1
|
Dostálek T, Rydlová J, Kohout P, Kuťáková E, Kolaříková Z, Frouz J, Münzbergová Z. Beyond the rootzone: Unveiling soil property and biota gradients around plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175032. [PMID: 39059657 DOI: 10.1016/j.scitotenv.2024.175032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.
Collapse
Affiliation(s)
- Tomáš Dostálek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic.
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Institute of Microbiology, The Czech Academy of Science, Vídeňská 1043, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eliška Kuťáková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-907 36 Umeå, Sweden
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
3
|
Shi G, Li H, Fu Q, Li T, Hou R, Chen Q, Xue P. Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze‒thaw cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125003. [PMID: 39307339 DOI: 10.1016/j.envpol.2024.125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Biochar and compost are effective ways to improve soil quality and reduce pesticide pollution. However, the effects of them on the abundant and rare microbial communities in freeze‒thaw soil need to be further clarified. Therefore, this study took biochar, compost, and their combination as examples to explore their effects on the abundant and rare microbial communities and multifunctionality in glyphosate, imidacloprid and pyraclostrobin contaminated soil under freeze‒thaw cycles. We found that freeze‒thaw cycles enhanced the functional groups and surface aromaticity of biochar and compost, thereby improving the adsorption capacity. Biochar and compost reduced the concentration and half-life of three pesticides and enhanced the degradation function of rare taxa in soil. Biochar and compost improved the structure composition and co-occurrence relationship of abundant and rare taxa. Meanwhile, the assembly processes of abundant and rare sub-communities were mainly driven by stochastic processes and the Combined treatment promoted the transition from dispersal limitation to homogenizing dispersal and homogeneous selection. Moreover, the Combined treatment significantly improved the multifunctionality before and after freezing and thawing by increasing the diversity of rare taxa and assembly processes. The results provide new insights for farmland soil remediation in seasonal frozen areas, especially the soil functional cycle of abundant and rare microorganisms.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
4
|
Zhang Y, Zhao SY, Zhang RH, Li BL, Li YY, Han H, Duan PF, Chen ZJ. Screening of plant growth-promoting rhizobacteria helps alleviate the joint toxicity of PVC+Cd pollution in sorghum plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124201. [PMID: 38810675 DOI: 10.1016/j.envpol.2024.124201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Combined microplastic and heavy metal pollution (CM-HP) has become a popular research topic due to the ability of these pollutants to have complex interactions. Plant growth-promoting rhizobacteria (PGPR) are widely used to alleviate stress from heavy metal pollution in plants. However, the effects and mechanisms by which these bacteria interact under CM-HP have not been extensively studied. In this study, we isolated and screened PGPR from CM-HP soils and analyzed the effects of these PGPR on sorghum growth and Cd accumulation under combined PVC+Cd pollution through pot experiments. The results showed that the length and biomass of sorghum plants grown in PVC+Cd contaminated soil were significantly lower than those grown in soils contaminated with Cd alone, revealing an enhancement in toxicity when the two contaminants were mixed. Seven isolated and screened PGPR strains effectively alleviated stress due to PVC+Cd contamination, which resulted in a significant enhancement in sorghum biomass. PGPR mitigated the decrease in soil available potassium, available phosphorus and alkali-hydrolyzable nitrogen content caused by combined PVC+Cd pollution and increased the contents of these soil nutrients. Soil treatment with combined PVC+Cd pollution and PGPR inoculation can affect rhizosphere bacterial communities and change the composition of dominant populations, such as Proteobacteria, Firmicutes, and Actinobacteria. PICRUSt2 functional profile prediction revealed that combined PVC+Cd pollution and PGPR inoculation affected nitrogen fixation, nitrification, denitrification, organic phosphorus mineralization, inorganic phosphorus solubilization and the composition and abundance of genes related the N and P cycles. The Mantel test showed that functional strain abundance, the diversity index and N and P cycling-related genes were affected by test strain inoculation and were significant factors affecting sorghum growth, Cd content and accumulation. This study revealed that soil inoculation with isolated and screened PGPR can affect the soil inorganic nutrient content and bacterial community composition, thereby alleviating the stress caused by CM-HP and providing a theoretical basis and data support for the remediation of CM-HP.
