1
|
Vaz-Ramos J, Le Calvé S, Begin S. Polycyclic aromatic hydrocarbons in water environments: Impact, legislation, depollution processes and challenges, and magnetic iron oxide/graphene-based nanocomposites as promising adsorbent solutions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137726. [PMID: 40024123 DOI: 10.1016/j.jhazmat.2025.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Environmental pollution is a big challenge of today's world, as population continues to grow, and industrialisation and urbanisation increase. Out of the different micropollutants in the atmosphere and aquatic environments, polycyclic aromatic hydrocarbons are of particular importance because they have known severe associated health risks to human life and they have high stability, leading to their persistence in the environment. They are generally present in the environment in low concentrations, but, even at these levels, they pose threats. This review thus focuses on this family of pollutants, on their occurrence and consequences, as well as the current methodologies employed to remove them from water environments and the challenges that remain. This work then focuses on the potential of magnetic iron oxide/graphene nanocomposites for the adsorption of PAHs, extensively discussing past and undergoing works, as well as the interactions between these adsorbents and PAHs.
Collapse
Affiliation(s)
- Joana Vaz-Ramos
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France; Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, Strasbourg Cedex 2 67034, France
| | - Stéphane Le Calvé
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France.
| | - Sylvie Begin
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France; Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, Strasbourg Cedex 2 67034, France.
| |
Collapse
|
2
|
Gambino I, Terzaghi E, Baldini E, Bergna G, Palmisano G, Di Guardo A. Microcontaminants and microplastics in water from the textile sector: a review and a database of physicochemical properties, use in the textile process, and ecotoxicity data for detected chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:297-319. [PMID: 39820688 DOI: 10.1039/d4em00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Microcontaminants (MCs) and microplastics (MPs) originating from the textile sector are today receiving a great deal of attention due to potential environmental concerns. Environmental pressures and impacts related to the textile system include not only the use of resources (e.g., water) but also the release of a wide variety of pollutants. This review's main objective is to highlight the presence of textile MCs and MPs in water, in their full path from textile factories (from raw materials to the final product) to wastewater treatment plants (WWTPs), and finally to the receiving surface waters. Their environmental fate and ecotoxicity were also addressed. Overall, more than 500 compounds were found, many of which are so called "contaminants of environmental concern" such as per- and polyfluoroalkyl substances (PFAS) and alkylphenol compounds. A database of physicochemical properties, ecotoxicity, and place of detection (specific textile process, WWTP, surface water or sediment) (classification by several international agencies) was compiled for the chemical detected. Preliminary risk assessment was conducted for those MCs for which the reported environmental concentrations exceeded the Predicted No Effect Concentration (PNEC). These chemicals were some nonylphenols, nonylphenol ethoxylates and organophosphate esters. Among MPs, polyester and nylon fibres were the most abundant. The highest concentration of MPs was reported in sludge (about 1.4 × 106 MPs per kg) compared to wastewater and surface water which showed MP concentrations at least two orders of magnitude lower. The role of transboundary contamination due to the release of chemicals from imported textile products was also assessed.
Collapse
Affiliation(s)
- Isabella Gambino
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Elisa Terzaghi
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | | | | | - Giovanni Palmisano
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Antonio Di Guardo
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| |
Collapse
|
3
|
García-Gómez E, Gil-Solsona R, Mikkolainen E, Hytti M, Ytreberg E, Gago-Ferrero P, Petrović M, Gros M. Identification of emerging contaminants in greywater emitted from ships by a comprehensive LC-HRMS target and suspect screening approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125524. [PMID: 39667571 DOI: 10.1016/j.envpol.2024.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in maritime traffic has led to substantial greywater discharges into the marine environment. Greywater, originating from sinks, showers, kitchen, and laundry facilities, contains a wide array of chemical contaminants influenced by on-board activities, ship size, and management practices. The lack of comprehensive regulations for greywater management, along with limited research on its chemical composition, highlights the need to characterize these waste streams. This study is one of the first to provide a comprehensive characterization of greywater samples from ships using advanced liquid chromatography coupled to high-resolution-mass-spectrometry (LC-HRMS) strategies, including wide-scope target and suspect screening. The target analysis detected 86 compounds, such as pharmaceuticals, stimulants, tobacco and food-related products, personal care products, UV filters, surfactants, perfluoroalkyl compounds, plasticizers, and flame retardants, many of which are rarely measured in routine monitoring programs. Furthermore, 11 additional compounds were tentatively identified through suspect screening. A novel scoring system further highlighted 25 priority compounds posing ecological risks to marine ecosystems, including pharmaceuticals such as tapentadol, dextrorphan, citalopram, or irbesartan. This study emphasizes the significant introduction of chemicals at μg L-1 levels through greywater discharges, underscoring the urgent need for improved management practices to mitigate ecological risks to the marine ecosystem.
