1
|
Warner W, Licha T. Melamine - A PMT/vPvM substance as a generic indicator for anthropogenic activity and urbanisation? An explorative study on melamine in the water cycle and soil. CHEMOSPHERE 2025; 370:143918. [PMID: 39647792 DOI: 10.1016/j.chemosphere.2024.143918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Melamine has a high production volume today and is spread ubiquitously in the anthropogenic technosphere. It is released steadily to the water cycle by many sources. Even though melamine has low direct toxicity, chronic exposure can cause nephrolithiasis and disrupt the endocrine system. Most data on melamine is based on case studies with, when compared, partially contradictive implications. As melamine is a compound of many sources (SMS), very persistent, mobile (vPvM), and toxic (PMT) it has the potential to break through natural barriers posing a potential risk to drinking water resources. This study combines existing data with own measurements gathered through various individual monitoring campaigns with the aim to gain new insights into its environmental behaviour and hotspots. Samples from surface water bodies, groundwater, wastewater (treated, untreated), and soil samples were analysed regarding their melamine concentration via liquid chromatography coupled with tandem mass spectrometry (LC-MSMS). Besides three drinking water samples, melamine could be found in all water samples (n = 632) of this study, with a maximum concentration of 1289 ng/L in drinking water and 1120 ng/L in groundwater. While a constant baseline melamine concentration with an event-based release could be observed in most surface water bodies, higher concentrations towards Western Europe (urbanisation and chemical industry) was observed for wastewater. A similar pattern was found in the spatial distribution of melamine in agricultural soils towards an urban/suburban area. As, in general, melamine concentrations were higher towards urbans centers melamine can also be classified as an indicator of anthropogenic activity and urbanisation, but also spotlights on these areas as hotspots for potentially many compounds of the human technosphere. We call policy to shift from the existing one-size-fits-all solution to more flexible and risk-based approaches to prepare for future challenges.
Collapse
Affiliation(s)
- Wiebke Warner
- Ruhr University Bochum, Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeology and Environmental Geology, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Tobias Licha
- Ruhr University Bochum, Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeology and Environmental Geology, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Rapacz D, Smolińska-Kempisty K, Wolska J. Preparation and characterization of SPE column with smart green molecularly imprinted polymers materials for selective determination of S-metolachlor herbicide. Sci Rep 2025; 15:3153. [PMID: 39856325 PMCID: PMC11761453 DOI: 10.1038/s41598-025-87685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE). Combining the MIP-SPE column with HPLC chromatography provided a quick and accurate method for determining the real concentration of S-metolachlor in water samples. The sorption capacity of the MIP-SPE column was almost twice that of the non-imprinted polymer column for SPE extraction. The bed can be regenerated up to three times before it loses its original sorption properties. A method has been developed whereby 6 ml of water can achieve an average recovery rate of 98% for sorbent. During the selectivity study from multicomponent solution, the calculate imprinting factor for MIPs was calculated to be 10, while MIPs sorb S-metolachlor 10 times better than atrazine, 12 times better than fenoxaprop-P-ethyl and 33 times better than glyphosate. The pseudo-second-order kinetic model was in good agreement with the experimental values obtained.
Collapse
Affiliation(s)
- Dominika Rapacz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
| | - Katarzyna Smolińska-Kempisty
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Joanna Wolska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| |
Collapse
|
3
|
Specker JC, Praetorius A, de Baat ML, Sutton NB, van Wezel AP. Risk characterisation of chemicals of emerging concern in real-life water reuse applications. ENVIRONMENT INTERNATIONAL 2025; 195:109226. [PMID: 39824024 DOI: 10.1016/j.envint.2024.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Water reuse is a viable option to address temporal or structural water shortages. However, the ubiquitous presence of chemicals of emerging concern (CECs) in natural systems, especially the aquatic environment, represents a significant obstacle to water reuse and the receiving environment. Therefore, an extensive literature review was performed to identify current water reuse practices at field scale, reported types and levels of CECs and their associated risks for human and environmental health. Treated wastewater was the primary reused water source, with agricultural reuse being the most frequently reported reuse application (28 %), followed by indirect-potable reuse (16 %). Contrary to potable reuse, it was observed that almost no studies applied additional treatment before water reuse for agricultural purposes. Based on calculated risk quotients, ecological risks were identified for perfluorooctanesulfonic acid, chlorpyrifos, triclocarban, and ethinylestradiol, and human health risks for perfluorooctanesulfonic acid and perfluorooctanoic acid. Environmental risks could be assessed for 77 % of detected CECs, while the human health risk assessment is limited to 28 %. For agricultural reuse, it was observed that CEC concentrations in produced crops were at acceptable levels. However, a thorough risk assessment of CECs during water reuse is currently limited due to a focus on a defined class of contaminants in the literature, i.e., pharmaceuticals, and falls short of per- and polyfluoroalkyl substances. Therefore, future water reuse studies should include a broader set of CECs and study additional mitigation options to decrease CEC concentrations before or during water reuse. Moreover, environmental harm caused by CECs during water reuse such as adverse effects on the microbial soil community or leaching to non-target sources has hardly been studied in the field and presents a knowledge gap.
Collapse
Affiliation(s)
- Jan C Specker
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Milo L de Baat
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Gaur VK, Gautam K, Vishvakarma R, Sharma P, Pandey U, Srivastava JK, Varjani S, Chang JS, Ngo HH, Wong JWC. Integrating advanced techniques and machine learning for landfill leachate treatment: Addressing limitations and environmental concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124134. [PMID: 38734050 DOI: 10.1016/j.envpol.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 μg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 μg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Upasana Pandey
- Dabur Research Foundation, Ghaziabad, Uttar Pradesh, 201010, India
| | | | - Sunita Varjani
- School of Engineering, UPES, Dehradun-248 007, Uttarakhand, India; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW - 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
5
|
Linge KL, Gruchlik Y, Busetti F, Ryan U, Joll CA. Use of micropollutant indicator ratios to characterize wastewater treatment plant efficiency and to identify wastewater impact on groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120822. [PMID: 38599088 DOI: 10.1016/j.jenvman.2024.120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.
