1
|
Davies B, Paul R, Osselton D, Evers R, Woolley T. Absence of new psychoactive substances in wastewater from South Wales, UK, revealed by optimised liquid chromatography-time-of-flight analysis. Drug Test Anal 2024; 16:1370-1377. [PMID: 38360045 DOI: 10.1002/dta.3659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
New psychoactive substances are produced and marketed to mimic the effects of their illicit counterparts and to attempt to evade drug tests and prosecution. Here, we present the optimisation, validation and application of an analytical method using liquid chromatography-time-of-flight mass spectrometry to detect and quantify 37 new psychoactive substances and illicit substances in wastewater from South Wales, UK, using a targeted analysis method. Sample preparation was performed using solid-phase extraction with Oasis HLB cartridges. The LC separation was performed using a YMC-Triart Phenyl 450 bar column (12 nm, 5 μm, 100 × 3 mm) which provided good separation and resolution for all targeted analytes with a run time of 9 min. The method was validated using the following parameters: sensitivity, selectivity, linearity, accuracy, precision, recovery and matrix effects. The method was then applied to influent wastewater samples collected from two wastewater treatment plants in Wales, UK.
Collapse
|
2
|
Vogel E, Neyra M, Larsen DA, Zeng T. Target and Nontarget Screening to Support Capacity Scaling for Substance Use Assessment through a Statewide Wastewater Surveillance Network in New York. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8518-8530. [PMID: 38693060 PMCID: PMC11097395 DOI: 10.1021/acs.est.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Wastewater-based epidemiology (WBE) has been widely implemented around the world as a complementary tool to conventional surveillance techniques to inform and improve public health responses. Currently, wastewater surveillance programs in the U.S. are evaluating integrated approaches to address public health challenges across multiple domains, including substance abuse. In this work, we demonstrated the potential of online solid-phase extraction coupled with liquid chromatography-high-resolution mass spectrometry to support targeted quantification and nontargeted analysis of psychoactive and lifestyle substances as a step toward understanding the operational feasibility of a statewide wastewater surveillance program for substance use assessment in New York. Target screening confirmed 39 substances in influent samples collected from 10 wastewater treatment plants with varying sewershed characteristics and is anticipated to meet the throughput demands as the statewide program scales up to full capacity. Nontarget screening prioritized additional compounds for identification at three confidence levels, including psychoactive substances, such as opioid analgesics, phenethylamines, and cathinone derivatives. Consumption rates of 12 target substances detected in over 80% of wastewater samples were similar to those reported by previous U.S.-based WBE studies despite the uncertainty associated with back-calculations. For selected substances, the relative bias in consumption estimates was sensitive to variations in monitoring frequency, and factors beyond human excretion (e.g., as indicated by the parent-to-metabolite ratios) might also contribute to their prevalence at the sewershed scale. Overall, our study marks the initial phase of refining analytical workflows and data interpretation in preparation for the incorporation of substance use assessment into the statewide wastewater surveillance program in New York.
Collapse
Affiliation(s)
- Emily
J. Vogel
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Milagros Neyra
- Department
of Public Health, Syracuse University, 444 White Hall, Syracuse, New York 13244, United States
| | - David A. Larsen
- Department
of Public Health, Syracuse University, 444 White Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Bade R, van Herwerden D, Rousis N, Adhikari S, Allen D, Baduel C, Bijlsma L, Boogaerts T, Burgard D, Chappell A, Driver EM, Sodre FF, Fatta-Kassinos D, Gracia-Lor E, Gracia-Marín E, Halden RU, Heath E, Jaunay E, Krotulski A, Lai FY, Löve ASC, O'Brien JW, Oh JE, Pasin D, Castro MP, Psichoudaki M, Salgueiro-Gonzalez N, Gomes CS, Subedi B, Thomas KV, Thomaidis N, Wang D, Yargeau V, Samanipour S, Mueller J. Workflow to facilitate the detection of new psychoactive substances and drugs of abuse in influent urban wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133955. [PMID: 38457976 DOI: 10.1016/j.jhazmat.2024.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification.