Collapse
Affiliation(s)
- E García-Gómez
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona (UdG), Girona, Spain
| | - R Gil-Solsona
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | | | - M Hytti
- Baltic Sea Action Group (BSAG), Helsinki, Finland
| | - E Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Hörselgången 4, 41756, Göteborg, Sweden
| | - P Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - M Petrović
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - M Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona (UdG), Girona, Spain.
| |
Collapse
|
4
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Lu J, Yu P, Zhang J, Guo Z, Li Y, Wang S, Hu Z. Biotic/abiotic transformation mechanisms of phenanthrene in iron-rich constructed wetland under redox fluctuation. WATER RESEARCH 2024; 261:122033. [PMID: 38996732 DOI: 10.1016/j.watres.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Iron-rich constructed wetlands (CWs) could promote phenanthrene bioremediation efficiently through biotic and abiotic pathways, which have gained increasing attention. However, the biotic/abiotic transformation mechanisms of trace organic contaminants in iron-rich CW are still ambiguous. Herein, three CWs (i.e., CW-A: Control; CW-B: Iron-rich CW, CW-C: Iron-rich CW + tidal flow) were constructed to investigate the transformation mechanisms of phenanthrene through Mössbauer spectroscopy and metagenomics. Results demonstrated CW-C achieved the highest phenanthrene removal (94.0 %) and bacterial toxicity reduction (92.1 %) due to the optimized degradation pathway, and subsequently achieved the safe transformation of phenanthrene. Surface-bound/low-crystalline iron regulated hydroxyl radical (·OH) production predominantly, and its utilization was promoted in CW-C, which also improved electron transfer capacity. The enhanced electron transfer capacity led to the enrichment of PAH-degrading microorganisms (e.g., Thauera) and keystone species (Sphingobacteriales bacterium 46-32) in CW-C. Additionally, the abundances of phenanthrene transformation (e.g., EC:1.14.12.-) and tricarboxylic-acid-cycle (e.g., EC:2.3.3.1) enzyme were up-regulated in CW-C. Further analysis indicated that the safe transformation of phenanthrene was mainly attributed to the combined effect of abiotic (·OH and surface-bound/low-crystalline iron) and biotic (microbial community and diversity) mechanisms in CW-C, which contributed similarly. Our study revealed the essential role of active iron in the safe transformation of phenanthrene, and was beneficial for enhanced performance of iron-rich CW.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Peihan Yu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zizhang Guo
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shuo Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Huang Y, Chen K, Chen Y, Chen P, Ge C, Wang X, Huang C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. BIORESOURCE TECHNOLOGY 2024; 408:131221. [PMID: 39111396 DOI: 10.1016/j.biortech.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Food waste (FW) and its biogas residue were considered as sources of terrestrial microplastics (MPs) and phthalic acid esters (PAEs) contamination. However, there was a lack of research and understanding of the MPs and PAEs pollution problem in FW dry anaerobic digestion process (DADP). The MPs and PAEs in three stages of the DADP with the largest monomer disposal scale in China were identified. At the biogas residue extrusion stage, MPs abundance and PAEs concentration reached the highest values, which were 3.63 ± 0.45 × 103 N·kg-1 and 3.62 ± 0.72 mg·kg-1, respectively. Furthermore, there was a significant positive correlation between MPs and PAEs throughout the process (p < 0.05). Although bacteria and fungi with plastic degradation potential were present in all stages, the contamination problem of MPs and PAEs cannot be completely solved through DADP. This study provides a scientific basis for preventing and controlling the pollution of MPs and PAEs.
Collapse
Affiliation(s)
- Yuhuizi Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanhua Chen
- Chongqing Environment and Sanitation Group Co., Ltd., Chongqing 401122, China
| | - Pengpeng Chen
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Chunling Ge
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Wang MH, Chen CF, Albarico FPJB, Lin SL, Chen CW, Dong CD. Phthalate esters and nonylphenol concentrations correspond with microplastic distribution in anthropogenically polluted river sediments. MARINE POLLUTION BULLETIN 2024; 199:116031. [PMID: 38237245 DOI: 10.1016/j.marpolbul.2024.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
This paper presents the phthalate esters (PAEs), nonylphenol (NPs), and microplastics (MPs) in river sediments. Results showed that sediments near residential areas were mainly composed of fine particles, potentially influencing the adsorption of PAEs and NPs in the area. The concentrations of Σ10 PAEs in the sediments ranged between 2448 and 63,457 μg/kg dw, dominated by DEHP and DnOP. Microplastics were detected in all samples, with higher abundances found in sediments near residential areas dominated by polypropylene. Toxicological risk assessment indicated potential risks to sensitive aquatic organisms exposed to the sediments. Correlations between MPs, PAEs, and NPs suggest that MPs may serve as possible sources of PAEs in the sediments. Principal component analysis explained 95.4 % of the pollutant variability in the sediments. Overall, this study emphasizes the significance of monitoring and understanding the presence and interactions of PAEs and MPs in river sediments to assess their potential impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shan-Lu Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