Collapse
Affiliation(s)
- Kathryn L Linge
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Yolanta Gruchlik
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| | - Francesco Busetti
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia
| | - Una Ryan
- Harry Butler Institute, College of Science, Health, Education and Engineering, Murdoch University, 90 South Street, Murdoch, Perth, Australia
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| |
Collapse
|
6
|
Oliveira YM, Vernin NS, Zhang Y, Maginn E, Tavares FW. Interaction Between Endocrine Disruptors and Polyethylene Nanoplastic by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2045-2052. [PMID: 38359361 DOI: 10.1021/acs.jpcb.3c07966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nanoplastics (NPs) can come into contact with humans through different means such as ingesting contaminated food or exposure to contaminated air. Recent research indicates that these NPs can act as vectors for other contaminants. Further research is still needed to determine the effects of these interactions and whether they are significant under environmental conditions. Bisphenol A (BPA) and benzophenone (BZP) are possible contaminants that could be cotransported with NPs. Even in low concentrations, BPA and BZP can act as endocrine disruptors and have been linked to several diseases. In this study, we used molecular dynamics simulations to obtain the potential of mean force (PMF) profile between a polyethylene NP and a BPA/BZP molecule. The PMF shows a minimum of -8.0 kJ mol-1 for the BPA, whereas it is -23.5 kJ mol-1 for the BZP, meaning BZP has a much greater attractive potential to polyethylene than BPA. We can infer that the higher quantity of BPA's hydrogen bonds with the water contributes to the difference between BZP and BPA. The results indicate the need to address the possibility of NPs playing a role in the cotransport and bioaccumulation of contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Yamara Matos Oliveira
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, Indiana 46556, United States
| | - Nathalia Salles Vernin
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
- Chemical Engineering Graduate Program, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, Indiana 46556, United States
| | - Edward Maginn
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, Indiana 46556, United States
| | - Frederico W Tavares
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
- School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
7
|
Valdés ME, Rodríguez Castro MC, Santos LHMLM, Barceló D, Giorgi ADN, Rodríguez-Mozaz S, Amé MV. Contaminants of emerging concern fate and fluvial biofilm status as pollution markers in an urban river. CHEMOSPHERE 2023; 340:139837. [PMID: 37598946 DOI: 10.1016/j.chemosphere.2023.139837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Contaminants of emerging concern (CEC) are still under research given the vast diversity of compounds reaching freshwater ecosystems and adverse effects they might cause. In this study, the environmental fate of 73 CEC, comprising sweeteners, stimulants and several pharmaceutical therapeutic classes, and changes in fluvial biofilm photosynthetic parameters were evaluated in a semi-arid urban river receiving diffuse and point sources of pollution (Suquía river, Argentina). Out of the 37 CEC detected, 30 were quantified in surface water (n.d. - 9826 ng/L), 10 in biofilm (n.d. - 204 ng/gd.w.) and 9 in the clay fraction of sediments (n.d. - 64 ng/gd.w.). CEC distribute differently among the 3 matrices: water phase presents the biggest diversity of compounds (14 CEC families), being analgesic/anti-inflammatories the most abundant family. Antibiotics largely predominated in biofilms (7 CEC families), while the stimulant caffeine and some antibiotics where the most abundant in sediments (6 CEC families). Different CEC accumulated in biofilms and sediments upstream and downstream the city, and big shifts of biofilm community occurred downstream WWTP. The shift of biofilm community upstream (F0 > 0) and downstream the WWTP (F0 = 0) shows a sensitive response of F0 to the impact of WWTP. Biofilm photosynthetic parameters responded in less impacted urban sites (sites 1, 2 and 3), where significant correlations were found between ketoprofen and some antibiotics and biofilm parameters. The diversity and amount of CEC found in the urban section of Suquía river alert to the magnitude of point and non-point sources of pollution.
Collapse
Affiliation(s)
- M Eugenia Valdés
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI- CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC/ISIDSA-CONICET/UNC) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ma Carolina Rodríguez Castro
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET)- Programa de Ecología de Protistas y Hongos, Dpto. de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nacional N° 5, 6700, Buenos Aires, Argentina
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Adonis D N Giorgi
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET)- Programa de Ecología de Protistas y Hongos, Dpto. de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nacional N° 5, 6700, Buenos Aires, Argentina
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI- CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
8
|
Chae SH, Lim SJ, Seid MG, Ejerssa WW, Son A, Son H, Choi S, Lee W, Lee Y, Hong SW. Predicting micropollutant fate during wastewater treatment using refined classical kinetic model based on quantitative monitoring in multi-metropolitan regions of South Korea. WATER RESEARCH 2023; 245:120627. [PMID: 37717334 DOI: 10.1016/j.watres.2023.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to implement an extensive prediction model for the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs). Five WWTPs equipped with seven different biological treatment processes were monitored from 2020 to 2022 with three to four sampling events in each year, and 27 datasets for 20 MPs were collected. Among these datasets, 12 were used to investigate the behavior and fate of MPs in WWTPs in South Korea. Metformin, acetaminophen, caffeine, naproxen, and ibuprofen were the MPs with the highest influent concentrations (ranging from 3,933.3-187,637.0 ng L-1) at all WWTPs. More than 90% of MPs were removed by biological treatment processes in all WWTPs. The Kruskal-Wallis test verified that their efficacy did not differ statistically (p-value > 0.05). Meanwhile, to refine the performance of the prediction model, this study optimized the biodegradation rate constants (kbio) of each MP according to the variation of seasonal water temperature. As a result, compared to the original prediction model, the mean difference between the actual data and predicted results (MEAN) decreased by 6.77%, while the Nash-Sutcliffe efficiency (NSE) increased by 0.226. The final MEAN and NSE for the refined prediction model were calculated to be 5.09% and 0.964, respectively. The prediction model made accurate predictions, even for MPs exhibiting behaviors different from other cases, such as estriol and atrazine. Consequently, the optimization strategy proposed in this study was determined to be effective because the overall removal efficiencies of MPs were successfully predicted even with limited reference datasets.