Collapse
Affiliation(s)
- Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Denice van Herwerden
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Nikolaos Rousis
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | - Darren Allen
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Christine Baduel
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute of Environmental Geosciences (IGE), Grenoble, France
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Tim Boogaerts
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dan Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | | | - Despo Fatta-Kassinos
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Elisa Gracia-Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Rolf U Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, United States
| | - Ester Heath
- Jožef Stefan Institute and International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Emma Jaunay
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA 19090, United States
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Arndís Sue Ching Löve
- University of Iceland, Department of Pharmacology and Toxicology, Hofsvallagata 53, 107 Reykjavik, Iceland; University of Iceland, Faculty of Pharmaceutical Sciences, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Daniel Pasin
- Forensic Laboratory Division, San Francisco Office of the Chief Medical Examiner, 1 Newhall St, San Francisco, CA 94124, United States
| | | | - Magda Psichoudaki
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | | | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, KY 42071-3300, United States
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands; UvA Data Science Center, University of Amsterdam, the Netherlands
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
4
|
Salgueiro-Gonzalez N, Béen F, Bijlsma L, Boogaerts T, Covaci A, Baz-Lomba JA, Kasprzyk-Hordern B, Matias J, Ort C, Bodík I, Heath E, Styszko K, Emke E, Hernández F, van Nuijs ALN, Castiglioni S. Influent wastewater analysis to investigate emerging trends of new psychoactive substances use in Europe. WATER RESEARCH 2024; 254:121390. [PMID: 38430760 DOI: 10.1016/j.watres.2024.121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Wastewater-based epidemiology (WBE) can provide objective and timely information on the use of new psychoactive substances (NPS), originally designed as legal alternatives of internationally controlled drugs. NPS have rapidly emerged on the global drug market, posing a challenge to drug policy and constituting a risk to public health. In this study, a WBE approach was applied to monitor the use of more than 300 NPS, together with fentanyl and its main metabolite norfentanyl, in influent wastewater collected from 12 European cities during March-June 2021. Quantitative and qualitative analysis of NPS in composite 24 h influent wastewater samples were based on solid phase extraction and liquid chromatography-mass spectrometry. In-sample stability tests demonstrated the suitability of most investigated biomarkers, except for a few synthetic opioids, synthetic cannabinoids and phenetylamines. Fentanyl, norfentanyl and eight NPS were quantified in influent wastewater and at least three substances were found in each city, demonstrating their use in Europe. N,N-dimethyltryptamine and 3-methylmethcathinone (3-MMC) were the most common NPS found, with the latter having the highest mass loads (up to 24.8 mg/day/1000 inhabitants). Seven additional substances, belonging to five categories of NPS, were identified in different cities. Spatial trends of NPS use were observed between cities and countries, and a changing weekly profile of use was observed for 3-MMC. WBE is a useful tool to rapidly evaluate emerging trends of NPS use, complementing common indicators (i.e. population surveys, seizures) and helping to establish measures for public health protection.
Collapse
Affiliation(s)
- Noelia Salgueiro-Gonzalez
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milan, Italy.
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, the Netherlands; Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Tim Boogaerts
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Jose Antonio Baz-Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; Department of Environmental Chemistry, Norwegian Institute for Water Research, Gaustadalleen 21, Oslo N-0349, Norway
| | | | - João Matias
- European Monitoring Centre for Drugs and Drug Addiction, Lisbon, Portugal
| | - Christoph Ort
- Eawag, Urban Water Management, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Igor Bodík
- Institute of Chemical and Environmental Engineering, Slovak University of Technology, Bratislava, Slovakia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
| | | | - Erik Emke
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | | | - Sara Castiglioni
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milan, Italy
| |
Collapse
|
5
|
Castaño-Ortiz JM, Gago-Ferrero P, Barceló D, Rodríguez-Mozaz S, Gil-Solsona R. HRMS-based suspect screening of pharmaceuticals and their transformation products in multiple environmental compartments: An alternative to target analysis? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132974. [PMID: 38218030 DOI: 10.1016/j.jhazmat.2023.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.
Collapse
Affiliation(s)
- Jose M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
6
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
7
|
Shi Y, Xu R, Wang S, Zheng J, Zhu F, Hu Q, Huang J, Ouyang G. Fluorinated-Squaramide Covalent Organic Frameworks for High-Performance and Interference-Free Extraction of Synthetic Cannabinoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302925. [PMID: 37807813 PMCID: PMC10646270 DOI: 10.1002/advs.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances (NPSs), have emerged as a significant public health threat in different regions worldwide. Analyzing SCs in water samples is critical to estimate their consumption and control. However, due to their low background concentration and the coexistence of complex matrix, the selective and effective enrichment of SCs is still challenging. In this study, a series of fluorinated-squaramide-based covalent organic frameworks (COF: FSQ-2, FSQ-3, and FSQ-4) are synthesized, and the as-prepared FSQ-4 exhibits strong affinity to different SCs. The proper pore size (1.4 nm) and pre-located functional groups (hydrogen-bond donors, hydrogen-bond acceptors, and fluorophilic segments) work synergistically for efficient SCs capture. Remarkably, when coupled FSQ-4 with solid-phase microextraction (SPME), trace-level (part per trillion, 10-9 ) determination of 13 SCs can be easily achieved, representing one of the best results among NPS analyses, and the excellent extraction performance can be maintained under various interfering conditions.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Ruolun Xu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Shaohan Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Qingkun Hu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Junlong Huang
- SGS‐CSTC Standards Technical Services Co., Ltd.Guangzhou510670China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
8
|
