomic analysis further indicated that ARGs, mobile genetic elements (MGEs), and PRGs were simultaneously attenuated in the hindgut, implicating a decreased likelihood for horizontal gene transfer (HGT) of ARGs among bacteria and pathogens during manure bioconversion. Our findings demonstrated that the attenuation of ARGs is strongly associated with the variation of the gut microbiome of P. brevitarsis, providing insights into mechanisms of risk mitigation of ARG dissemination during manure bioconversion. IMPORTANCE Saprophagous fauna like the oriental edible beetle (P. brevitarsis) plays a fundamental role in converting organic wastes into biofertilizer. Accumulating evidence has shown that soil fauna can reduce the abundance of ARGs, although the underlying mechanism of ARG reduction is still unclear. In our previous research, we found a large reduction of ARGs in vegetable roots and leaves from frass compared with raw manure, providing a promising biofertilizer for soil-vegetable systems. Therefore, in this study, temporal dynamic changes in the microbiomes of the donor (chicken manure) and host (P. brevitarsis) were investigated, and we found a close association between the gut microbiome and the alteration of ARGs. These results shed new light on how the insect gut microbiome can mitigate manure-borne ARGs and provide insights into the bioconversion process via a typical member of the saprophagous fauna, P. brevitarsis.
Collapse
|
23
|
Ghosh S, Sarkar Paria D, Chatterjee S. Comparative Study on Bacterial Population Dynamics of Foregut, Midgut, and Hindgut Content of Perionyx excavatus (Perrier) Isolated from Eco-friendly, Non-hazardous Vermicompost. Appl Biochem Biotechnol 2022; 194:6126-6139. [PMID: 35896911 DOI: 10.1007/s12010-022-03970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
The ideal condition of earthworm gut promotes growth and multiplication of beneficial soil microorganisms eliminating pathogens and converts organic wastes into nutrients rich compost. The present study has been carried out to determine the population dynamics of earthworm gut bacteria and to find out relative abundance of different functional bacterial groups in the foregut, midgut, and hindgut of earthworm Perionyx excavatus. To assess bacterial diversity, a viable plate count method was adopted. In the different gut region of earthworm, aerobic heterotrophic, amylolytic, Bacillus, Gram-negative, proteolytic, fat hydrolyzing, nitrate-reducing, nitrifying, asymbiotic nitrogen-fixing, Azotobacter, and phosphate solubilizing bacterial populations ranged from 22.2 to 241.6 × 106, 8.0 to 171.60 × 106, 1.83 to 2.79 × 106, 10.68 to 23.04 × 104, 3.70 to 5.52 × 104, 59.60 to 208.40 × 104, 1.86 to 7.34 × 104, 10.94 to 19.78 × 104, 0.80 to 3.42 × 104, 7.83 to 13.70 × 104, 1.31 to 2.67 × 104 cfu/ml gut suspension, respectively. The results of the one-way ANOVA revealed that the bacterial load of most of the bacterial groups was significantly higher (p < 0.05) in the hindgut region, followed by midgut and foregut. Only the density of the proteolytic group was significantly higher (p < 0.05) in the midgut region followed by foregut and hindgut. Starch hydrolyzing bacteria constitute the largest group of bacteria in the gut content. From principal component analysis, two components were extracted with the eigenvalues of 8.485 and 1.132. Agglomerative hierarchical cluster analysis revealed that the bacterial populations were clustered into four different groups. Quantitative variation among bacterial groups in earthworm's gut seems to determine the soil health and composting efficiency; from this point of view, the present study will provide a better understanding about different functional bacterial groups of earthworm's guts and might be helpful in sustainable agriculture and waste management.
Collapse
Affiliation(s)
- Sucharita Ghosh
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
24
|
Zhang Y, Yang Z, Li X, Song P, Wang J. Effects of diisononyl phthalate exposure on the oxidative stress and gut microorganisms in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153563. [PMID: 35104518 DOI: 10.1016/j.scitotenv.2022.153563] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and can be ubiquitously detected in environment. However, the toxic effects and mechanisms of diisononyl phthalate (DINP) on earthworms are still poorly understood. In this study, earthworms (Eisenia fetida) were exposed to DINP at various doses (0, 300, 600, 1200, and 2400 mg/kg) to investigate their subchronic toxicity. The results demonstrated that the reactive oxygen species (ROS) levels displayed an "increase-decrease" trend with the increasing DINP doses after DINP exposure on days 7, 14, 21, and 28. The malondialdehyde (MDA) content increased with increasing DINP doses on days 7, 14, and then decreased on days 21, 28. The values of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) showed similar variation patterns and reached a maximum level on 21 d. Moreover, on day 28, the SOD and CAT gene expression levels were upregulated, while the GST gene expression levels were downregulated. Meanwhile, 16S rRNA genes of E. fetida gut bacteria and surrounding soil bacteria were measured after 28 days of exposure to DINP. The Chao index of E. fetida gut bacteria decreased when the treatment with the highest concentration (2400 mg/kg) was applied. At the phylum level, the abundance of Chloroflexi was significantly lower in the gut of E. fetida. In addition, the abundance of Proteobacteria at the phylum level and Ottowia at the genus level significantly increased in the surrounding soil. Overall, our results shed light on the toxic mechanism of DINP at biochemical, molecular, and omics levels, and contributed to a better understanding of the ecotoxicity of DINP.