Collapse
Affiliation(s)
- Yu Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Si-Yu Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Ruo-Han Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - B Larry Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Hui Han
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Peng-Fei Duan
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhao-Jin Chen
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
5
|
Liu X, Hou Y, Yang R, Luo J, Sun H, Li G. Solid-Liquid Phase Equilibria of the Pb 2+, Ca 2+, Mg 2+//Cl --H 2O Quaternary System and Its Subsystems at 303.2 K. ACS OMEGA 2024; 9:30615-30624. [PMID: 39035942 PMCID: PMC11256337 DOI: 10.1021/acsomega.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
The solid-liquid phase equilibria of the ternary systems Pb2+, Ca2+//Cl--H2O, Pb2+, Mg2+//Cl--H2O, and Ca2+, Mg2+//Cl--H2O were investigated at atmospheric pressure and T = 303.2 K using the isothermal dissolution equilibrium method. Additionally, solid phase equilibria of the quaternary system Pb2+, Mg2+, and Ca2+//Cl--H2O were determined, and the corresponding stable phase diagrams and density-composition diagrams were constructed. The results indicate that the phase diagrams of Pb2+, Ca2+//Cl--H2O mainly consist of a ternary invariant point, two solubility curves, and four crystalline regions, while there are two ternary invariant points, three solubility curves, and six crystalline regions in the Pb2+, Mg2+//Cl--H2O and Ca2+, Mg2+//Cl--H2O systems. The results of the density-versus-w(CaCl2) plots of the various ternary systems confirm that the density of the equilibrium solution tends to go upward with the increase in the mass fraction of CaCl2. The density of various ternary systems reaches the maximum and equilibrium at the corresponding invariant point, and there is no significant change with the further increase in the CaCl2 mass fraction. Furthermore, the phase diagram of the Pb2+, Mg2+, Ca2+//Cl--H2O quaternary system includes two invariant points, five isothermal dissolution curves, and five crystalline regions. The order of the relative areas of the crystalline regions for the five salts is PbCl2 > CaCl2·2MgCl2·12H2O > 2PbCl2·3MgCl2·18H2O > MgCl2·6H2O > CaCl2·4H2O.
Collapse
Affiliation(s)
- Xiangyang Liu
- School
of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yanrui Hou
- School
of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ruoyu Yang
- School
of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Luo
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha, Hunan 410083, China
| | - Hu Sun
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Guanghui Li
- School
of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
6
|
Yin T, Zhang X, Long Y, Jiang J, Zhou S, Chen Z, Hu J, Ma S. Impact of soil physicochemical factors and heavy metals on co-occurrence pattern of bacterial in rural simple garbage dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116476. [PMID: 38820822 DOI: 10.1016/j.ecoenv.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.
Collapse
Affiliation(s)
- Tongyun Yin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyu Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunchuan Long
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, PR China
| | - Zhengquan Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China.