Lu J, Li M, Tan J, He M, Wu H, Kang Y, Hu Z, Zhang J, Guo Z. Distribution, sources, ecological risk and microbial response of polycyclic aromatic hydrocarbons in Qingdao bays, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122687. [PMID: 37797927 DOI: 10.1016/j.envpol.2023.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Bay ecosystem has garnered significant attention due to the severe threat posed by organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs). However, there is a dearth of information regarding the extent of PAHs pollutant risk and its impact on microbial communities and metabolism within this environment. In this study, the distribution, sources, ecological risk, and microbial community and metabolic response of PAHs in Jiaozhou Bay, Aoshan Bay, and Lingshan Bay in Qingdao, China were investigated. The results showed that the average concentration of ∑PAHs ranged from 120 to 614 ng/L across three bays, with Jiaozhou and Aoshan Bay exhibiting a higher risk than Lingshan Bay due to an increased concentration of high-molecular-weight PAHs. Further analysis revealed a negative correlation between dissolved organic carbon concentration and ∑PAHs concentration in water. Metagenomic analysis demonstrated that higher levels of PAHs can lead to decreased microbial diversity, while the abundance of PAHs-degrading bacteria is enhanced. Additionally, the Erythrobacter, Jannaschia and Ruegeria genera were found to have a significant correlation with low-molecular-weight PAH concentrations. In terms of microbial metabolism, higher PAH concentrations were beneficial for carbohydrate metabolic pathway but unfavorable for amino acid metabolic pathways and membrane transport pathways in natural bay environments. These findings provide a foundation for controlling PAHs pollution and offer insights into the impact of PAHs on bacterial communities and metabolism in natural bay environments.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mengting Li
- Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai, 264004, China
| | - Jingchu Tan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Liu SS, You WD, Chen CE, Wang XY, Yang B, Ying GG. Occurrence, fate and ecological risks of 90 typical emerging contaminants in full-scale textile wastewater treatment plants from a large industrial park in Guangxi, Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131048. [PMID: 36821905 DOI: 10.1016/j.jhazmat.2023.131048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Recent industrial relocation in China causes lots of environment concerns including risks of emerging contaminants (ECs). Herein, the occurrence, fate, removal and ecological risks of 34 per- and polyfluoroalkyl substances (PFAS), 17 endocrine disrupting chemicals (EDCs), 16 phthalate esters (PAEs), and 23 polycyclic aromatic hydrocarbons (PAHs) were investigated in two textile WWTPs (conventional and Fenton-modified) from a large textile industrial park in Southwest China. Totally 50 ECs were identified and the levels followed the order of PAEs > EDCs > PFAS ≈ PAHs. The EDCs predominated in textile washing and rinsing wastewater whereas the PAEs did in desizing wastewater. Biphasic correlations of log Kd and log P, molecular weight, and numbers of rings (r2 = 0.63-0.66, p < 0.01) were observed for PAHs, suggesting that hydrophobicity might not facilitate adsorption of super-hydrophobic PAHs onto activated sludge. 63-69% of detected ECs were effectively removed by two textile WWTPs with removal efficiencies ≥ 80%, which were much higher than previous reports. Fenton processing enhanced the removal efficiencies for long-chain PFAS rather than short-chain PFAS. The PAEs and EDCs posed a medium-to-high risk to aquatic organisms and were screened as the priority ECs. To date, such a comprehensive investigation for ECs has not been previously conducted in textile WWTPs and this study provides basic information about regional chemical emission inventory of ECs.
Collapse
Affiliation(s)
- Si-Si Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Wen-Dan You
- Guangdong Yuehai Water Inspection Technology Co. Ltd., Shenzhen 518020, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xin-Yu Wang
- College of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
13
|
Wang MH, Chen CF, Albarico FPJB, Chen CW, Dong CD. Occurrence and distribution of phthalate esters and microplastics in wastewater treatment plants in Taiwan and their toxicological risks. CHEMOSPHERE 2022; 307:135857. [PMID: 35940417 DOI: 10.1016/j.chemosphere.2022.135857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are fat soluble synthetic chemicals, usually regarded as plasticizers for being added in numerous plastic products. Thus, environmental and health hazards of PAEs are associated with increasing plastic pollution. In this study, PAEs from sludge samples collected from water, sewage, and industrial treatment plants (N = 17) were analyzed using Gas Chromatography/Mass Spectrometry. Microplastics (MPs) were also quantified and correlated with PAEs. Results showed the highest average PAE concentrations in sewage treatment plants. The greatest ΣPAEs concentration were found in sewage treatment plant (STP4) with 32,414 μg/kg dw, while the lowest found in water treatment plant (WTP3) with 2062 μg/kg dw. Among different PAEs, di-(2-ethyl hexyl) phthalate (DEHP) contributes the highest. Similarly, DEHP, di-n-octyl phthalate (DnOP) and diisononyl phthalate (DiNP) significantly correlated with the total PAEs indicating their large contribution to sludge contamination. The abundance of microplastics in sludge ranged between 1 and 7 MP/g, highest at ITP6, but not detected in some stations. While microplastics may potentially increase PAEs, there was no significant relationship between ΣPAEs and MP abundance. The estimated human daily intake of DEHP and di-n-butyl phthalate (DnBP) when contaminated sludge be used showed low toxicological risks to exposed adults. This research presents the sludge characteristics, PAEs, and microplastic concentrations in different wastewater treatment plants in Taiwan. PAE contamination was highly contributed by domestic and industrial wastes shown by their significant amounts in STP and ITP. Results further provide evidence for potential sludge recycling (WTP sludge) and application to soil.