Collapse
Affiliation(s)
- Youai Zhang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Zhongkang Yang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Peipei Song
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China.
| |
Collapse
|
25
|
Zheng F, An XL, Zhou GW, Zhu D, Neilson R, Chen B, Yang XR. Mite gut microbiome and resistome exhibited species-specific and dose-dependent effect in response to oxytetracycline exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150802. [PMID: 34626628 DOI: 10.1016/j.scitotenv.2021.150802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The importance of the gut microbiome to host health is well recognized, but the effects of environmental pressures on the gut microbiome of soil fauna are poorly understood. Here, Illumina sequencing and high-throughput qPCR were applied to characterize the gut microbiomes and resistomes of two mites, Nenteria moseri and Chiropturopoda sp. AL5866, exposed to different concentrations of oxytetracycline (0, 0.01, 0.1 and 1 μg mg-1). Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant phyla in the gut microbiomes of both studied mite species, but the relative abundance of them was different between mites. After exposure to oxytetracycline, there was no variation in the gut microbiome and resistome of C. sp. AL5866, whereas the gut microbiome and resistome of N. moseri were altered significantly. The relative abundance of Proteobacteria significantly decreased, and those of Bacteroidetes and Firmicutes significantly increased at the high-concentration antibiotic treatments. Excepting the 0.01 μg mg-1 treatment, gut microbial diversity increased with ascending concentrations. A significant resistome enrichment of relative abundance in N. moseri gut microbiome at low-dose antibiotic treatment was noted. These results indicated that the gut microbiome in N. moseri was potentially more sensitive to antibiotics than C. sp. AL5866, which was supported by the greater relative abundance of key tetracycline-resistant genes in the gut microbiome of C. sp. AL5866 compared to N. moseri. Mite gut microbiomes were correlated with their associated resistomes, demonstrating the consistent changes between microbiome and resistome. Thus, this study showed that oxytetracycline amendment resulted in a dose-dependent and species-specific effect on the gut microbiomes and resistomes of two mite species. It will contribute to understanding the relationship between the soil mite gut microbiome and resistome under antibiotic exposure, and extend our knowledge regarding the emergence and transfer of resistomes in soil food webs.
Collapse
Affiliation(s)
- Fei Zheng
- School of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guo-Wei Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dong Zhu
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, DD2 5DA, Scotland, UK
| | - Bing Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
26
|
Zhao X, Shen JP, Shu CL, Jin SS, Di HJ, Zhang LM, He JZ. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150781. [PMID: 34624280 DOI: 10.1016/j.scitotenv.2021.150781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Scarab larvae (Protaetia brevitarsis) could transform large quantities of agricultural waste into compost, providing a promising bio-fertilizer for soil management. There is an urgent need to assess the risk of antibiotic resistance genes (ARGs) in soil-vegetable system with application of compost derived from P. brevitarsis larvae. We conducted a pot experiment to compare the changes of ARGs in the soil and lettuce by adding four types of manure, livestock manure (chicken and swine manure) and the corresponding larval frass. Significantly low numbers of ARGs and mobile genetic elements (MGEs) were detected in both larval frass compared with the corresponding livestock manure. Pot experiment showed that the detected numbers of ARGs and MGEs in bulk soil, rhizosphere soil, and root endophytes were significantly lower in the frass-amended treatments than the raw manure-amended treatments. Furthermore, the relative abundance of ARGs and MGEs with application of chicken-frass was significant lower in rhizosphere soil and leaf endophyte. Using non-metric multidimensional scaling analysis, the patterns of soil ARGs and MGEs with chicken-frass application were more close to those from the bulk soil in the control. Structural equation models indicated that livestock manure addition was the main driver shaping soil ARGs with raw manure application, while MGEs were the key drivers in frass-amended treatments. These findings demonstrated that application of livestock manure vermicomposting via scarab larvae (P. brevitarsis) may be at low risk in spreading manure-borne ARGs through soil-plant system, providing an alternative technique for reducing ARGs in organic waste.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Chang-Long Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Sheng Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, Canterbury 7674, New Zealand
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Zheng He
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
27
|