Chen YC, Hsu JY, Chang CW, Chen PY, Lin YC, Hsu IL, Chu CJ, Lin YP, Liao PC. Investigation of New Psychoactive Substances (NPS), Other Illicit Drugs, and Drug-Related Compounds in a Taiwanese Wastewater Sample Using High-Resolution Mass-Spectrometry-Based Targeted and Suspect Screening. Molecules 2023; 28:5040. [PMID: 37446702 DOI: 10.3390/molecules28135040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The proliferation of new psychoactive substances (NPSs) in recent years has posed a significant challenge to public health. Traditional monitoring methods have proven insufficient in tracking these constantly evolving substances, leading to the development of alternative approaches such as wastewater-based epidemiology (WBE). The present study aims to utilize high-resolution mass spectrometry (HRMS)-based targeted and suspect screening to profile NPS, other illicit drugs, and drug-related compounds in a Taiwanese wastewater sample. For the targeted analysis, 8 out 18 standards of illicit drugs have been identified. The suspect screening approach based on approximately 3600 substances in the SWGDRUG library can further identify 92 compounds, including opiate analgesics, synthetic cathinones, phenylalkylamines derivatives, phenethylamine derivatives, tryptamine derivatives, steroids, and ephedrine-related compounds. Additionally, the presence of 5-methoxy-2-aminoindane (MEAI) in the wastewater indicates that drug dealers have recently sold this potential NPS to evade drug regulations. This study firstly reports the HRMS-based comprehensive profile of NPS, other illicit drugs, and drug-related compounds in Taiwan, which could be applied as biomarkers for estimating the consumption of drugs.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pin-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yung-Chieh Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - I-Lin Hsu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Chiau-Jun Chu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Yen-Ping Lin
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
9
|
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162613. [PMID: 36871726 DOI: 10.1016/j.scitotenv.2023.162613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
New psychoactive substances (NPS) are a type of abused drug designed to mimic the effects of the currently known illicit drugs, whose structures are constantly changing to escape surveillance. The quick identification of NPS use in the community therefore demands immediate action. This study aimed to develop a target and suspect screening method using LC-HRMS to identify NPS in wastewater samples. An in-house database of 95 traditional and NPS was built using the reference standards, and an analytical method was developed. Wastewater samples were collected from 29 wastewater treatment plants (WWTP) across South Korea, representing 50 % of the total population. The psychoactive substances in waste water samples were screened using in-house database and developed analytical methods. A total of 14 substances were detected in the target analysis, including three NPS (N-methyl-2-AI, 25E-NBOMe, and 25D-NBOMe) and 11 traditional psychoactive substances and their metabolites (zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, phendimetrazine, phentermine, methamphetamine, codeine, morphine, and ketamine). Out of these, N-methyl-2-AI, zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, and phendimetrazine were detected with a detection frequency of over 50 %. Primarily, N-methyl-2-Al was detected in all the wastewater samples. Additionally, four NPSs (amphetamine-N-propyl, benzydamine, isoethcathinone, methoxyphenamine) were tentatively identified at level 2b in a suspect screening analysis. This is the most comprehensive study to investigate NPS using target and suspect analysis methods at the national level. This study raises a need for continuous monitoring of NPS in South Korea.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environmental and Energy, Pusan National University, Busan, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Eaton CJ, Coxon S, Pattis I, Chappell A, Hewitt J, Gilpin BJ. A Framework for Public Health Authorities to Evaluate Health Determinants for Wastewater-Based Epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125001. [PMID: 36520537 PMCID: PMC9754092 DOI: 10.1289/ehp11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is rapidly developing as a powerful public health tool. It can provide information about a wide range of health determinants (HDs), including community exposure to environmental hazards, trends in consumption of licit and illicit substances, spread of infectious diseases, and general community health. As such, the list of possible candidate HDs for WBE is almost limitless. Consequently, a means to evaluate and prioritize suitable candidates for WBE is useful, particularly for public health authorities, who often face resource constraints. OBJECTIVES We have developed a framework to assist public health authorities to decide what HDs may be appropriate for WBE and what biomarkers could be used. This commentary reflects the experience of the authors, who work at the interface of research and public health implementation. DISCUSSION To be suitable for WBE, a candidate HD should address a public health or scientific issue that would benefit from better understanding at the population level. For HDs where information on individual exposures or stratification by population subgroups is required, WBE is less suitable. Where other methodologies are already used to monitor the candidate HD, consideration must be given to whether WBE could provide better or complementary information to the current approach. An essential requirement of WBE is a biomarker specific for the candidate HD. A biomarker in this context refers to any human-excreted chemical or biological that could act as an indicator of consumption or exposure to an environmental hazard or of the human health state. Suitable biomarkers should meet several criteria outlined in this commentary, which requires background knowledge for both the biomarker and the HD. An evaluation tree summarizing key considerations for public health authorities when assessing the suitability of candidate HDs for WBE and an example evaluation are presented. https://doi.org/10.1289/EHP11115.
Collapse
Affiliation(s)
- Carla J. Eaton
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Sarah Coxon
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Andrew Chappell
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd., Porirua, New Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| |
Collapse
|
11
|
Salgueiro-González N, Zuccato E, Castiglioni S. Nationwide investigation on the use of new psychoactive substances in Italy through urban wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156982. [PMID: 35772552 DOI: 10.1016/j.scitotenv.2022.156982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
New psychoactive substances (NPS) emerged in the mid-2000s as a legal alternative to established illicit drugs. Despite the high individual and public harm associated to NPS, little is known about their real extent of use. New strategies are required to deal with the challenging monitoring of NPS, affected by the high number of substances available in the market, their rapid change and level of innovation, and their easy distribution mainly through the web. In this study, a wastewater-based epidemiology (WBE) approach was applied for a nationwide monitoring of the use of eight categories of NPS in the population, including fentanyl analogues. Sixty-two biomarkers of NPS were selected following an established criterion, that included the most frequently and recently reported. A selective analytical method based on solid-phase extraction and liquid chromatography-tandem mass spectrometry was developed and validated for NPS analysis in wastewater. Composite wastewater samples (24 h) were collected in 33 Italian cities in October-November 2020 and analyzed according the validated method. Results highlighted the use of ten NPS, mainly synthetic cathinones and tryptamines, all over Italy. Methcathinone was found in all the cities and the highest mass loads corresponded to 3-methylmethcathinone with values up to 3.8 mg/day/1000 inhabitants. Low levels of fentanyl (found in 9 cities) and its main metabolite norfentanyl (11) were found whereas no fentanyl analogues were identified. As far as we know, this is the first time that the use of fentanyl and its analogues was investigated in Italy by wastewater analysis. WBE is a useful tool to rapidly evaluate emerging trends of NPS use, complementing common indicators (i.e. population surveys, seizures) and helping to establish measures for public health protection.