Collapse
Affiliation(s)
- Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City, 6122, Philippines
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
14
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Lu J, Zhang J, Xie H, Wu H, Jing Y, Ji M, Hu Z. Transformation and toxicity dynamics of polycyclic aromatic hydrocarbons in a novel biological-constructed wetland-microalgal wastewater treatment process. WATER RESEARCH 2022; 223:119023. [PMID: 36058097 DOI: 10.1016/j.watres.2022.119023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel wastewater treatment process combining sequencing batch reactor, constructed wetland and microalgal membrane photobioreactor (BCM process) was proposed, and its performance on removal, transformation and toxicity reduction of polycyclic aromatic hydrocarbons (PAHs) was intensively explored. Satisfactory PAHs removal (90.58%-97.50%) was achieved and molecular weight had significant impact on the removal pathways of different PAHs. Adsorption dominated the removal of high molecular weight PAHs, while the contribution ratio of microbial degradation increased with the decrease of molecular weight of PAHs. More importantly, it was reported for the first time that substituted PAHs (SPAHs) produced by microbial degradation of PAHs would lead to increased toxicity during the BCM process. High PAHs (75.37%-88.52%) and SPAHs removal (99.56%-100.00%) were achieved in the microalgae unit due to its abundant cytochrome P450 enzyme, which decreased the bacterial toxicity by 90.93% and genotoxicity by 93.08%, indicating that microalgae played significance important role in ensuring water security. In addition, the high quantitative relationship (R2 = 0.98) between PAHs, SPAHs and toxicity exhibited by regression model analysis proved that more attention should be paid to the ecotoxicity of derivatives of refractory organic matters in wastewater treatment plants.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huijun Xie
- Field Monitoring Station of the Ministry of Education for the East Route of the South to-North Water Transfer Project, Shandong University, Jinan 250100, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China
| | - Yuming Jing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China; Shandong Huankeyuan Environmental Engineering Co. Ltd., Jinan 250013, China
| | - Mingde Ji
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China.
| |
Collapse
|
16
|
Bai L, Dong X, Wang F, Ding X, Diao Z, Chen D. A review on the removal of phthalate acid esters in wastewater treatment plants: from the conventional wastewater treatment to combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51339-51353. [PMID: 35614357 DOI: 10.1007/s11356-022-20977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In the past decades, phthalate acid esters (PAEs), as a new class of recalcitrant environmental contaminant, have attracted increasing concern due to their potential hazards to reproductive system. wastewater treatment plants (WWTPs) are generally regarded as a crucial barrier to prevent a variety of contaminants from introducing into aquatic environment. This paper reviews the occurrence, fate, and removal efficacy of six widely appearing PAEs in conventional wastewater treatment. PAEs removal appears to be compound- and process-dependent. Advanced treatment processes, including activated carbon, advanced oxidation process (AOPs), membrane filtration, and membrane bioreactor, show good performance in PAEs elimination, but many methods have been commercially limited by toxic byproducts, high operation, and maintenance costs. Even though combined processes are qualified as a promising alternative, further studies are required to optimize these processes, especially the competitiveness between technique and economy.
Collapse
Affiliation(s)
- Lin Bai
- Department of Assets and Laboratory Management, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Fangshu Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Xiaohan Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhikai Diao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
17
|
Guo W, Li J, Luo M, Mao Y, Yu X, Elskens M, Baeyens W, Gao Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. WATER RESEARCH 2022; 214:118189. [PMID: 35184019 DOI: 10.1016/j.watres.2022.118189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Effluents of sewage treatment plants (STPs) are an important source of estrogenic substances to the receiving water bodies affecting their ecological safety. In this study, steroids, bisphenol A (BPA) and phthalates were assessed in the secondary (SE) and tertiary effluent (TE) of three typical urban STPs in Beijing (China). In addition, the overall estrogenic activity in these effluents was assessed by an in-vitro bioassay (ERE-CALUX). Results showed that the concentrations and activities of estrogenic compounds in TE were lower than those in SE. The residual concentration of 17β-estradiol (E2) was the highest among the detected steroids, accounting for 51.6 ± 5.1% in SE and 57.5 ± 24.8% in TE. The residual level (25.2-41.6 ng/L) of BPA in effluents was significantly higher than that of steroids (0.2-28.8 ng/L). The residual concentration of diethyl phthalate was the highest among the detected phthalates accounting for 47.1 ± 5.1% in SE and 37.6 ± 11.5% in TE. Steroids and BPA had a higher removal rate (83.5% and 96.7%) in secondary and tertiary treatment than phthalates (68.8% and 83.1%). The hydrophobic characteristics of these estrogenic compounds determined the removal mechanism. The removal of steroids, BPA, dimethyl phthalate and diethyl phthalate (LogKow= 1.61-4.15) mainly occurred through biodegradation in the water phase, while the removal of dibutyl phthalate, butylbenzyl phthalate and di(2-ethylhexyl) phthalate (LogKow= 4.27-7.50) mainly occurred in the solid phase after adsorption on and sedimentation of the suspended particulate matter. According to ERE-CALUX, the estrogenic activity in the final STP effluents was 3.2-45.6 ng E2-equivalents/L, which is higher than reported levels in the effluents of European STPs. Calculation of estrogenic equivalents by using substance specific chemical analysis indicated that the dominant contributor was E2 (56.4-88.4%), followed by 17α-ethinylestradiol (EE2) (4.1-34.8%), both also exerting a moderate risk to the aquatic ecosystem. While the upgrade of treatment processes in STPs has efficiently reduced the emission of estrogenic substances, their ecological risk was not yet phased out.