Chang X, Sun Y, Zhao L, Li X, Yang S, Weng L, Li Y. Exposure to fomesafen alters the gut microbiota and the physiology of the earthworm Pheretima guillelmi. CHEMOSPHERE 2021; 284:131290. [PMID: 34198065 DOI: 10.1016/j.chemosphere.2021.131290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The application of herbicide fomesafen plays a crucial role in ensuring global soybean productivity in modern agriculture, but it results in both adverse effects on soil ecosystems and phytotoxicity to succeeding crops. Soil pollution due to herbicides has raised much concern worldwide. However, there has been little investigations concerning their effects on soil fauna, especially on the gut microbial communities of earthworms. In this study, the soil endogeic earthworm Pheretima guillelmi was incubated for 20 days in natural and fomesafen-polluted soils to investigate the effects of the herbicide on gut bacterial microbiota and the earthworm's physiological indices, including energy resource (protein) and antioxidant enzyme (superoxide dismutase, SOD) of earthworms in the soil ecosystem. A significantly different and smaller microbial community was presented in the earthworm's gut compared with the cast and the surrounding soil, with exposure to fomesafen further reducing the bacterial diversity and altering the gut community composition. This was observed as significant changes in the relative abundance of the phyla Actinobacteria, Firmicutes, and Proteobacteria as well as the genera Bacillus, Microvirga, Blastococcus, Nocardioides, and Gaiella. Moreover, exposure to fomesafen reduced earthworms' energy resources and activated the antioxidant system, with both effects being significantly correlated with the gut microbial diversity. These findings unravel the fact that exposure to the herbicide fomesafen may affect non-target soil fauna via changes in their microbiota and physiological indices, thereby contributing new knowledge regarding the adverse impacts of fomesafen on the terrestrial ecosystem.
Collapse
Affiliation(s)
- Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Side Yang
- Jilin Agricultural University, Changchun, 130118, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Chao H, Zheng X, Xia R, Sun M, Hu F. Incubation trial indicated the earthworm intestinal bacteria as promising biodigestor for mitigating tetracycline resistance risk in anthropogenic disturbed forest soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149337. [PMID: 34340069 DOI: 10.1016/j.scitotenv.2021.149337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The continuous input of antibiotics due to frequent anthropogenic activities have increased the dissemination risk of antibiotic resistance genes (ARGs) in forest soil. As soil engineers, it remains unclear whether earthworm intestinal microbial communities might play a role in controlling the ARG proliferation in forest soil. This study collected forest soil in the Yangtze River Delta, China, and its resident Metaphire guillelmi to investigate the interaction between tetracycline (50 μg kg-1) and the bacteria in worm gut and soil. Metagenome sequencing analysis indicated that the abundance of the total ARGs in both the soil (S2) and the worm gut (E2) was 1.3 (p < 0.001) and 1.2 (p < 0.001) times higher than the soil (S1) and (E1) without tetracycline exposure; and under tetracycline stress, the relative abundance of 36 and 20 bacterial genera in forest soil and worm gut were significantly increased respectively. However, the ARGs/ARB abundance decreased in the soil with the worm addition than that without, which may be related to the fact that earthworm intestinal bacteria harbored more tetracycline-degrading genes, i.e. dehydrogenase genes adh, ETFDH, and gpr, etc. Structural equation model analysis indicated that bacteria in worm intestinal has stronger ability to degrade tetracycline than in soil, and the main dissipate way was dehydrogenation. Together, the results contributed to understanding the promising role of worm intestinal bacteria in controlling the ARG risk caused by antibiotic disturbed forest soil.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Xia
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Guo B, Zhang B, Su Y, Zhang D, Wang Y, Bian Y, Suo L, Guo X, Bai H. Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites. Sci Rep 2021; 11:19909. [PMID: 34620914 PMCID: PMC8497582 DOI: 10.1038/s41598-021-99106-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Heavy metals contaminations in mining areas aroused wide concerns globally. Efficient evaluation of its pollution status is a basis for further soil reclamation. Visible and near-infrared reflectance (Vis-NIR) spectroscopy has been diffusely used for retrieving heavy metals concentrations. However, the reliability and feasibility of calibrated models were still doubtful. The present study estimated zinc (Zn) concentrations via the random forest (RF) and partial least squares regression (PLSR) using ground in-situ Zn concentrations as well as soil spectral reflectance at an Opencast Coal Mine of Ordos, China in February 2020. The coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and the ratio of performance to deviation (RPD) were selected to assess the robustness of the methods in estimating Zn contents. Moreover, the characteristic bands were chosen by Pearson correlation analysis and Boruta Algorithm. Finally, the comparison between RF and PLSR combined with eight spectral reflectance transformation methods was conducted for four concentration groups to determine the optimal model. The results indicated that: (1) Zn contents represented a skewed distribution (coefficient of variation (CV) = 33%); (2) the spectral reflectance tended to decrease with the increase of Zn contents during 580-1850 nm based on Savitzky-Golay smoothing (SG); (3) the continuous wavelet transform (CWT) demonstrated higher effectiveness than other spectral reflectance transformation methods in enhancing spectral responses, the R2 between Zn contents and the soil spectral reflectance achieved the highest (R2 = 0.71) by using CWT; (4) the RF combined with CWT exhibited the best performance than other methods in the current study (R2 = 0.97, RPD = 3.39, RMSE = 1.05 mg kg-1, MAE = 0.79 mg kg-1). The current study supplied a scientific scheme and theoretical support for predicting heavy metals concentrations via the Vis-NIR spectral method in possible contaminated areas such as coal mines and metallic mineral deposit areas.