Collapse
Affiliation(s)
- Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156 Milan, Italy.
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156 Milan, Italy
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
12
|
Perkons I, Tomsone LE, Sukajeva V, Neilands R, Kokina K, Pugajeva I. Qualitative fingerprinting of psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater: A year-long study from Riga, Latvia. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108110. [PMID: 35959232 PMCID: PMC9355412 DOI: 10.1016/j.jece.2022.108110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/04/2023]
Abstract
The COVID-19 pandemic has become an unprecedented public health emergency causing immense societal and socio-economic consequences. Multiple studies have outlined that interventions to curb the spread of the virus are likely to have an effect on substance use patterns. In this study, we explored the presence of psychoactive pharmaceuticals, illicit drugs and related human metabolites in 24-h composite wastewater samples that were collected weekly in 2021 from the central WWTP of Riga, Latvia. The analysis was performed via suspect screening approach using three separate high-resolution mass spectrometry (HRMS) workflows, which relied on reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC) and direct infusion HRMS. In total, 39 out of 149 substances were detected throughout the sampling period. These include pharmaceuticals (mainly antiepileptics, antidepressants and antipsychotics), illicit drugs (e.g., MDMA, MDEA, cocaine, etc.) and new psychoactive substances (alpha-PVP). The results were evaluated in relation to COVID-19 incidence rate and the severity of containment and closure policies. For some compounds we observed temporal changes that may be potentially linked to the state of the pandemic. For instance, higher detection rates were observed for several illicit drugs during periods, when restrictions on public events were relaxed. Meanwhile, some psychoactive pharmaceuticals and drugs used to treat upper respiratory tract infections displayed increased prevalence in weeks when the national COVID-19 incidence rates were higher. However, without baseline reference data from previous years, it is difficult to discern how much of the relationships seen are linked to pandemic progression and seasonal variability.
Collapse
Affiliation(s)
- Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - Laura Elina Tomsone
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - Veronika Sukajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - Romans Neilands
- Riga Technical University, Faculty of Civil Engineering, Department of Water, Engineering and Technology, Kipsalas Street 6B, Riga LV-1048, Latvia
- Riga Water Ltd., Dzintara Street 60, Riga LV-1016, Latvia
| | - Kristina Kokina
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
- Riga Technical University, Faculty of Civil Engineering, Water Research and Environmental Biotechnology Laboratory, Paula Valdena Street 1, Riga LV-1048, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| |
Collapse
|
13
|
Klingberg J, Keen B, Cawley A, Pasin D, Fu S. Developments in high-resolution mass spectrometric analyses of new psychoactive substances. Arch Toxicol 2022; 96:949-967. [PMID: 35141767 PMCID: PMC8921034 DOI: 10.1007/s00204-022-03224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The proliferation of new psychoactive substances (NPS) has necessitated the development and improvement of current practices for the detection and identification of known NPS and newly emerging derivatives. High-resolution mass spectrometry (HRMS) is quickly becoming the industry standard for these analyses due to its ability to be operated in data-independent acquisition (DIA) modes, allowing for the collection of large amounts of data and enabling retrospective data interrogation as new information becomes available. The increasing popularity of HRMS has also prompted the exploration of new ways to screen for NPS, including broad-spectrum wastewater analysis to identify usage trends in the community and metabolomic-based approaches to examine the effects of drugs of abuse on endogenous compounds. In this paper, the novel applications of HRMS techniques to the analysis of NPS is reviewed. In particular, the development of innovative data analysis and interpretation approaches is discussed, including the application of machine learning and molecular networking to toxicological analyses.
Collapse
Affiliation(s)
- Joshua Klingberg
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia.
| | - Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - Daniel Pasin
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
14
|
Jin H, Yang D, Wu P, Zhao M. Environmental occurrence and ecological risks of psychoactive substances. ENVIRONMENT INTERNATIONAL 2022; 158:106970. [PMID: 34753034 DOI: 10.1016/j.envint.2021.106970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Psychoactive substances are ubiquitous in the environment at low concentrations, and tobacco, cannabis, etc. are all widely-existing examples. Given their potent biological activity, psychoactive substances are suspected to be harmful to the environment, and reports of their ecological risks are gradually increasing. Since the 1990s, the investigations into psychoactive substances have made remarkable progress, yet some research fields still need to be modernised. For example, the unification of standardised analytical methods as well as the supplementation of occurrence literature. In addition, a relatively lagging risk evaluation system caused by a lack of toxicity data is particularly in need of improvement. The purpose of this article is to develop a review of current research on psychoactive substances, including analytical methods, distribution in environmental compartments, and ecological risk assessment, as well as to point out deficiencies and development prospects and to offer motivation for enhancing the research level in this field.