Collapse
Affiliation(s)
- Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wondesen Workneh Ejerssa
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Aseom Son
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea
| | - Sangki Choi
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
9
|
Bertrand L, Iturburu FG, Valdés ME, Menone ML, Amé MV. Risk evaluation and prioritization of contaminants of emerging concern and other organic micropollutants in two river basins of central Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163029. [PMID: 36990232 DOI: 10.1016/j.scitotenv.2023.163029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
A research gap exists in baseline concentrations of organic micropollutants in South American rivers. Identification of areas with different degrees of contamination and risk to the inhabitant biota is needed to improve management of freshwater resources. Here we inform the incidence and ecological risk assessment (ERA) of current used pesticides (CUPs), pharmaceutical and personal care products (PPCPs) and cyanotoxins (CTX) measured in two river basins from central Argentina (South America). Risk Quotients approach was used for ERA differentiating wet and dry seasons. High risk was associated to CUPs in both basins (45 % and 30 % of sites from Suquía and Ctalamochita rivers, respectively), mostly in the basins extremes. Main contributors to risk in water were insecticides and herbicides in Suquía river and insecticides and fungicides in Ctalamochita river. In Suquía river sediments, a very high risk was observed in the lower basin, mainly from AMPA contribution. Additionally, 36 % of the sites showed very high risk of PCPPs in Suquía river water, with the highest risk downstream the wastewater treatment plant of Córdoba city. Main contribution was from a psychiatric drug and analgesics. In sediments medium risk was observed at the same places with antibiotics and psychiatrics as main contributors. Few data of PPCPs are available in the Ctalamochita river. The risk in water was low, with one site (downstream Santa Rosa de Calamuchita town) presenting moderated risk caused by an antibiotic. CTX represented in general medium risk in San Roque reservoir, with San Antonio river mouth and the dam exit showing high risk during the wet season. The main contributor was microcystin-LR. Priority chemicals for monitoring or further management include two CUPs, two PPCPs, and one CTX, demonstrating a significant input of pollutants to water ecosystems from different sources and the need to include organic micropollutants in current and future monitoring.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Eugenia Valdés
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
10
|
Boussouga YA, Sacher F, Schäfer AI. Water quality of The Gambia River: A prospective drinking water supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162794. [PMID: 36914135 DOI: 10.1016/j.scitotenv.2023.162794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Abstract
Drinking water in The Gambia is mostly derived from boreholes that could potentially be contaminated. The Gambia River, a major river in West Africa that covers 12 % of the country's area, could be more exploited for drinking water supply. During the dry season, the total dissolved solids (TDS), ranging from 0.02 to 33 g/L in The Gambia River, decreases with the distance to the river mouth with no major inorganic contamination. The freshwater (<0.8 g/L TDS) starts from Jasobo at approximately 120 km from the river mouth and extends by about 350 km to the eastern border of The Gambia. With a dissolved organic carbon (DOC) ranging from 2 to 15 mgC/L, the natural organic matter (NOM) of The Gambia River was characterised by 40-60 % humic substances of paedogenic origin. With such characteristics, unknown disinfection by-products could be formed if chemical disinfection, such as chlorination, was implemented during treatment. Out of 103 types of micropollutants, 21 were detected (4 pesticides, 10 pharmaceuticals, 7 per- and polyfluoroalkyl substances (PFAS)) with concentrations ranging from 0.1 to 1500 ng/L. Pesticides, bisphenol A and PFAS concentrations were below the stricter EU guidelines set for drinking water. These were mainly confined to the urban area of high population density near the river mouth, while the quality of the freshwater region of low population density was surprisingly pristine. These results indicate that The Gambia River, especially in its upper regions, would be well suited as a drinking water supply when using decentralised ultrafiltration treatment for the removal of turbidity, as well as, depending on pore size, to a certain extent microorganisms and DOC.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
He D, Wang D, Luo H, Zeng Y, Zeng G, Li J, Pan X. Tungsten disulfide (WS 2) is a highly active co-catalyst in Fe(III)/H 2O 2 Fenton-like reactions for efficient acetaminophen degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162151. [PMID: 36764556 DOI: 10.1016/j.scitotenv.2023.162151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L-1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•-) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs).
Collapse
Affiliation(s)
- Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongli Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganning Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Water pollution threats in important bird and biodiversity areas from Spain. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130938. [PMID: 36860036 DOI: 10.1016/j.jhazmat.2023.130938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chemical pollution is still an underestimated threat to surface waters from natural areas. This study has analysed the presence and distribution of 59 organic micropollutants (OMPs) including pharmaceuticals, lifestyle compounds, pesticides, organophosphate esters (OPEs), benzophenone and perfluoroalkyl substances (PFASs) in 411 water samples from 140 Important Bird and Biodiversity Areas (IBAs) from Spain, to evaluate the impact of these pollutants in sites of environmental relevance. Lifestyle compounds, pharmaceuticals and OPEs were the most ubiquitous chemical families, while pesticides and PFASs showed a detection frequency below 25% of the samples. The mean concentrations detected ranged from 0.1 to 301 ng/L. According to spatial data, agricultural surface has been identified as the most important source of all OMPs in natural areas. Lifestyle compounds and PFASs have been related to the presence of artificial surface and wastewater treatment plants (WWTPs) discharges, which were also an important source of pharmaceuticals to surface waters. Fifteen out of 59 OMPs have been found at levels posing a high risk for the aquatic IBAs ecosystems, being the insecticide chlorpyrifos, the antidepressant venlafaxine and perfluorooctanesulfonic acid (PFOS) the most concerning compounds. This is the first study to quantify water pollution in IBAs and evidence that OMPs are an emerging threat to freshwater ecosystems that are essential for biodiversity conservation.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053 Madrid, Spain
| | | | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Helm B, Geissler M, Mayer R, Schubert S, Oertel R, Dumke R, Dalpke A, El-Armouche A, Renner B, Krebs P. Regional and temporal differences in the relation between SARS-CoV-2 biomarkers in wastewater and estimated infection prevalence - Insights from long-term surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159358. [PMID: 36240928 PMCID: PMC9554318 DOI: 10.1016/j.scitotenv.2022.159358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3-4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.
Collapse
Affiliation(s)
- Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany.
| | - Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Hydrobiology, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; University Heidelberg, Institute of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - Ali El-Armouche
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| |
Collapse
|
14
|
Trommetter G, Dumoulin D, Dang DH, Alaimo V, Billon G. On inorganic tracers of wastewater treatment plant discharges along the Marque River (Northern France). CHEMOSPHERE 2022; 305:135413. [PMID: 35750230 DOI: 10.1016/j.chemosphere.2022.135413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Increase of water quality in aquatic systems has become a hot button issue in recent decades. However, with the aim to implement an effective remediation strategy, the first step is to identify the sources of diffuse and point-source pollution using several tracers. In urban areas, B isotopes, Gd enrichment, Cl- or carbamazepine concentrations can be used as wastewater treatment plant tracers. In this study, a focus was made on the quantification of a wide variety of inorganic compounds (elements, ions, isotopic ratios) all along the Marque River, a small stream located in Northern France receiving effluents coming from seven wastewater treatment plants (WWTPs). The objectives were (i) to determine the importance of the WWTPs discharge during low water events, (ii) to assess the efficiency of conventional tracers in quantifying the contribution of the WWTPs and (iii) to investigate new potential tracers less commonly used. The results have shown, through statistical analyses ANOVA (Analysis Of Variance) tests, PCA (Principal Component Analysis) and contribution calculations, that the WWTPs discharges strongly impact the water composition of all the watercourse and particularly during the first 6 km. However, due to high discharges of wastewaters not always well treated, some classical indicators (e.g. B, Rb/Sr) have shown limitations when used alone. The use of a set of relevant tracers including alkali metals could therefore be one solution for overcoming such a problem. Finally, other indicators like Rb/B or Gd/Pt ratios may also be a way to tackle this issue; they are indeed promising to discriminate the source of wastewaters.