Collapse
Affiliation(s)
- Bin Guo
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China.
| | - Bo Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Yi Su
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Dingming Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Yan Wang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Yi Bian
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Liang Suo
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Xianan Guo
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| | - Haorui Bai
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
30
|
Zhu G, Du R, Du D, Qian J, Ye M. Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117095. [PMID: 33862342 DOI: 10.1016/j.envpol.2021.117095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/27/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Chlordane is an organochlorine pesticide that is applied extensively. Residual concentrations that remain in soils after application are highly toxic to soil organisms, particularly affecting the earthworm gut and indigenous soil microorganisms. However, response mechanisms of the earthworm gut and indigenous soil microorganism communities to chlordane exposure are not well known. In this study, earthworms (Metaphire guillelmi) were exposed to chlordane-contaminated soils to investigate their response mechanisms over a gradient of chlordane toxicity. Results from high-throughput sequencing and network analysis showed that the bacterial composition in the earthworm gut varied more significantly than that in indigenous soil microbial communities under different concentrations of chlordane stress (2.3-60.8 mg kg-1; p < 0.05). However, keystone species of Flavobacterium, Candidatus Nitrososphaera, and Acinetobacter remained stable in both the earthworm gut and bacterial communities despite varying degrees of chlordane exposure, and their relative abundance was slightly higher in the low-concentration treatment group (T1, T2) than in the high-concentration treatment group (T3, T4). Additionally, network analysis demonstrated that the average value of the mean degree of centrality, closeness centrality, and eigenvector centrality of all keystone species screened by four methods (MetagenomeSeq, LEfSe, OPLS-DA, Random Forest) were 161.3, 0.5, and 0.63, respectively, and that these were significantly higher (p < 0.05) than values for non-keystone species (84.9, 0.4, and 0.2, respectively). Keystone species had greater network connectivity and a stronger capacity to degrade pesticides and transform carbon and nitrogen than non-keystone species. The keystone species, which were closely related to the microbial community in soil indigenous flora and earthworm intestinal flora, could resist chlordane stress and undertake pesticide degradation. These results have increased understanding of the role of the earthworm gut and indigenous soil bacteria in resisting chlordane stress and sustaining microbial equilibrium in soil.
Collapse
Affiliation(s)
- Guofan Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Heifei, 230009, PR China
| | - Ruijun Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiazhong Qian
- School of Resources and Environmental Engineering, Hefei University of Technology, Heifei, 230009, PR China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
31
|
Xu G, Yu Y. Polystyrene microplastics impact the occurrence of antibiotic resistance genes in earthworms by size-dependent toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125847. [PMID: 34492800 DOI: 10.1016/j.jhazmat.2021.125847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are two classes of emerging and prevalent contaminants in terrestrial environments. To date, effects of MPs on the occurrence of ARGs in terrestrial invertebrates remain uncertain. Here we exposed earthworms to a soil amended with polystyrene MPs at two environmentally relevant concentrations to elucidate the occurrence and mechanisms of ARGs in earthworms impacted by MPs with different sizes. Nano-size and 10 mg/kg of 100 µm MPs slightly affected the occurrence of ARGs in earthworms. Highest abundance of ARGs was found in the presence of 10 mg/kg of 10 µm MPs, whereas 100 mg/kg of 10 µm MPs significantly changed the profile of ARGs. Metagenomics sequencing and toxicity tests indicated that MPs caused toxicity and influenced the abundance of microbial community in earthworms, resulting in the changes of ARGs. Results of proteomics and metabolomics demonstrated that 100 mg/kg of 10 µm MPs changed the microenvironment of earthworm gut, built a new homeostatic process, and thus increased the abundance of key bacterial that carried a variety of ARGs. This study highlights the size-dependent toxic effects of MPs and their impacts on the transfer of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
32
|
Wang X, Xia R, Sun M, Hu F. Metagenomic sequencing reveals detoxifying and tolerant functional genes in predominant bacteria assist Metaphire guillelmi adapt to soil vanadium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125666. [PMID: 34088179 DOI: 10.1016/j.jhazmat.2021.125666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Due to extensive vanadium (V) mining and processing, an increasing amount of V has accumulated in soil, which poses a threat to public health. Consequently, we used earthworm (Metaphire guillelmi) incubation trials in V-contaminated soil (0-300 mg kg-1) to explore the response of soil indigenous bacteria and earthworm intestinal bacteria to V stress. Metagenomic analysis revealed that V exposure changed the bacterial composition in the soil and the worm gut. However, although the core species varied between soil and worm gut, the two systems shared the predominant bacteria, including Staphylococcus, Nocardioides, Streptococcus, and Nitrosopumilales. Two functional genotypes were detected in the shared core species, i.e., reductive genes and resistant genes. The reductive genes mainly consisted of those involved in glutathione, cysteine, methionine, sulfur, and nitrogen metabolisms. The resistant genes included those encoding the oxidation damage repair system, the outer membrane protein, the antioxidant enzyme system, the metal-binding, and the heavy-metal efflux. Therefore, the shared core species exert a comprehensive strategy to survive V stress involving the alliance of heavy metal detoxifying and tolerant genes. This study provides novel information about the detoxification mechanisms of bacterial populations in soil and worm gut to survive V stress.