Collapse
Affiliation(s)
- Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Dan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
15
|
Castro V, Quintana JB, López-Vázquez J, Carro N, Cobas J, Bilbao D, Cela R, Rodil R. Development and application of an in-house library and workflow for gas chromatography-electron ionization-accurate-mass/high-resolution mass spectrometry screening of environmental samples. Anal Bioanal Chem 2021; 414:6327-6340. [PMID: 34865195 PMCID: PMC9372009 DOI: 10.1007/s00216-021-03810-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
This work presents an optimized gas chromatography–electron ionization–high-resolution mass spectrometry (GC-EI-HRMS) screening method. Different method parameters affecting data processing with the Agilent Unknowns Analysis SureMass deconvolution software were optimized in order to achieve the best compromise between false positives and false negatives. To this end, an accurate-mass library of 26 model compounds was created. Then, five replicates of mussel extracts were spiked with a mixture of these 26 compounds at two concentration levels (10 and 100 ng/g dry weight in mussel, 50 and 500 ng/mL in extract) and injected in the GC-EI-HRMS system. The results of these experiments showed that accurate mass tolerance and pure weight factor (combination of reverse-forward library search) are the most critical factors. The validation of the developed method afforded screening detection limits in the 2.5–5 ng range for passive sampler extracts and 1–2 ng/g for mussel sample extracts, and limits of quantification in the 0.6–3.2 ng and 0.1–1.8 ng/g range, for the same type of samples, respectively, for 17 model analytes. Once the method was optimized, an accurate-mass HRMS library, containing retention indexes, with ca. 355 spectra of derivatized and non-derivatized compounds was generated. This library (freely available at https://doi.org/10.5281/zenodo.5647960), together with a modified Agilent Pesticides Library of over 800 compounds, was applied to the screening of passive samplers, both of polydimethylsiloxane and polar chemical integrative samplers (POCIS), and mussel samples collected in Galicia (NW Spain), where a total of 75 chemicals could be identified.
Collapse
Affiliation(s)
- Verónica Castro
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Javier López-Vázquez
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nieves Carro
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Julio Cobas
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Denis Bilbao
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), 48620, Plentzia, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Prevalence study of drugs and new psychoactive substances in hair of ketamine consumers using a methanolic direct extraction prior to high-resolution mass spectrometry. Forensic Sci Int 2021; 329:111080. [PMID: 34768198 DOI: 10.1016/j.forsciint.2021.111080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Few studies have reported the prevalence or incidence about the consumption of new psychoactive substances (NPS). The hair analysis can be useful for this purpose. At the present, ketamine is the most consumed arylcyclohexylamine associated to young consumers and polyconsumption profiles. For this reason, ketamine consumer cases become very interesting to provide information on NPS prevalence. In this work, ten former cases of the National Institute of Toxicology and Forensic Science (INTCF) of Madrid Department (INTCFM), all of them belonging to defendants accused of crimes against public health and who had been found positive to ketamine, were reassessed. At the first toxicological analysis of those hair samples, a positive consume in ketamine had been determined by gas chromatography coupled to mass spectrometry (GC-MS). In this work, the same hair samples were reanalyzed by high-resolution mass spectrometry ( UHPLC-HRMS/MS) using an incubation methanolic extraction combined with a single, simpler, non-selective and direct sample pre-treatment. After corroborating the GC-MS results previously obtained for the same samples, the detection of additional NPS using this new methodology evidenced its benefits and opened the possibility to perform a NPS prevalence study. In brief, in those cases with a positive consumption in ketamine, a polyconsumption of other drugs and NPS was found, including different arylcyclohexylamines as deschloroketamine, 3-MeO-PCP and methoxetamine; and cathinones as methylmetcathinone and N-ethyl-pentylone.
Collapse
|
17
|
Pasin D, Mollerup CB, Rasmussen BS, Linnet K, Dalsgaard PW. Development of a single retention time prediction model integrating multiple liquid chromatography systems: Application to new psychoactive substances. Anal Chim Acta 2021; 1184:339035. [PMID: 34625246 DOI: 10.1016/j.aca.2021.339035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Database-driven suspect screening has proven to be a useful tool to detect new psychoactive substances (NPS) outside the scope of targeted screening; however, the lack of retention times specific to a liquid chromatography (LC) system can result in a large number of false positives. A singular stream-lined, quantitative structure-retention relationship (QSRR)-based retention time prediction model integrating multiple LC systems with different elution conditions is presented using retention time data (n = 1281) from the online crowd-sourced database, HighResNPS. Modelling was performed using an artificial neural network (ANN), specifically a multi-layer perceptron (MLP), using four molecular descriptors and one-hot encoding of categorical labels. Evaluation of test set predictions (n = 193) yielded coefficient of determination (R2) and mean absolute error (MAE) values of 0.942 and 0.583 min, respectively. The model successfully differentiated between LC systems, predicting 54%, 81% and 97% of the test set within ±0.5, ±1 and ±2 min, respectively. Additionally, retention times for an analyte not previously observed by the model were predicted within ±1 min for each LC system. The developed model can be used to predict retention times for all analytes on HighResNPS for each participating laboratory's LC system to further support suspect screening.