Collapse
Affiliation(s)
- G Trommetter
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| | - D Dumoulin
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France.
| | - D H Dang
- School of the Environment and Chemistry Department, Trent University, Peterborough, ON, Canada
| | - V Alaimo
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| | - G Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| |
Collapse
|
15
|
Fakioğlu M, Kalpaklı Y. Mechanism and behavior of caffeine sorption: affecting factors. RSC Adv 2022; 12:26504-26513. [PMID: 36275163 PMCID: PMC9479768 DOI: 10.1039/d2ra04501j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Caffeine is one of the emerging pollutants with a diverse chemical composition. It is mixed with the hydrobiota as a result of its high consumption, and when certain dose intervals are exceeded, it re-enters the human body through indirect routes such as plants, animals, soil, water, and the food chain, causing health problems that are difficult or impossible to treat, and irreversible environmental problems. This situation raises concerns about the presence of pollutants emerging in water resources, igniting interest in water treatment processes and the development of alternative methods. Although there are several methods for removing caffeine from aqueous media, adsorption is the most popular because it is less expensive than other methods and has the highest removal efficiency. Furthermore, it has the benefit of selectively attaching the molecules in solution. In this article, studies on the caffeine adsorption process have been examined, and the caffeine adsorption efficiency of various adsorbents has been summarized by compiling information such as pH, contact time, temperature, and concentration of adsorbent and adsorbate, which are considered as optimum processing conditions. The binding mechanism was investigated, and it was clearly stated how caffeine adheres to the adsorbent surface. Among the equilibrium adsorption isotherms, the isotherm model with the best agreement with the experimental data was attempted to be determined. Many studies clearly show that the process of developing environmentally friendly and high-capacity adsorbents in sustainable processes and in harmony with the circular economy is increasing day by day.
Collapse
Affiliation(s)
- Merve Fakioğlu
- Department of Chemical Engineering, Yildiz Technical University 34220 Davutpaşa Istanbul Turkey
| | - Yasemen Kalpaklı
- Department of Chemical Engineering, Yildiz Technical University 34220 Davutpaşa Istanbul Turkey
| |
Collapse
|
16
|
Kayode-Afolayan SD, Ahuekwe EF, Nwinyi OC. Impacts of pharmaceutical effluents on aquatic ecosystems. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Le Gaudu M, Thiebault T, Quénéa K, Alliot F, Guigon E, Le Callonnec L. Trace organic contaminants within solid matrices along an anthropized watercourse: Organo-mineral controls on their spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153601. [PMID: 35114246 DOI: 10.1016/j.scitotenv.2022.153601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although numerous studies have determined significant contamination in terms of trace organic contaminant (TrOC) diversity and concentration, the occurrence of TrOCs within solid matrices as suspended solids and sediments flies under the radar. In this study, the occurrence of 35 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was investigated in three compartments, namely dissolved phase, suspended particulate matter (SPM) and sediments, within an anthropized river in France. The sampling was performed to assess the spatial contamination dynamics and the impact of a major wastewater treatment plant (WWTP), under two contrasted hydrological conditions, i.e. base level and flood conditions. Solid samples were finely characterized (XRD, grainsize, TOC) in order to assess the impact of organic and mineral composition on the sorption extent of TrOCs. The study reveals that the clear spatial pattern of contamination in water samples, mostly generated by the effluent discharge of WWTPs, is less clear in solid matrices as the variability of the organo-mineral composition of such samples strongly impacts their favourability for sorption. Moreover, the flood event strongly impacted the sedimentary compartment, remobilizing fine and TrOC contaminated particles that were further found in suspended particulate matter. Lastly, the representativeness of contaminant diversity and concentration within the solid matrices displayed more favourable insights for SPM.
Collapse
Affiliation(s)
- Maëlla Le Gaudu
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France.
| | - Katell Quénéa
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Elodie Guigon
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | | |
Collapse
|
18
|
Schiperski F, Zirlewagen J, Stange C, Tiehm A, Licha T, Scheytt T. Transport-based source tracking of contaminants in a karst aquifer: Model implementation, proof of concept, and application to event-based field data. WATER RESEARCH 2022; 213:118145. [PMID: 35151087 DOI: 10.1016/j.watres.2022.118145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Identification and location of contamination sources is crucial for water resource protection - especially in karst aquifers which provide 25% of the world´s population with water but are highly vulnerable to contamination. Transport-based source tracking is proposed and verified here as a complementary approach to microbial and chemical source tracking in karst aquifers for identifying and locating such sources of contamination and for avoiding ambiguities that might arise from using one method alone. The transport distance is inversely modelled from contaminant breakthrough curves (BTC), based on analytical solutions of the 1D two-region non-equilibrium advection dispersion equation using GNU Octave. Besides the BTC, the model requires reliable estimates of transport velocity and input time. The model is shown to be robust, allows scripted based, automated 2D sensitivity analyses (interplay of two parameters), and can be favourable when distributed numerical models are inappropriate due to insufficient data. Sensitivity analyses illustrate that the model is highly sensitive to the input time, the flow velocity, and the fraction of the mobile fluid region. A conclusive verification approach was performed by applying the method to synthetic data, tracer tests, and event-based field data. Transport distances were correctly modelled for a set of artificial tracer tests using a discharge-velocity relationship that could be established for the respective karst catchment. For the first time such an approach was shown to be applicable to estimate the maximum distance to the contamination source for coliform bacteria in karst spring water combined with microbial source tracking. However, prediction intervals for the transport distance can be large even in well-studied karst catchments mainly related to uncertainties in the flow velocity and the input time. Using a maximum transport distance is proposed to account for less permeable, "slower" pathways. In general, transport-based source tracking might be used wherever transport can be described by the 1D two-region non-equilibrium model, e.g. rivers and fractured or porous aquifers.