Collapse
Affiliation(s)
- Xinwei Wang
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Xia
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Zhang Z, Wan J, Liu L, Ye M, Jiang X. Metagenomics reveals functional profiling of microbial communities in OCP contaminated sites with rapeseed oil and tartaric acid biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112515. [PMID: 33819653 DOI: 10.1016/j.jenvman.2021.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) contaminated sites pose great threats to both human health and environmental safety. Targeted bioremediation in these regions largely depends on microbial diversity and activity. This study applied metagenomics to characterize the microbial communities and functional groups composition features during independent or simultaneous rapeseed oil and tartaric acid applications, as well as the degradation kinetics of OCPs. Results showed that: the degradation rates of α-chlordane, β-chlordane and mirex were better when (0.50% w/w) rapeseed oil and (0.05 mol L-1) tartaric acid were applied simultaneously than singular use, yielding removal rates of 56.4%, 53.9%, and 49.4%, respectively. Meanwhile, bio-stimulation facilitated microbial enzyme (catalase/superoxide dismutase/peroxidase) activity in soils significantly, promoting the growth of dominant bacterial communities. Classification at phylum level showed that the relative abundance of Proteobacteria was significantly increased (p < 0.05). Network analysis showed that bio-stimulation substantially increased the dominant bacterial community's proportion, especially Proteobacteria. The functional gene results illustrated that bio-stimulation facilitated total relative abundance of degradation genes, phosphorus, carbon, nitrogen, sulfur metabolic genes, and iron transporting genes (p < 0.05). In metabolic pathways, functional genes related to methanogenesis and ammonia generation were markedly upregulated, indicating that bio-stimulation promoted the transformation of metabolic genes, such as carbon and nitrogen. This research is conducive to exploring the microbiological response mechanisms of bio-stimulation in indigenous flora, which may provide technical support for assessing the microbial ecological remediation outcomes of bio-stimulation in OCP contaminated sites.