Collapse
Affiliation(s)
- Daniel Pasin
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Brinch Mollerup
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Schou Rasmussen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petur Weihe Dalsgaard
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Hehet P, Köke N, Zahn D, Frömel T, Rößler T, Knepper TP, Pütz M. Synthetic cannabinoid receptor agonists and their human metabolites in sewage water: Stability assessment and identification of transformation products. Drug Test Anal 2021; 13:1758-1767. [PMID: 34272823 DOI: 10.1002/dta.3129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Since their first appearance in 2008, synthetic cannabinoid receptor agonists (SCRAs) remain the most popular new psychoactive substances (NPS) in the EU. Following consumption, these drugs and their metabolites are urinary excreted and enter the sewage system enabling the application of wastewater-based epidemiology (WBE). Knowing the fate of target analytes in sewage water is essential for successful application of WBE. This study investigates the stability of several chemically diverse SCRAs and selected human metabolites under sewage conditions utilizing a combination of liquid chromatography-tandem mass spectrometry and high-resolution mass spectrometry (HRMS). Target analytes included SCRAs with indole (5F-PB-22, PB-22 pentanoic acid), indazole (AMB-FUBINACA, 5F-ADB, 5F-ADB dimethylbutanoic acid), carbazole (MDMB-CHMCZCA, EG-018), and γ-carboline (Cumyl-PeGaClone) chemical core structures representing most of the basic core structures that have occurred up to now. Stability tests were performed using wastewater effluent containing 5% activated sludge as inoculum to monitor degradation processes and formation of transformation products (TPs). The majority of investigated SCRAs, excluding the selected human metabolites, was recalcitrant to microbial degradation in sewage systems over a period of 29 days. Their stability was rather controlled by physico-chemical processes like sorption and hydrolysis. Considering a typical hydraulic in-sewer retention time of 24 h, the concentration of AMB-FUBINACA decreased by 90% thus representing the most unstable SCRA investigated in this study. Among the 10 newly identified TPs, three could be considered as relevant markers and should be included into future WBE studies to gain further insight into use and prevalence of SCRAs on the drug market.
Collapse
Affiliation(s)
- Petra Hehet
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany.,Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| | - Niklas Köke
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Tobias Frömel
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Thorsten Rößler
- Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| | - Thomas P Knepper
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Michael Pütz
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany.,Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| |
Collapse
|
19
|
Castiglioni S, Salgueiro-González N, Bijlsma L, Celma A, Gracia-Lor E, Beldean-Galea MS, Mackuľak T, Emke E, Heath E, Kasprzyk-Hordern B, Petkovic A, Poretti F, Rangelov J, Santos MM, Sremački M, Styszko K, Hernández F, Zuccato E. New psychoactive substances in several European populations assessed by wastewater-based epidemiology. WATER RESEARCH 2021; 195:116983. [PMID: 33721674 DOI: 10.1016/j.watres.2021.116983] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/13/2023]
Abstract
Wastewater-based epidemiology (WBE) can be a useful tool to face some of the existing challenges in monitoring the use of new psychoactive substances (NPS), as it can provide objective and updated information. This Europe-wide study aimed to verify the suitability of WBE for investigating the use of NPS. Selected NPS were monitored in urban wastewater by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The main classical illicit drugs were monitored in the same samples to compare their levels with those of NPS. Raw composite wastewater samples were collected in 2016 and 2017 in 14 European countries (22 cities) following best practice sampling protocols. Methcathinone was most frequent (>65% of the cities), followed by mephedrone (>25% of the cities), and only mephedrone, methcathinone and methylone were found in both years. This study depicts the use of NPS in Europe, confirming that it is much lower than the use of classical drugs. WBE proved able to assess the qualitative and quantitative spatial and temporal profiles of NPS use. The results show the changeable nature of the NPS market and the importance of large WBE monitoring campaigns for selected priority NPS. WBE is valuable for complementing epidemiological studies to follow rapidly changing profiles of use of drugs.
Collapse
Affiliation(s)
- Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan, Italy.