Collapse
Affiliation(s)
- Ferry Schiperski
- Technische Univerinfromt Berlin, Dept. of Applied Geosciences, Applied Geochemistry, Ernst-Reuter-Platz 1, 10587, Berlin 10587, Germany.
| | - Johannes Zirlewagen
- Technische Univerinfromt Berlin, Dept. of Applied Geosciences, Applied Geochemistry, Ernst-Reuter-Platz 1, 10587, Berlin 10587, Germany
| | - Claudia Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe D-76139, Germany
| | - Andreas Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe D-76139, Germany
| | - Tobias Licha
- Hydrochemistry Group, Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitatsstr. 150, Bochum 44801, Germany
| | - Traugott Scheytt
- Technische Universität Bergakademie Freiberg, Dept. of Geology, Hydrogeology, Freiberg 09596, Germany
| |
Collapse
|
19
|
Johannessen C, Helm P, Metcalfe CD. Runoff of the Tire-Wear Compound, Hexamethoxymethyl-Melamine into Urban Watersheds. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:162-170. [PMID: 33515272 PMCID: PMC7846915 DOI: 10.1007/s00244-021-00815-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
Hexamethoxymethyl-melamine (HMMM) is used as a crosslinking agent in resins and plastics and in the manufacture of tires. In the present study, surface water samples were collected from two rivers adjacent to high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples collected from the Don River and Highland Creek during rain events and a period of rapid snowmelt were preconcentrated using solid phase extraction and analyzed using liquid chromatography with high-resolution mass spectrometry. Elevated concentrations (> 1 µg/L) of HMMM were detected in surface waters during rain events in October of 2019 and during snow melt in early March of 2020. There were lower average concentrations of HMMM detected during rain events in the winter and spring of 2020. Temporal profiles of changes in the concentrations of HMMM in composite samples collected every 3 h during a rain event in October 2019 closely corresponded to the hydrograph profiles at the sampling sites, with the HMMM concentrations peaking > 6 h after the peak in water levels. This work contributes to the literature showing that HMMM is a ubiquitous contaminant of urban watersheds and that runoff from roads is a vector for the transport of this compound into urban surface waters.
Collapse
Affiliation(s)
| | - Paul Helm
- Ontario Ministry of Environment, Conservation and Parks, Toronto, ON, Canada
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
20
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
21
|
Warner W, Zeman-Kuhnert S, Heim C, Nachtigall S, Licha T. Seasonal and spatial dynamics of selected pesticides and nutrients in a small lake catchment - Implications for agile monitoring strategies. CHEMOSPHERE 2021; 281:130736. [PMID: 34020198 DOI: 10.1016/j.chemosphere.2021.130736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Intensive anthropogenic pressure such as high inputs of nutrients and pesticides severely threaten most European water bodies. Small catchments ≤10 km2 are not monitored under the Water Framework Directive but play an important role in freshwater ecosystems. The high complexity in seasonal and spatial dynamics require more than a one-size-fits-all approach in water quality monitoring. Often located in rural areas with a high agricultural activity, small catchments often carry high amounts of nutrients, pesticides and their transformation products affecting drinking water resources. With a low-cost approach of a monthly sampling campaign over the course of one year combined with meaningful indicators for potential pollution sources within the catchment this study could elucidate catchment dynamics and two hotspots for pesticides and nutrients. Two different groups of pesticides were observed (I) pesticides on long-term use which were applied in high amounts over the last decades (e.g., chloridazon and its transformation products) and (II) pesticides on short-term use, newly introduced into the market. Especially transformation products of pesticides from group (I) together with nitrate showed a steady release from two fields into the receiving water bodies over the year, probably being stored in the soil layers over the years of application slowly leaching out. Pesticides from group (II) showed a strong seasonality, released from another hotspot area probably due to run-off shortly after application. Streamlining this knowledge into targeted measures and an agile monitoring strategy for the respective catchments may allow a sustainable improvement of water quality and a better ecosystem protection.
Collapse
Affiliation(s)
- Wiebke Warner
- Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeochemistry, Ruhr-Universität Bochum, Germany.
| | | | - Christine Heim
- Institute for Geology and Mineralogy, University of Cologne, Germany
| | - Solveig Nachtigall
- Institute of Biology and Environmental Sciences, Carl-von-Ossietzky University Oldenburg, Germany
| | - Tobias Licha
- Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeochemistry, Ruhr-Universität Bochum, Germany
| |
Collapse
|
22
|
Ledieu L, Simonneau A, Thiebault T, Fougere L, Destandau E, Cerdan O, Laggoun F. Spatial distribution of pharmaceuticals within the particulate phases of a peri-urban stream. CHEMOSPHERE 2021; 279:130385. [PMID: 33848931 DOI: 10.1016/j.chemosphere.2021.130385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical products (PPs) are consumed worldwide and are continuously released into hydrological environments, but are not efficiently removed by sewage treatment plants. Their occurrence within the dissolved phase has been extensively studied, but only a few articles concern solid matrices. The mechanisms and extent of sorption depend on the properties of both the molecules (degradability, charge, hydrophobicity) and the matrices (clay content, organic matter content), making the spatio-temporal distribution of PPs in natural environments complex and poorly elucidated. To improve our understanding of PP distribution at a catchment scale, this study investigated different groups of molecules with varying solubility and charges, in water, suspended particulate matter, bed-load and pond sediments. The Egoutier stream, which collects the sewage effluents from two health institutions sewage effluents, is a good candidate for this investigation. Results indicate that PP occurrences in the different particulate compartments were mainly regulated by their wastewater occurrences and charges. Particulate phases all along the Egoutier stream were characterized by a limited clay content (i.e. less than 1%) and significant organic carbon content (i.e. between 0.3% and 18.0%) favouring non-specific adsorption. Therefore, neutral PPs, exhibiting higher discharge rates, persistence and hydrophobicities in comparison with cationic and anionic molecules, were the most abundant PPs in the particulate phases of this catchment. In bed-load sediments, global PP spatial distributions reflected discharge sites and sedimentary accumulation zones, mostly that of organic matter. Spatial distributions of the more hydrophobic and persistent PP in the particulate phases thus followed the stream sedimentary dynamic.