Collapse
Affiliation(s)
- Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China
| | - Li Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China; School of Earth Science and Engineering, Hohai University, Nanjing, 210008, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
34
|
Zhu Y, Jia Y, Liu M, Yang L, Yi S, Feng X, Zhu L. Mechanisms for tissue-specific accumulation and phase I/II transformation of 6:2 fluorotelomer phosphate diester in earthworm (M. guillelmi). ENVIRONMENT INTERNATIONAL 2021; 151:106451. [PMID: 33647835 DOI: 10.1016/j.envint.2021.106451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are high production volume surfactants used in the food contact paper and packaging industries. They are prone to partition to soil due to their strong hydrophobicity and may biotransform into recalcitrant perfluoroalkyl carboxylic acids (PFCAs); little is known about their fate and behaviors in terrestrial organisms. Here, geophagous earthworms (M. guillelmi) were exposed to 6:2 fluorotelomer phosphate diester (6:2 diPAP)-contaminated soil to examine tissue-specific accumulation and biotransformation. 6:2 diPAP quickly accumulated in M. guillelmi with the highest biota-soil-accumulation factor (BSAF) in the gut, followed by the organs, skin, and body fluid. The total amount of 6:2 diPAP accumulated in the skin was the highest due to its high mass content. These results indicated that skin absorption and gut processes were two major pathways for earthworms to accumulate 6:2 diPAP from soil. In vitro desorption experiments indicated that the gut digestion fluid greatly promoted the desorption of 6:2 diPAP from the soil and enhanced its bioavailability. Degradation of 6:2 diPAP in the soil was stimulated when the earthworm appeared. In contrast to the soil, a more extensive transformation occurred in the earthworm. Perfluorohexanoic acid (PFHxA) was the primary phase Ⅰ product, followed by perfluoropentyl propanoic acid (FPePA), perfluoropentanoic acid (PFPeA), 2-perfluorohexyl ethanoic acid (FHEA), and perfluoroheptanoic acid (PFHpA), which confirmed the occurrence of α- and β-oxidation in earthworms. For the first time, a new phase II product, namely, a 6:2 fluorotelomer alcohol sulfate conjugate, was identified in earthworms at unexpectedly high levels, which might be the primary way earthworms eliminate 6:2 diPAP. Both in vivo and in vitro experiments suggested that 6:2 diPAP experienced faster and more extensive biotransformation in the gut than in the organs. This work sheds light on the bioaccumulation and biotransformation of 6:2 diPAP in terrestrial invertebrates, providing strong evidence of indirect sources of PFCAs in the environment.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
35
|
Zhu D, Delgado-Baquerizo M, Su JQ, Ding J, Li H, Gillings MR, Penuelas J, Zhu YG. Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7445-7455. [PMID: 33977709 DOI: 10.1021/acs.est.1c00811] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Earthworms are capable of redistributing bacteria and antibiotic resistance genes (ARGs) through soil profiles. However, our understanding of the earthworm gut microbiome and its interaction with the antibiotic resistome is still lacking. Here, we characterized the earthworm gut and soil microbiome and antibiotic resistome in natural and agricultural ecosystems at a national scale, and microcosm studies and field experiments were also employed to test the potential role of earthworms in dynamics of soil ARGs. The diversity and structure of bacterial communities were different between the earthworm gut and soil. A significant correlation between bacterial community dissimilarity and spatial distance between sites was identified in the earthworm gut. The earthworm gut consistently had lower ARGs than the surrounding soil. A significant reduction in the relative abundance of mobile genetic elements and dominant bacterial phylotypes that are the likely hosts of ARGs was observed in the earthworm gut compared to the surrounding soil, which might contribute to the decrease of ARGs in the earthworm gut. The microcosm studies and field experiments further confirmed that the presence of earthworms significantly reduced the number and abundance of ARGs in soils. Our study implies that earthworm-based bioremediation may be a method to reduce risks associated with the presence of ARGs in soils.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Spain
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jing Ding
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia 08193, Spain
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
36
|
Zhao Y, Zhang S, Shu X, Yang Y, Li Y, Chen J, Pan Y, Sun S. Effects of norfloxacin on decomposition and nutrient release in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116557. [PMID: 33529893 DOI: 10.1016/j.envpol.2021.116557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
It is well known that antibiotic residuals affect the composition and structure of microbial communities. However, the consequences of these biological changes in terms of ecosystem function remain poorly understood, particularly in aquatic ecosystems. Here, we investigated the impacts of norfloxacin (NOR, 0, 0.5, and 8 mg L-1), a widely used antibiotic, on the microbial community structure on leaf surfaces of the submerged macrophyte Vallisneria natans, and the corresponding variations in litter decomposition, litter nutrient release, and water properties. Results showed that after 40 days of exposure, bacterial richness consistently decreased with increasing NOR concentration, and that richness of fungi was significantly lower in treatments adding NOR than in the control treatment. Moreover, NOR shifted the community toward NOR resistant phyla and genera, especially in the bacteria community. These community shifts resulted in the inhibition of litter decomposition and nutrient release from leaf litter to system water, accompanied by increases in dissolved oxygen concentration and pH of system water. Our results indicate that, by affecting microbial communities, NOR had significant effects on litter decomposition, litter nutrient release, and water properties, highlighting the potential harmful effects of NOR on aquatic ecosystem function.
Collapse
Affiliation(s)
- Yonggui Zhao
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - Shiqi Zhang
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - Xiangdi Shu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yuejiao Yang
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ya Li
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - JinQuan Chen
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ying Pan
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Shucun Sun
- Department of Biology, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
37
|
Li W, Li J, Ahmad Bhat S, Wei Y, Deng Z, Li F. Elimination of antibiotic resistance genes from excess activated sludge added for effective treatment of fruit and vegetable waste in a novel vermireactor. BIORESOURCE TECHNOLOGY 2021; 325:124695. [PMID: 33465648 DOI: 10.1016/j.biortech.2021.124695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Elimination of antibiotic resistance genes (ARGs) from excess activated sludge (EAS) mixed for effective treatment of different fruit and vegetable waste (FVW) by using a novel vermireactor consisted of substrate and bed compartments was investigated. ARGs (tet G, tet M and sul 1) and mobile genetic element gene (intl 1) were targeted and, through quantitative analysis of their abundances in both the compartments and the fresh cast of earthworms, significant reductions in substrate compartments were confirmed for the treatments for FVW added with EAS and EAS alone even if the reduction extents differed among the types of FVW. Apparent reductions were not found in the bed compartment where the final products accumulated. For the fresh cast, the relative abundances of ARGs and intl 1 against to the total bacterial 16S rDNA decreased markedly. The present study provided an insight for proper controlling of ARGs during vermicomposting of FVW and EAS.