Collapse
Affiliation(s)
- Wei Guo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyue Luo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yan Mao
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Marc Elskens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium.
| |
Collapse
|
18
|
Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, Kara M, Dinç S. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. CHEMOSPHERE 2022; 295:133864. [PMID: 35150704 DOI: 10.1016/j.chemosphere.2022.133864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d-1 in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| |
Collapse
|
19
|
Chijioke Emmanuel C, O.J O, Ikemsinachi David O. Sorption studies of phthalic acid esters uptake from lagos lagoon sample using characterized gmelina arborea pericarp biosorbent. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2036761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Onipede O.J
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| | | |
Collapse
|
20
|
Castiglioni M, Rivoira L, Ingrando I, Meucci L, Binetti R, Fungi M, El-Ghadraoui A, Bakari Z, Del Bubba M, Bruzzoniti MC. Biochars intended for water filtration: A comparative study with activated carbons of their physicochemical properties and removal efficiency towards neutral and anionic organic pollutants. CHEMOSPHERE 2022; 288:132538. [PMID: 34648788 DOI: 10.1016/j.chemosphere.2021.132538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Seven biochars (BCs) obtained from pyrolysis or gasification of different vegetal feedstocks were thoroughly characterized in comparison with three commercial activated carbons (ACs) routinely used in drinking water treatment plants. BCs and ACs characterization included the determinations of ash, iodine and methylene blue adsorption indexes, and the release of metals and polycyclic aromatic hydrocarbons, which were performed according to international standards applied for adsorption media to be used in drinking waters. Total specific surface area, micropore and mesopore specific surface area, pH of the point of zero charge, and the release of polychlorinated biphenyls were also determined in all chars. Principal component analysis and cluster analysis were performed in order to summarize the complex set of information deriving from the aforementioned characterizations, highlighting the BC most similar (BC6 from high temperature gasification of woody biomass) and most different (BC7 from low-temperature pyrolysis of corn cob) from ACs. These BCs were studied for their adsorption in ultrapure water towards diiodoacetic acid (an emergent disinfection by-product), benzene, and 1.2-dichlorobenzene, in comparison with ACs, and results obtained were fitted by linearized Freundlich equation. Overall, BC6 showed higher sorption performances compared to BC7, even though both BCs were less performing sorbents than ACs. However, the sorption properties of BCs were maintained also in real water samples collected from drinking water treatment plants.
Collapse
Affiliation(s)
- Michele Castiglioni
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125, Turin, Italy
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125, Turin, Italy
| | - Irene Ingrando
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125, Turin, Italy
| | - Lorenza Meucci
- SMAT S.p.A., Research Centre, C.so Unità d'Italia 235/3, Turin, Italy
| | - Rita Binetti
- SMAT S.p.A., Research Centre, C.so Unità d'Italia 235/3, Turin, Italy
| | - Martino Fungi
- SMAT S.p.A., Research Centre, C.so Unità d'Italia 235/3, Turin, Italy
| | - Ayoub El-Ghadraoui
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Zaineb Bakari
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; National Engineering School of Sfax, Route de la Soukra km 4, 3038, Sfax, Tunisia
| | - Massimo Del Bubba
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | | |
Collapse
|
21
|
Sun S, Shen J, Li B, Geng J, Ma L, Qi H, Zhang A, Zhao Z. The spatiotemporal distribution and potential risk assessment of 19 phthalate acid esters in wastewater treatment plants in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67280-67291. [PMID: 34245417 DOI: 10.1007/s11356-021-15365-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal distribution of phthalate acid esters (phthalates, PAEs) in wastewater treatment plants (WWTPs) in China was studied. The concentration of PAEs in influent and effluent increased from 2009 to 2016, indicating that the exposure level of PAEs in China increased continuously. Although the concentration of PAEs in sewage sludge in China ranged from 33.3 to 298 ug/g, there was no obvious spatial distribution pattern. Among the 19 PAE homologues, DEHP, DnBP, and DIBP were the most abundant phthalates detected in wastewater and sludge. Ecological risk assessment confirmed that there was a high chronic and acute risk of DIBP in effluent since 2015. Therefore, this study highlights the need for further studies on the exposure and toxicology of DIBP. Dietary intake accounted for more than 98% of the total risk, indicating that the risk of sludge application in agricultural land was much higher than that in nonagricultural land. The results from this study will provide valuable information for the safe disposal of sludge and wastewater.