Collapse
Affiliation(s)
- L Ledieu
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France.
| | - A Simonneau
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France.
| | - T Thiebault
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005, Paris, France
| | - L Fougere
- Univ Orleans, CNRS, ICOA, UMR 7311, 45067, Orleans, France
| | - E Destandau
- Univ Orleans, CNRS, ICOA, UMR 7311, 45067, Orleans, France
| | - O Cerdan
- BRGM, 3 Avenue Claude Guillemin, 45060, Orléans, France
| | - F Laggoun
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France
| |
Collapse
|
23
|
Li Z, Yu X, Yu F, Huang X. Occurrence, sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20903-20920. [PMID: 33666841 DOI: 10.1007/s11356-021-12721-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is considered as the main source for supplying the public drinking water in many countries and regions; however, pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) found in groundwater can exert harmful effects on human health and aquatic ecosystems, and therefore, they are of persistent concern. The recent data on the occurrence of a series of PPCPs (including antibiotics, excitants and lipid regulators) and ASs often detected in groundwater are reviewed, in which the PPCPs and ASs occur in groundwater at the concentration from several nanograms to several micrograms per litre. In addition, the spatio-temporal distribution characteristics of PPCPs and ASs are discussed and the main sources and possibly pollution pathways of PPCPs and ASs in groundwater are summarised and analysed. Additionally, the adsorption, migration and degradation of PPCPs and ASs in underground environments are evaluated. Due to the long residence time in groundwater, pollutants are likely to threaten the freshwater body for decades under certain conditions. Therefore, according to the current level of pollution, it is necessary to improve and enhance the supervision on PPCP and AS pollutants and prevent and control groundwater pollution.
Collapse
Affiliation(s)
- Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| | - Xin Huang
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| |
Collapse
|
24
|
Emadian SM, Sefiloglu FO, Akmehmet Balcioglu I, Tezel U. Identification of core micropollutants of Ergene River and their categorization based on spatiotemporal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143656. [PMID: 33261876 DOI: 10.1016/j.scitotenv.2020.143656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
Ergene River is heavily utilized for irrigation of fields to grow the main stocks of rice, wheat, and sunflower of Turkey also exported to Europe; therefore, monitoring the river's water quality is crucial for public health. Although the river quality is routinely monitored, the evaluation of pollution based on micropollutants is limited. In this study, we measured 222 organic micropollutants in 300 samples collected from 75 different locations on the Ergene River between August 2017 and May 2018 using direct injection liquid chromatography-tandem spectrometry with optimized scheduled multiple reaction monitoring. In total, 165 micropollutants were detected at a range of concentrations between 1.90 ng/L and 1824.55 μg/L. Sixty-three chemical substances were recurrent micropollutants that were detected at least one location in all seasons. Among them, 41 chemical substances were identified as the core micropollutants of the Ergene River using data-driven clustering methods. Hexa(methoxymethyl)melamine, benzotriazoles, and benzalkonium chlorides were frequently detected core micropollutants with an industrial origin. Besides, diuron, carbendazim, and cadusafos were common pesticides in the river. Core micropollutants were further categorized based on their type of source and environmental behavior using Kurtosis of concentration and load data obtained for each micropollutant. As a result, the majority of the core micropollutants are recalcitrant chemicals either released from a specific source located upstream of the river or have urban and agricultural sources dispersed on the watershed. In this study, we assessed the current state of pollution in the Ergene River at the micropollutant level with a very high spatial resolution and developed a statistical approach to categorize micropollutants that can be used to monitor the extent of pollution and track pollution sources in the river.
Collapse
Affiliation(s)
- S Mehdi Emadian
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | - F Oyku Sefiloglu
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | | | - Ulas Tezel
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
25
|
Aricov L, Leonties AR, Gîfu IC, Preda D, Raducan A, Anghel DF. Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111326. [PMID: 32891981 DOI: 10.1016/j.jenvman.2020.111326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study was focused on creating a new and effective immobilization method for Trametes versicolor laccase (Lc) by using chitosan (CS) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride. The activation of the support alternated with immobilization of the enzyme, in repetitive procedures, led to obtaining three different products. Also, the physicochemical properties of the new products were investigated and compared with those of free laccase. The discoloration and reusability properties of the immobilized Lc were evaluated using indigo carmine (IC) as a model micropollutant. The ESEM and FT-IR methods demonstrated that the Lc was successfully immobilized. The relative reaction rate and the total amount of immobilized Lc were tripled using the iterative protocol as proved by specific and Bradford assays. The maximum amount of immobilized Lc was 8.4 mg Lc/g CS corresponding to the third immobilization procedure. Compared to the free Lc, the operational stability of the immobilized Lc was significantly improved, presenting a maximum activity plateau over a pH range of 3-5 and a temperature range of 25-50 °C. The thermal inactivation study at 55 °C proved that the immobilized enzyme is three times more stable than the free Lc. The isoconversional and Michaelis-Menten methods showed that the immobilization did not affect the enzyme catalytic properties. After 32 days of storage, the residual activities are 85% for the immobilized laccase and 40% for the free one. In similar conditions, the free and immobilized Lc (2.12 x 10-6 M) completely decolorized IC (7.15 x 10-5 M) within 14 min. The immobilized Lc activity remained almost constant (80%) during 10 reusability cycles. All these results highlight the substantial advantages of the new immobilization protocol and demonstrate that immobilized Lc can be used as a promising micropollutant removal from real wastewater.
Collapse
Affiliation(s)
- Ludmila Aricov
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Anca Ruxandra Leonties
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| | - Ioana Catalina Gîfu
- Department of Polymer, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Daniel Preda
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania
| | - Adina Raducan
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania
| | - Dan-Florin Anghel
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| |
Collapse
|
26
|
Van Stempvoort DR, Brown SJ, Spoelstra J, Garda D, Robertson WD, Smyth SA. Variable persistence of artificial sweeteners during wastewater treatment: Implications for future use as tracers. WATER RESEARCH 2020; 184:116124. [PMID: 32755735 DOI: 10.1016/j.watres.2020.116124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
For more than a decade the artificial sweeteners acesulfame (ACE) and sucralose (SUC) have been applied as tracers of the input of wastewater to environmental waters. Recently concerns have been raised that degradation of ACE during treatment may hinder or restrict its use as a wastewater tracer. In this study the value of ACE and SUC as tracers was reassessed based on samples of wastewater at 12 municipal wastewater treatment (MWWT) plants and from 7 septic systems and associated septic plumes in groundwater. The results indicated stability of SUC during MWWT at most plants, and variable removal of both sweeteners during some MWWT and in the septic wastewater systems. However, the residual concentrations of ACE and SUC in municipal effluent and in septic plumes indicate that both sweeteners remain valuable wastewater tracers. The mass ratio SUC/ACE was found to be a useful parameter for examining the relative persistence of these sweeteners.