Collapse
Affiliation(s)
- Wenjiao Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jiefeng Li
- Department of Architecture, Lu Liang University, Lishi, Shanxi 033000, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
38
|
Zheng F, Bi QF, Giles M, Neilson R, Chen QL, Lin XY, Zhu YG, Yang XR. Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:423-432. [PMID: 33332973 DOI: 10.1021/acs.est.0c03893] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Applying organic fertilizers has been well documented to facilitate the dissemination of antibiotic resistance genes (ARGs) in soil ecosystems. However, the role of soil fauna in this process has been seldom addressed, which hampers our ability to predict the fate of and to manage the spread of ARGs. Here, using high-throughput quantitative polymerase chain reaction (HT-qPCR), we examined the effect of long-term (5-, 8-, and 10-year) fertilization treatments (control, inorganic fertilizers, and mixed fertilizers) on the transfer of ARGs between soil, nematodes, and earthworms. We found distinct fates for ARGs in the nematodes and earthworms, with the former having higher enriched levels of ARGs than the latter. Fertilization impacted the number and abundance of ARGs in soil, and fertilization duration altered the composition of ARGs. Shared ARGs among soil, nematodes, and earthworm guts supported by a fast expectation-maximization microbial source tracking analysis demonstrated the trophic transfer potential of ARGs through this short soil food chain. The transfer of ARGs was reduced by fertilization duration, which was mainly ascribed to the reduction of ARGs in the earthworm gut microbiota. This study identified the transfer of ARGs in the soil-nematode-earthworm food chain as a potential mechanism for a wider dissemination of ARGs in the soil ecosystem.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qing-Fang Bi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- College of Environment & Resource Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, U.K
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, U.K
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xian-Yong Lin
- College of Environment & Resource Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
39
|
Cui G, Lü F, Zhang H, Shao L, He P. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. BIORESOURCE TECHNOLOGY 2020; 317:123974. [PMID: 32799078 DOI: 10.1016/j.biortech.2020.123974] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Antibiotic resistance genes (ARGs) in biowaste, such as livestock manure and excess activated sludge, pose potential threat to human and ecological health when applied to agricultural fields. Biological treatment approaches, such as thermophilic composting/vermicomposting and anaerobic digestion, widely adopted to stabilize biowaste have demonstrated significant effects on the fate of ARGs. However, the influence of these biological treatments on ARGs is not known. This review summarizes the occurrence of ARGs in biowaste and the impact of thermophilic composting, vermicomposting, and anaerobic digestion on the fate of ARGs with discussion on factors, including substrate properties, pretreatments, additives, and operational parameters, associated with ARGs during biological treatment of biowaste. Finally, this review explores the research implications and proposes new avenues in the field of biological treatment of organic waste.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
40
|
Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140008. [PMID: 32562986 DOI: 10.1016/j.scitotenv.2020.140008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 05/21/2023]
Abstract
Increasing evidence demonstrated the critical role the earthworm gut played in sustaining earthworm's metabolism and transformation of nutrients and pollutants in the environment. Being rich in nutrients, the earthworm gut is favorable for the colonization of (facultative) anaerobic bacteria, which bridge the host earthworm gut with adjacent terrestrial environment. Therefore, the status quo of earthworm gut research was primarily reviewed in this work. It was found that most studies focused on the bacterial composition and diversity of the earthworm gut, and their potential application in nutrient element and pollutant transformation, such as nitrification, methanogens, heavy metal detoxification, etc. Yet limited information was available about the specific mechanism of intestinal bacteria in nutrient and pollutant transformation. Therefore, in this work we highlighted the current problems and concluded the future prospect of worm's intestinal bacteria research. On one hand, high throughput sequencing and bioinformatics tools are critical to break the bottleneck in the intestinal bacteria research via clarifying the molecular mechanism involved in the transformation processes described above. In addition, a global dataset concerning worm gut bacteria will be needed to provide comprehensive information about intestinal bacteria pool, and act as a communication platform to further encourage the progress of worm gut research.