Collapse
Affiliation(s)
- Shaojing Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
| | - Jialu Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
| | - Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China.
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zebin Zhao
- School of Management, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
22
|
Bhogal S, Mohiuddin I, Kaur K, Lee J, Brown RJC, Malik AK, Kim KH. Dual-template magnetic molecularly imprinted polymer-based sorbent for simultaneous and selective detection of phenolic endocrine disrupting compounds in foodstuffs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116613. [PMID: 33609857 DOI: 10.1016/j.envpol.2021.116613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
In this research, an efficient (94.9-99.4%) and fast (5 min) method has been developed and validated for simultaneous identification and quantification of phenolic endocrine disrupting compounds with an emphasis on bisphenol A (BPA) and 4-cumylphenol (4-CP) in food stuffs using a dual-template magnetic, molecularly-imprinted polymer (dt-MMIP). The dt-MMIP was synthesized by a sol-gel method using Fe3O4@SiO2 (as the core) and BPA and 4-CP (as templates). The dt-MMIP was coupled with magnetic solid phase extraction to simultaneously detect BPA and 4-CP in food samples. BPA was measured from bottled water and fruit juice samples samples at 0.36 and 0.24 ng mL-1, respectively, while 4-CP in those samples was 0.33 and 0.16 ng mL-1, respectively. Their detection limits were estimated as 0.04 and 0.05 ng mL-1, respectively. The developed dt-MMIP method was highly reproducible, while maintaining a good cyclability up to 20 cycles.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140407, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea; Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
23
|
Mohammed R, Zhang ZF, Jiang C, Hu YH, Liu LY, Ma WL, Song WW, Nikolaev A, Kallenborn R, Li YF. Occurrence, Removal, and Mass Balance of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Wastewater Treatment Plants in Northeast China. TOXICS 2021; 9:toxics9040076. [PMID: 33918398 PMCID: PMC8066243 DOI: 10.3390/toxics9040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102, and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.
Collapse
Affiliation(s)
- Rashid Mohammed
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Ying-Hua Hu
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia;
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, ON M2N 6X9, Canada
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| |
Collapse
|
24
|
Zhao JL, Huang Z, Zhang QQ, Ying-He L, Wang TT, Yang YY, Ying GG. Distribution and mass loads of xenoestrogens bisphenol a, 4-nonylphenol, and 4-tert-octylphenol in rainfall runoff from highly urbanized regions: A comparison with point sources of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123747. [PMID: 33113730 DOI: 10.1016/j.jhazmat.2020.123747] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
This study pays a special attention to three phenolic endocrine disrupting compounds (EDCs), - bisphenol A (BPA), 4-nonylphenol (4-NP), and 4-tert-octylphenol (4-t-OP) - that are present in urban environments, resultant of several anthropogenic activities that can be also carried through rainfall runoff. We investigated the distributions of BPA, 4-NP, and 4-t-OP in Pearl River basin and estimated the mass loads in rainfall runoff, wastewater treatment plant (WWTP) effluents, and industrial wastewater from urbanized Huizhou and Dongguan regions. These three phenolic EDCs were detected frequently in tributaries and mainstream of Dongjiang River with the maximum 4-NP concentrations of 14,540 ng/L in surface waters and 3088 ng/g in sediments. BPA showed high concentrations in rainfall runoff samples with maximum concentrations of 5873 and 2397 ng/L in Huizhou and Dongguan regions, respectively, while concentrations for 4-NP and 4-t-OP were detected at tens to hundreds of nanograms per liter. Mass loads of phenolic EDCs from rainfall runoff were 3-62 times higher than those of WWTP effluents, suggesting rainfall runoff is an important source of phenolic EDCs into receiving waters. Sources and tributaries showed median to high estrogenic risks, while low to median risks were found in mainstream, implying the source control should be focused.