Collapse
Affiliation(s)
- Dale R Van Stempvoort
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| | - Susan J Brown
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| | - John Spoelstra
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dorothy Garda
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - William D Robertson
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Shirley Anne Smyth
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| |
Collapse
|
27
|
Della-Flora A, Wilde ML, Thue PS, Lima D, Lima EC, Sirtori C. Combination of solar photo-Fenton and adsorption process for removal of the anticancer drug Flutamide and its transformation products from hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122699. [PMID: 32344362 DOI: 10.1016/j.jhazmat.2020.122699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The anti-cancer drug Flutamide (FLUT) is widely used and is of great environmental concern. The solar photo-Fenton (SPF) process can be an effective treatment for the removal of this type of micropollutant. The use of a single addition of 5 mg L-1 of Fe2+ and 50 mg L-1 of H2O2 achieved 20% primary degradation and only 3.05% mineralization. By using three additions of 5 mg L-1 Fe2+, with an initial H2O2 concentration of 150 mg L-1, 58% primary degradation was achieved, together with 12.07% mineralization. Consequently, thirteen transformation products (TPs) were formed. The SPF process was further combined with adsorption onto avocado seed activated carbon (ASAC) as an environmentally friendly approach for the removal of remained FLUT and the TPs. Doehlert design was used to assess the behavior of 13 TPs by optimizing the contact time and the adsorbent mass load. The optimal conditions for removal of FLUT and the TPs were 14 mg of ASAC and a contact time of 40 min. Remained FLUT and the TPs were totally removed using the adsorption process. The mechanisms of adsorption of FLUT and the TPs were strongly influenced by their polarity and π-π interactions of the TPs onto ASAC.
Collapse
Affiliation(s)
- Alexandre Della-Flora
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Pascal S Thue
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diana Lima
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Eder C Lima
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Luo H, Cheng Y, Zeng Y, Luo K, Pan X. Enhanced decomposition of H 2O 2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139335. [PMID: 32438168 DOI: 10.1016/j.scitotenv.2020.139335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Accelerating the rate-limiting step of Fe3+/Fe2+ conversion is a major challenge for H2O2 decomposition in conventional Fenton process. In this study, the catalytic mechanism of H2O2 by molybdenum disulfide (MoS2) nanoparticles and Fe3+ ions was revealed and the abatement of organic micropollutants was investigated. The presence of both MoS2 and Fe3+ can efficiently decompose H2O2. Reaction system of H2O2/MoS2/Fe3+ is found to remove most of the tested pollutants by over 80% (except 65.9% for carbamazepine) within 60 min at pH of 3.0. Effective pH range of this reaction system can be extended to pH of 5.0. Adding MoS2 to Fe3+/H2O2 system promotes the Fe3+/Fe2+ cycle and improves the reaction rate between Fe3+ and H2O2. The formation of Mo6+ ions and Mo6+ peroxo-complexes is beneficial to H2O2 decomposition and pollutant degradation. Electron paramagnetic resonance (EPR) measurements and quenching experiments confirm the important role of hydroxyl radicals in H2O2/MoS2/Fe3+ system. Chloride ions (Cl-) promote degradation, while bicarbonate ions (HCO3-) inhibit degradation. As H2O2 concentration increases from nil to 1.0 mM, the value of total EE/O decreases from 0.083 to 0.003 kWh L-1, and the most energy efficient condition is determined. This study provides a new pathway for efficient decomposition of H2O2 by Fe3+ ions in an extended pH range, which is considered a facile and promising strategy for wastewater treatment.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, Kalantzi OI, Thomaidis NS, Stasinakis AS. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122493. [PMID: 32240898 DOI: 10.1016/j.jhazmat.2020.122493] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Raw and treated leachate samples were collected from different landfills in Greece and analyzed for several groups of emerging contaminants using high resolution mass spectrometric workflows to investigate the possible threat from their discharge to the aquatic environment. Fifty-eight compounds were detected; 2-OH-benzothiazole was found at 84 % of the samples and perfluorooctanoic acid at 68 %. Bisphenol A, valsartan and 2-OH-benzothiazole had the highest average concentrations in raw leachates, after biological treatment and after reverse osmosis, respectively. In untreated leachates, Risk Quotients > 1 were calculated for 35 and 18 compounds when maximum and average concentrations were used, indicating an ecological threat for the aquatic environment. Leachates' biological treatment partially removed COD and NH4+-N, as well as 52.3 % of total emerging contaminants. The application of reverse osmosis resulted in a 98 % removal of major pollutants, 99 % removal of total emerging contaminants and a significant decrease of ecotoxicity to Lemna minor. Beside the decrease of the detected micropollutants during treatment, RQs > 1 were still calculated for 13 and 3 compounds after biological treatment and reverse osmosis, respectively. Among these, special attention should be given to 2-OH-benzothiazole and bisphenol A that had RQ values much higher than 1 for all tested organisms.
Collapse
Affiliation(s)
- M C Nika
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - K Ntaiou
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - K Elytis
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - V S Thomaidi
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - G Gatidou
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - O I Kalantzi
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece
| | - N S Thomaidis
- National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, 15771, Athens, Greece
| | - A S Stasinakis
- University of the Aegean, Department of Environment, Water and Air Quality Laboratory, 81100, Mytilene, Greece.