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Chao H, Sun M, Ye M, Zheng X, Hu F. World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114174. [PMID: 32066061 DOI: 10.1016/j.envpol.2020.114174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Due to the abusive usage of antibiotics in animal husbandry, a large amount of residual antibiotics has been released into the environment, therein posing great threat against both environment security and public health. Therefore, it is of great significance to investigate the toxicity of antibiotics on the widely-applied bioindicator-earthworm. In this work, the physiological parameters and the intestinal bacteria community of Metaphire guillelmi were monitored simultaneously to evaluate their sensitivity to the tetracycline (TC) exposure. As expected, the antioxidant enzyme activity and coelomocyte apoptosis acted fairly well as biomarkers for the TC toxicity. In contrast, the intestinal bacteria of Metaphire guillelmi responded varyingly to different TC doses. When TC concentration increased from 0 to 35.7 μg cm-2, the percentage of the Proteobacteria phylum declined significantly from 85.5% to 34.4%, while the proportions of the Firmicutes, Planctomycetes and Atinomycete phyla clearly increased (p < 0.05). Meanwhile, the levels of TC resistance genes tetA, tetC, and tetW increased with the increasing TC concentration, in contrast to the declined abundance in denitrifying genes nirS and nosZ (p < 0.05). By analyzing the correlation between the antioxidant enzyme activity and the dominant intestinal bacteria in the worm gut, it is interesting to found that the four dominant bacteria genera Mesorhizobium, Aliihoeflea, Romboutsia, and Nitrospira are the promising bioindicator of TC stress due to their sensitive response. This work shed novel light on evaluating the ecotoxicological risks posed by residual TC in environment by using a combination of physiological parameters and intestinal bacterial activity in earthworms.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Huang K, Xia H, Zhang Y, Li J, Cui G, Li F, Bai W, Jiang Y, Wu N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. BIORESOURCE TECHNOLOGY 2020; 297:122451. [PMID: 31787516 DOI: 10.1016/j.biortech.2019.122451] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 05/15/2023]
Abstract
This study used a metagenomic approach to investigate the effects of earthworms on ARGs and HPB during the vermicomposting of dewatered sludge. Results showed that 139 types of ARGs were found in sludge vermicompost, affiliated to 30 classes. Compared with the control, the total abundance of ARGs in sludge vermicompost decreased by 41.5%. Moreover, the types and sequences of plasmids and integrons were also decreased by vermicomposting. Proteobacteria and Actinobacteria were the most dominant hosts of ARGs in sludge vermicompost. In addition, earthworms reduced the total HPB abundance and modified their diversity, thus leading to higher abundance of Enterobacteriaceae in sludge vermicompost. However, the sludge vermicompost was still ARG and HPB enriched, indicating a remaining environmental risk for agricultural purpose. The observed change of microbial community and the reduction of mobile genetic elements caused by earthworm activity are the main reasons for the alleviation of ARG pollution during vermicomposting.
Collapse
Affiliation(s)
- Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yingying Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianhui Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guangyu Cui
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Wei Bai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yufeng Jiang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nan Wu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
43
|
Cui G, Bhat SA, Li W, Wei Y, Kui H, Fu X, Gui H, Wei C, Li F. Gut digestion of earthworms significantly attenuates cell-free and -associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:644-653. [PMID: 31326798 DOI: 10.1016/j.scitotenv.2019.07.177] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Vermicomposting can significantly attenuate antibiotic resistance genes (ARGs) in the excess activated sludge (EAS). However, the effect of earthworms, especially the effect of gut digestion as a critical step in the vermicomposting process, remains unclarified. The purpose of this study was to investigate the response of ARGs (cell-free and -associated) in EAS to gut digestion of earthworms and to clarify the possible mechanism from the viewpoint of bacterial community through quantitative polymer chain reaction (q-PCR) and high throughput sequencing. Compared to the initial sludge, the earthworm casts were observed to have significantly lower absolute abundances of ARGs, especially qnrS, tetM, and tetX with the removal exceeding 90%. Cell-free and -associated ARGs (except sul1 and tetG) had equivalent contributions to the attenuation of each ARG. Remarkable reductions of bacterial number and alpha diversity (chao1 and Shannon) were detected in the casts. Spearman correlation analysis between the targeted genes and bacterial community indicates that twelve different phyla mainly including Acidobacteria, Euryarchaeota, Deinococcus-Thermus, Chlorobi, Firmicutes, Fibrobacteres, and Proteobacteria are the potential ARGs hosts, suggesting that the fate and behaviour of these hosts during gut digestion of EAS by earthworms substantially determined the dynamics of the ARGs. These findings increase our understanding of earthworm gut digestion as an important process for the attenuation of ARGs in EAS, and contribute towards preventing their release into the total environment.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Wenjiao Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Huang Kui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyong Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongjie Gui
- School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|