Collapse
Affiliation(s)
- Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang Ying-He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tuan-Tuan Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
25
|
Kotowska U, Kapelewska J, Sawczuk R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115643. [PMID: 33254702 DOI: 10.1016/j.envpol.2020.115643] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Collapse
Affiliation(s)
- Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Róża Sawczuk
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Street, 15-245, Bialystok, Poland
| |
Collapse
|
26
|
Wang R, Ji M, Zhai H, Liu Y. Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140219. [PMID: 32783843 DOI: 10.1016/j.scitotenv.2020.140219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 05/09/2023]
Abstract
The occurrence of phthalate esters (PAEs) and microplastics (MPs) was simultaneously investigated in four wastewater treatment plants (WWTPs), receiving water bodies and reclaimed water treatment processes (RWTPs) in winter and spring. Four PAEs (dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, and di(2-ethylhexyl)phthalate) were detected. The total concentrations of PAEs were 568.9-1847.5 ng/L in the four WWTP effluents and 39.9-1847.5 ng/L in the four receiving water bodies. Di(2-ethylhexyl)phthalate had the highest concentration among the PAEs. MPs were mostly in the form of granules and fragments with size <0.01 mm in the four WWTP effluents (276-1030 items/L) and receiving water bodies (103-4458 items/L). The four WWTP effluents were important sources of PAEs to the receiving water bodies in spring but were not likely to be the sources of MPs. The overall removal rates of PAEs and MPs were 47.7%-81.6% and 63.5%-95.4% in the four RWTPs. Low or negative removal rates of PAEs were observed in chlorination and ozonation. Clarification, filtration (except ultrafiltration) and reverse osmosis were the dominant processes, contributing 42.7%-69.2%, 25.3%-59.3%, and 22.6%-51.0%, respectively, of the MP removal in the RWTPs. According to the Spearman analysis results, the levels of PAEs and MPs had more significant correlations with the physicochemical parameters of water samples from the RWTPs (including the WWTP effluents) than those of the receiving water bodies. The results indicated that the levels of PAEs and MPs in surface waters could be significantly influenced by the surrounding environment.
Collapse
Affiliation(s)
- Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yuan Liu
- North China Municipal Engineering Design & Research Institute Co., LTD, Olympic Road, 300381, China
| |
Collapse
|
27
|
Del Bubba M, Anichini B, Bakari Z, Bruzzoniti MC, Camisa R, Caprini C, Checchini L, Fibbi D, El Ghadraoui A, Liguori F, Orlandini S. Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135217. [PMID: 31810702 DOI: 10.1016/j.scitotenv.2019.135217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
Three biochars were produced using sawdust from waste biomass, via a simple pyrolysis thermal conversion at 450, 650, and 850 °C (BC450, BC650, and BC850), without any activation process. These materials, together with vegetal and mineral commercial activated carbons (VAC and MAC), were characterized for their elemental composition, Brunauer-Emmett-Teller surface area, t-plot microporosity and Barrett-Joyner-Halenda mesoporosity. Moreover, iodine, phenol and methylene blue porosity indexes were measured. The materials were also evaluated for their pH of the point of zero charge, as well as near-surface chemical composition and surface functionality by means of X-ray photoelectron and Fourier-transform infrared spectroscopy. Ash content, water-extractable metals and polycyclic aromatic hydrocarbons (PAHs) were also determined. BC650 showed a much higher surface area (319 m2 g-1) compared to BC450 (102 m2 g-1), as well as an increase in aromatization and the residual presence of functional polar groups. BC850 exhibited a loss of polar and aromatic groups, with the dominance of graphitic carbon and the highest value of surface area (419 m2 g-1). Biochars comply with the EN 12915-1/2009 limits for metal and PAH release in water treatment. Biochars and MAC were tested using Langmuir and Freundlich isotherms for the sorption in real effluent wastewater of a mixture of 14 branched ethoxylated 4-t-octyl and 4-nonylphenols, as well as 4-t-octyl and 4-nonylphenol, the latter representing persistent, endocrine disrupting contaminants, widespread in the effluents from wastewater treatment plants and listed as priority/priority hazardous substances in the Directive 2013/39/EU. Biochars showed a lower sorption efficiency compared to MAC. The best performance was found for BC650 towards the alkylphenols (9-13 times less efficient than the MAC). Considering the lower market price of biochar compared to MAC (estimated as at least 16 times less expensive by a small market survey), the former can be considered more competitive than the latter.
Collapse
Affiliation(s)
- Massimo Del Bubba
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy.
| | | | - Zaineb Bakari
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy; National Engineering School of Sfax, Route de la Soukra km 4 3038 Sfax, Tunisia
| | | | | | - Claudia Caprini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | - Leonardo Checchini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | | | - Ayoub El Ghadraoui
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Liguori
- Institute for the Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), Via Madonna del Piano 10 - 50019 Sesto Fiorentino, Florence, Italy
| | - Serena Orlandini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
28
|
Effect of DEHP on SCFA Production by Anaerobic Fermentation of Waste Activated Sludge. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1705232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diethylhexyl phthalate (DEHP) is a common plasticizer in industrial production. Recently, environmental problems caused by microplastics have drawn wide attention. As the microplastics have a large specific surface area, the release rate of the plasticizer from the microplastics to the environment is accelerated. The DEHP in the wastewater enters the wastewater treatment plants (WWTPs) along with the urban pipeline. After DEHP enters the WWTPs, it may affect the anaerobic fermentation with waste activated sludge (WAS) as raw material. So far, there has been no study on the effect of DEHP on anaerobic fermentation of WAS. Our study focused on the impact of exogenous DEHP on WAS anaerobic fermentation, and the results showed that DEHP mainly affects the solubilization stage of sludge anaerobic digestion, but has no significant effect on other stages. It does not affect the total yield and composition of short-chain fatty acids (SCFA). However, DEHP inhibited the solubilization process of WAS anaerobic fermentation, which was mainly manifested by the changes of soluble protein and soluble polysaccharide in the system. The results of the analysis of microbial communities revealed that the addition of DEHP did not change the diversity of microbial communities, but caused a change in the abundance of microbial organisms. DEHP reduced the abundance of acetogen bacteria and increased the abundance of methanogens. This work provides some insights into WAS fermentation systems in the presence of DEHP and helps to gain a better understanding of the potential environmental hazards of microplastics.