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón, Spain
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón, Spain
| | - Emma Gracia-Lor
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan, Italy; Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - Tomáš Mackuľak
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 2101/9, 812 37 Bratislava, Slovakia
| | - Erik Emke
- KWR Water Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | | | | | - Francesco Poretti
- Consorzio Depurazione Acque Lugano e Dintorni, Via Molinazzo 1, 6934 Bioggio, Switzerland
| | | | - Miguel M Santos
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maja Sremački
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Novi Sad, Serbia
| | - Katarzyna Styszko
- AGH University of Science and Technology, Department of Coal Chemistry and Environmental Sciences, Al. Mickiewicza 30, Krakow, Poland
| | - Felix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón, Spain
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
20
|
Bade R, White JM, Chen J, Baz-Lomba JA, Been F, Bijlsma L, Burgard DA, Castiglioni S, Salgueiro-Gonzalez N, Celma A, Chappell A, Emke E, Steenbeek R, Wang D, Zuccato E, Gerber C. International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period. WATER RESEARCH 2021; 193:116891. [PMID: 33582495 DOI: 10.1016/j.watres.2021.116891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
Collapse
Affiliation(s)
- Richard Bade
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jason M White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jingjing Chen
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | | | - Frederic Been
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Daniel A Burgard
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erik Emke
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Ruud Steenbeek
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, P. R. China, 116026
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
21
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
22
|
Cruz-Cruz C, Yargeau V, Vidaña-Perez D, Schilmann A, Pineda MA, Lobato M, Hernández-Avila M, Villatoro JA, Barrientos-Gutierrez T. Opioids, stimulants, and depressant drugs in fifteen Mexican Cities: A wastewater-based epidemiological study. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 88:103027. [DOI: 10.1016/j.drugpo.2020.103027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
|
23
|
Maurer HH. Hyphenated high-resolution mass spectrometry-the "all-in-one" device in analytical toxicology? Anal Bioanal Chem 2020; 413:2303-2309. [PMID: 33247339 PMCID: PMC7987635 DOI: 10.1007/s00216-020-03064-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
This trend article reviews papers with hyphenated high-resolution mass spectrometry (HRMS) approaches applied in analytical toxicology, particularly in clinical and forensic toxicology published since 2016 and referenced in PubMed. The article focuses on the question of whether HRMS has or will become the all-in-one device in these fields as supposed by the increasing number of HRMS presentations at scientific meetings, corresponding original papers, and review articles. Typical examples for the different application fields are discussed such as targeted or untargeted drug screening, quantification, drug metabolism studies, and metabolomics approaches. Considering the reviewed papers, HRMS is currently the only technique that fulfills the criteria of an all-in-one device for the various applications needed in analytical toxicology. Graphical abstract![]()
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421, Homburg (Saar), Germany.
| |
Collapse
|
24
|
Wang S, Green HC, Wilder ML, Du Q, Kmush BL, Collins MB, Larsen DA, Zeng T. High-throughput wastewater analysis for substance use assessment in central New York during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2147-2161. [PMID: 33104143 DOI: 10.1039/d0em00377h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater entering sewer networks represents a unique source of pooled epidemiological information. In this study, we coupled online solid-phase extraction with liquid chromatography-high resolution mass spectrometry to achieve high-throughput analysis of health and lifestyle-related substances in untreated municipal wastewater during the coronavirus disease 2019 (COVID-19) pandemic. Twenty-six substances were identified and quantified in influent samples collected from six wastewater treatment plants during the COVID-19 pandemic in central New York. Over a 12 week sampling period, the mean summed consumption rate of six major substance groups (i.e., antidepressants, antiepileptics, antihistamines, antihypertensives, synthetic opioids, and central nervous system stimulants) correlated with disparities in household income, marital status, and age of the contributing populations as well as the detection frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater and the COVID-19 test positivity in the studied sewersheds. Nontarget screening revealed the covariation of piperine, a nontarget substance, with SARS-CoV-2 RNA in wastewater collected from one of the sewersheds. Overall, this proof-of-the-concept study demonstrated the utility of high-throughput wastewater analysis for assessing the population-level substance use patterns during a public health crisis such as COVID-19.
Collapse
Affiliation(s)
- Shiru Wang
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
26
|
Brandeburová P, Bodík I, Horáková I, Žabka D, Castiglioni S, Salgueiro-González N, Zuccato E, Špalková V, Mackuľak T. Wastewater-based epidemiology to assess the occurrence of new psychoactive substances and alcohol consumption in Slovakia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110762. [PMID: 32450441 DOI: 10.1016/j.ecoenv.2020.110762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Consumption of alcohol and new psychoactive substances (NPS) in a population or during special events (music festivals) is usually monitored through individual questionnaires, forensic and toxicological data, and drug seizures. However, consumption estimates have some biases due mostly to the unknown composition of drug pills for NPS and stockpiling for alcohol. The aim of this study was to evaluate for the first time the real use of alcohol and the occurrence of NPS in Slovakia by wastewater-based epidemiology (WBE). Urban wastewater samples were collected from nine Slovak cities over two years (2017-2018) and during three music festivals. The study included about 20% of the Slovak population and 50 000 festival attendees. The urinary alcohol biomarker ethyl sulfate (EtS) and thirty NPS were analyzed by liquid chromatography tandem mass spectrometry (LC - MS/MS). EtS concentrations were used for estimating the per capita alcohol consumption in each city. The average alcohol consumption in the selected cities and festivals in 2017-2018 ranged between 7 and 126 L/day/1000 inhabitants and increased during the weekends and music festivals. Five NPS belonging to the classes of synthetic cathinones (mephedrone, methcathinone, buphedrone and pentedrone) and phenethylamines (25-iP-NBoMe) were found in the low ng/L range. Methcathinone was the most frequently detected NPS, while the highest normalized mass load corresponded to mephedrone (3.1 mg/day/1000 inhabitants). Wastewater-based epidemiology can provide timely information on alcohol consumption and NPS occurrence at the community level that is complementary to epidemiology-based monitoring techniques (e.g. population surveys, police seizures, sales statistics).