| |
Collapse
|
30
|
Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nödler K, Schulz M, Ternes TA, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle. WATER RESEARCH 2020; 175:115706. [PMID: 32199185 DOI: 10.1016/j.watres.2020.115706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Elevated concentrations of sulfamate, the anion of sulfamic acid, were found in surface waters and finished drinking water in Germany with concentrations up to 580 μg/L and 140 μg/L, respectively. Wastewater treatment plant (WWTP) effluent was identified as the dominant source of sulfamate in the urban water cycle, as sulfamate concentrations correlated positively (0.77 > r < 0.99) with concentrations of the wastewater tracer carbamazepine in samples from different waterbodies. Ozonation and activated sludge experiments proved that sulfamate can be formed from chemical and biological degradation of various precursors. Molar sulfamate yields were highly compound-specific and ranged from 2% to 56%. However, the transformation of precursors to sulfamate in WWTPs and wastewater-impacted waterbodies was found to be quantitatively irrelevant, since concentrations of sulfamate in these compartments are already high, presumably due to its primary use as an acidic cleaning agent. Sulfamate concentrations in the influent and effluent of studied WWTPs ranged from 520 μg/L to 1900 μg/L and from 490 μg/L to 1600 μg/L, respectively. Laboratory batch experiments were performed to assess the recalcitrance of sulfamate for chemical oxidation. In combination with the results from sampling conducted at full-scale waterworks, it was shown that common drinking water treatment techniques, including ozonation and filtration with activated carbon, are not capable to remove sulfamate. The results of biodegradation tests and from the analysis of samples taken at four bank filtration sites indicate that sulfamate is attenuated in the sediment/water interface of aquatic systems and during aquifer passage under aerobic and anaerobic conditions. Sulfamate concentrations decreased by between 62% and 99% during aquifer passage at the bank filtration sites. Considering the few data on short term ecotoxicity, about 30% of the presented sulfamate levels in ground and surface water samples did exceed the predicted no-effect concentration (PNEC) of sulfamate, and thus effects of sulfamate on the aquatic ecosystem of wastewater-impacted waterbodies in Germany cannot be excluded so far. Toxicological estimations suggest that no risk to human health is expected by concentrations of sulfamate typically encountered in tap water.
Collapse
Affiliation(s)
- Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Anna Sandholzer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Dominic Armbruster
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Manoj Schulz
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
31
|
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136916. [PMID: 32041046 DOI: 10.1016/j.scitotenv.2020.136916] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 05/23/2023]
Abstract
Global Trimethoprim (TMP) and Sulfamethoxazole (SMX) occurrences in raw wastewaters were systematically collected from the literature (n = 140 articles) in order to assess the relevance of using the SMX/TMP ratio as a marker of the main origin of wastewaters. These two antibiotics were selected due to their frequent use in association (i.e. co-trimoxazole) in a 5:1 ratio (SMX:TMP) for medication purposes, generating a unique opportunity to globally evaluate the validity of this ratio based on concentration values. Several parameters (e.g. sorption, biodegradation) may affect the theoretical SMX/TMP ratio. However, the collected data highlighted the good agreement between the theoretical ratio and the experimental one, especially in wastewater treatment plant influents and hospital effluents. Only livestock effluents displayed a very high SMX/TMP ratio, indicative of the very significant use of sulfonamide alone in this industry. Conversely, several countries displayed low SMX/TMP ratio values, highlighting local features in the human pharmacopoeia. This review provides new insights in order to develop an easy to handle and sound marker of wastewater origins (i.e. human/livestock), beyond atypical local customs.
Collapse
Affiliation(s)
- Thomas Thiebault
- EPHE, PSL University, UMR 7619 METIS, Sorbonne University, CNRS, F-75005, Paris, France.
| |
Collapse
|
32
|
Bradley PM, Journey CA, Button DT, Carlisle DM, Huffman BJ, Qi SL, Romanok KM, Van Metre PC. Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams. PLoS One 2020; 15:e0228214. [PMID: 31999738 PMCID: PMC6992211 DOI: 10.1371/journal.pone.0228214] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Celeste A. Journey
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Daniel T. Button
- U.S. Geological Survey, Columbus, Ohio, United States of America
| | | | - Bradley J. Huffman
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Sharon L. Qi
- U.S. Geological Survey, Beaverton, Oregon, United States of America
| | - Kristin M. Romanok
- U.S. Geological Survey, Lawrenceville, New Jersey, United States of America
| | | |
Collapse
|
33
|
Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem 2020; 412:1817-1824. [PMID: 31965248 PMCID: PMC7048865 DOI: 10.1007/s00216-020-02429-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Investigations into the interaction of xenobiotics with plants (and in particular edible plants) have gained substantial interest, as water scarcity due to climate-change-related droughts requires the more frequent use of reclaimed wastewaters for irrigation in agriculture. Non-steroidal anti-inflammatory drugs are common contaminants found in wastewater treatment plant effluents. For this reason, the interaction of nine edible plants with diclofenac (DCF), a widely used representative of this group of drugs, was investigated. For this purpose, plants were hydroponically grown in a medium containing DCF. For the detection of unknown DCF-related metabolites formed in the plant upon uptake of the parent drug‚ a new workflow based on the use of HPLC coupled to drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry (DTIM QTOF-MS) was developed. Thereby‚ for chromatographic peaks eluting from the HPLC, drift times were recorded, and analytes were subsequently fragmented in the DTIM QTOF-MS to provide significant fragments. All information available (retention times, drift times, fragment spectra, accurate mass) was finally combined‚ allowing the suggestion of molecular formulas for 30 DCF-related metabolites formed in the plant, whereby 23 of them were not yet known from the literature.
Collapse
Affiliation(s)
- Franz Mlynek
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| |
Collapse
|
34
|
Anastopoulos I, Pashalidis I. Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Peter KT, Wu C, Tian Z, Kolodziej EP. Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12257-12268. [PMID: 31603663 DOI: 10.1021/acs.est.9b04481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High resolution mass spectrometry (HRMS) analyses provide expansive chemical characterizations of environmental samples. To date, most research efforts have developed tools to expedite labor- and time-intensive contaminant identification efforts. However, even without chemical identity, the richness of nontarget HRMS data sets represents a significant opportunity to chemically differentiate samples and delineate source contributions. To develop this potential, we evaluated the use of unidentified HRMS detections to define sample uniqueness and provide additional statistical resolution for quantitative source apportionment, overcoming a critical limitation of existing approaches based on targeted contaminants. By creating a series of sample mixtures that mimic pollution sources in a representative watershed, we assessed the fidelity of HRMS source fingerprints during dilution and mixing. This approach isolated 8-447 nontarget compounds per sample for source apportionment and yielded accurate source concentration estimates (between 0.82 and 1.4-fold of actual values), even in multisource systems with <1% source contributions. Furthermore, we mined the nontarget data to identify five source-specific chemical end-members amenable to apportionment. While additional development studies are needed to fully evaluate the myriad factors affecting method accuracy and capabilities, this study provides a conceptual foundation for novel applications of nontarget HRMS data to confidently distinguish and quantify source impacts in complex systems.
Collapse
Affiliation(s)
- Katherine T Peter
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Christopher Wu
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Zhenyu Tian
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Edward P Kolodziej
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|