Collapse
|
29
|
Ofman P, Struk-Sokołowska J, Skoczko I, Wiater J. Alternated biodegradation of naphthalene (NAP), acenaphthylene (ACY) and acenaphthene (ACE) in an aerobic granular sludge reactor (GSBR). JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121184. [PMID: 31522063 DOI: 10.1016/j.jhazmat.2019.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The paper presents quantitative changes of selected 2- and 3-ring PAHs after process phases of GSBR reactor. The studies have been carried out for 264 cycles of GSBR reactor, during which concentration of naphthalene was increased in the range of 3.00-710.00 μg/L, acenaphthylene 1.00-160.00 μg/L, acenaphthene 3.00-440.00 μg/L. GSBR operating cycle consisted of filling (30 min), mixing (90 min), aeration (540 min), sedimentation (10 min), decanting (30 min) and downtime (20 min) phases. Activated sludge dry mass concentration was 4.00 kg/m3. Conducted studies showed that in GSBR reactor naphthalene was degraded with the highest intensity. Results of the statistical analysis confirmed that naphthalene concentrations were statistically significantly different (α = 0.05) after each individual GSBR process phase, while in case of acenaphthene and acenaphthylene, the differences were observed only between mixing and aeration phases. Additionally, equations estimating concentrations of PAHs in treated wastewater were developed. Selected activated sludge technological parameters (sludge volume index, sludge and hydraulic retention time) and concentration of PAHs were used for equations. The R2 coefficients of equations were above 0.99, which indicates a good adjustment of estimation to observed values.
Collapse
Affiliation(s)
- Piotr Ofman
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland.
| | - Iwona Skoczko
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| | - Józefa Wiater
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| |
Collapse
|
30
|
Hernández-Abreu AB, Álvarez-Torrellas S, Águeda VI, Larriba M, Delgado JA, Calvo PA, García J. New insights from modelling and estimation of mass transfer parameters in fixed-bed adsorption of Bisphenol A onto carbon materials. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 228:103566. [PMID: 31740007 DOI: 10.1016/j.jconhyd.2019.103566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The removal of Bisphenol A, 2,2-bis (4-hydroxyphenyl) propane (BPA) in fixed-bed columns was investigated by breakthrough adsorption tests at different operation conditions and further prediction by a mathematical model to describe the adsorption-diffusion process onto two synthesized carbon porous materials. In this study, a xerogel (RFX) prepared by an optimized conventional sol-gel method and a lignin-based activated carbon (KLP) obtained via chemical activation were used in batch and fixed-bed adsorption experiments. The materials were fully characterized and their adsorptive properties were compared to those obtained with a commercial activated carbon (F400). RFX and KLP materials reached the equilibrium adsorption in only 24 h, whereas F400 activated carbon required 48 h. In addition, F400 and KLP adsorbents showed higher equilibrium adsorption capacity values (qe = 0.40 and 0.22 kg/kg, for F400 and KLP, respectively) than that obtained for the xerogel (qe = 0.08 kg/kg). Both synthesized carbon-adsorbents were studied in fixed-bed adsorption tests, exploring the effect of the operation conditions, e.g., initial BPA concentration (0.005-0.04 kg/m3), weight of adsorbent (0.01-0.05 g) and volumetric flow rate (0.2 to 1.0 mL/min), on the adsorption performance of the column. All the tested adsorption columns reached the equilibrium in a very short time, due to the efficient dimensionless of the bed. Additionally, the regeneration of the exhausted adsorbent was studied, achieving the total reuse of the solids after three consecutive cycles using methanol as regeneration agent. Finally, a mathematical model based on mass conservation equations was proposed, allowing to efficiently fit the experimental BPA breakthrough curves and estimate the external and adsorbed-phase mass transfer coefficients with a high accuracy.
Collapse
Affiliation(s)
- A B Hernández-Abreu
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - S Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| | - V I Águeda
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| | - M Larriba
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - J A Delgado
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - P A Calvo
- I+D+i Biocombustibles, ENCE, Energía y Celulosa, C/ Lourizán s/n, Pontevedra 36153, Spain
| | - J García
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| |
Collapse
|