Collapse
Affiliation(s)
- Paula Brandeburová
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Igor Bodík
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Ivana Horáková
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Dušan Žabka
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Viera Špalková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia; Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Tomáš Mackuľak
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
27
|
Bade R, White JM, Nguyen L, Tscharke BJ, Mueller JF, O'Brien JW, Thomas KV, Gerber C. Determining changes in new psychoactive substance use in Australia by wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139209. [PMID: 32417485 DOI: 10.1016/j.scitotenv.2020.139209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Measuring community consumption of new psychoactive substances (NPS) is notoriously difficult to assess by traditional means such as surveys and seizure data. Previously, we used the approach to demonstrate the prevalence of NPS on a national scale. In the current study we explored the temporal resolution for the analysis of NPS in wastewater from Australia. Samples covering all States and Territories in Australia and both metropolitan and regional areas and were collected bimonthly from October 2017-June 2018 and October 2019-February 2020. A qualitative screening method was applied, screening for 201 NPS. In total, 15 substances were found from a variety of classes of NPS. The most prevalent class was synthetic cathinones, with pentylone, N-ethylpentylone and ethylone found in all periods in at least one site in the earlier sampling period, as well as the amphetamine-like paramethoxyamphetamine (PMA). In the latter period, synthetic cathinones were also the most prevalent, including eutylone, marking the first time that this compound has been detected in wastewater. This study shows the application of wastewater analysis to detect outbreaks of NPS use and temporal differences among sites.
Collapse
Affiliation(s)
- Richard Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Jason M White
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Lynn Nguyen
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Cobus Gerber
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
28
|
Bade R, Abbate V, Abdelaziz A, Nguyen L, Trobbiani S, Stockham P, Elliott S, White JM, Gerber C. The complexities associated with new psychoactive substances in influent wastewater: The case of 4-ethylmethcathinone. Drug Test Anal 2020; 12:1494-1500. [PMID: 32621345 DOI: 10.1002/dta.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
Consumption of new psychoactive substances (NPS) is an international problem for health, policing, forensic, and analytical laboratories. The transience of these substances in the community, combined with continual slight structural changes to evade legislation makes the elucidation of NPS an analytical challenge. This is amplified in a matrix as complex as wastewater. For that reason, suspect and non-target methodologies, employing high resolution mass spectrometry are the most appropriate current tool to facilitate the identification of new and existing compounds. In the current work, a qualitative screening method of influent wastewater using liquid chromatography-high resolution mass spectrometry showed a strong signal at m/z 192.1382 - identical to that of two NPS standards that were in our method (pentedrone and 4-methylethcathinone), and with identical fragment ions, but the retention times did not match. This work shows the methodology followed to identify this compound, highlighting the challenges of the identifying "new" compounds in influent wastewater.
Collapse
Affiliation(s)
- Richard Bade
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Vincenzo Abbate
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Ahmed Abdelaziz
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Lynn Nguyen
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | | | - Peter Stockham
- Forensic Science SA, GPO Box 2790, Adelaide, Australia.,College of Science and Engineering, Flinders University, Bedford Park, South Australia
| | - Simon Elliott
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.,Elliott Forensic Consulting, Birmingham, UK
| | - Jason M White
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
|
30
|
O'Rourke CE, Subedi B. Occurrence and Mass Loading of Synthetic Opioids, Synthetic Cathinones, and Synthetic Cannabinoids in Wastewater Treatment Plants in Four U.S. Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6661-6670. [PMID: 32356976 PMCID: PMC8014967 DOI: 10.1021/acs.est.0c00250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A few new psychoactive substances (NPS) that mimic the effects of controlled neuropsychiatric and illicit drugs have been forensically identified in the U.S. Wastewater-based epidemiology (WBE) can provide a comprehensive and more cost- and time-effective method of determining the prevalence of NPSs in communities. In this study, an analytical method capable of simultaneous determination of trace-level 40 NPS residues (synthetic opioids, synthetic cannabinoids, synthetic cathinones, piperazines, indole, and amphetamine) in wastewater was developed and validated. The developed analytical method was utilized to determine the occurrence of NPSs in four rural communities in southern Illinois. Nine NPSs (carfentanil, furanyl fentanyl, methoxyacetyl fentanyl, MAB-CHMINACA, methcathinone, 4-methyl pentedrone, 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MMMP), 1-(3-chlorophenyl) piperazine (mCPP), and 5-(2-Aminopropyl) Indole (5IT) were quantified. Methcathinone was the most frequently detected NPS (detection frequency, df = 100%) followed closely by the MMMP and mCPP (df = 91%). The mass loading of methcathinone, mCPP, and 5-IT using ammoniacal nitrogen-based population were up to 21.1 ± 1.3 mg/d/1000 people, 15.0 ± 0.5 mg/d/1000 people, and 9.75 ± 2.72 mg/d/1000 people, respectively. This is the first study to determine the occurrence of NPSs including synthetic opioids, synthetic cannabinoids, synthetic cathinones, and piperazines in the U.S. communities.
Collapse
Affiliation(s)
- Catherine E O'Rourke
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071-3300, United States
| | - Bikram Subedi
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071-3300, United States
| |
Collapse
|