| | - Shengming Ma
- Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China
| |
Collapse
|
7
|
Zhu Y, Wang J, Cidan Y, Wang H, Li K, Basang W. Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms 2024; 12:1350. [PMID: 39065118 PMCID: PMC11278572 DOI: 10.3390/microorganisms12071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The yak (Bos grunniens) exhibits exceptional regional adaptability, enabling it to thrive in the distinctive ecological niches of the Qinghai-Tibet Plateau. Its survival relies on the intricate balance of its intestinal microbiome, essential for adapting to harsh environmental conditions. Despite the documented significance of bacteria and fungi in maintaining intestinal homeostasis and supporting immune functions, there is still a substantial gap in understanding how the composition and functionality of yak gut microbiota vary along altitude-temperature gradients. This study aims to fill this gap by employing 16S rRNA and ITS amplicon sequencing techniques to analyze and compare the intestinal microbiome of yaks residing at different elevations and exposed to varying temperatures. The findings demonstrate subtle variations in the diversity of intestinal bacteria and fungi, accompanied by significant changes in taxonomic composition across various altitudes and temperature gradients. Notably, Firmicutes, Actinobacteriota, and Bacteroidota emerged as the dominant phyla across all groups, with Actinobacteriota exhibiting the highest proportion (35.77%) in the LZF group. Functional prediction analysis revealed significant associations between the LZF group and metabolic pathways related to amino acid metabolism and biosynthesis. This suggests a potential role for actinomycetes in enhancing nutrient absorption and metabolism in yaks. Furthermore, our findings suggest that the microbiota of yaks may enhance energy metabolism and catabolism by modulating the Firmicutes-to-Bacteroidota ratio, potentially mitigating the effects of temperature variations. Variations in gut bacterial and fungal communities among three distinct groups were analyzed using metagenomic techniques. Our findings indicate that microbial genera exhibiting significant increases in yaks at lower altitudes are largely beneficial. To sum up, our research investigated the changes in gut bacterial and fungal populations of yaks residing across diverse altitude and temperature ranges. Moreover, these results enhance comprehension of gut microbial makeup and variability, offering perspectives on the environmental resilience of dry lot feeding yaks from a microbial angle.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
8
|
Li D, Ding Y, Zhang Y, Zhang X, Feng L, Zhang Y. Heavy metals in a typical industrial area-groundwater system: Spatial distribution, microbial response and ecological risk. CHEMOSPHERE 2024; 360:142339. [PMID: 38754488 DOI: 10.1016/j.chemosphere.2024.142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The environmental burden due to industrial activities has been quite observable in the last few years, with heavy metals (HMs) like lead, cadmium, and arsenic inducing serious perturbations to the microbial ecosystem of groundwater. Studies carried out in North China, a region known for interconnection of industrial and groundwater systems, sought to explore the natural mechanisms of adaptation of microbes to groundwater contamination. The results showed that heavy metals permeate from surface increased the diversity and abundance of microbial communities in groundwater, producing an average decrease of 40.84% and 34.62% in the relative abundance of Bacteroidetes and Proteobacteria in groundwater, respectively. Meanwhile, the key environmental factors driving the evolution of microbial communities shift from groundwater nutrients to heavy metals, which explained 50.80% of the change in the microbial community composition. Microbial indicators are more sensitive to HMs pollution and could accurately identify industrial area where HMs permeation occurred and other extraneous pollutants. The phylum Bacteroidetes could act as appropriate indicators for the identification. Significant genera that were identified, being Mesorhizobium, Clostridium, Bacillus and Mucilaginibacter, were found to play important roles in the microbial network in terms of the potential to assist in groundwater clean-up. Notably, pollution from heavy metals has diminished the effectiveness and resilience of microbial communities in groundwater, thereby heightening the susceptibility of these normally stable microbial ecosystems. These findings offer new perspectives on how to monitor and detect groundwater pollution, and provide scientific guidance for developing suitable remediation methods for groundwater contaminated with heavy metals. Future research is essential explore the application of metal-tolerant or resistant bacteria in bioremediation strategies to rehabilitate groundwater systems contaminated by HMs.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yang Ding
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
He K, Han R, Wang Z, Xiao Z, Hao Y, Dong Z, Xu Q, Li G. Soil source, not the degree of urbanization determines soil physicochemical properties and bacterial composition in Ningbo urban green spaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172550. [PMID: 38643872 DOI: 10.1016/j.scitotenv.2024.172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Urban green spaces provide multiple ecosystem services and have great influences on human health. However, the compositions and properties of urban soil are not well understood yet. In this study, soil samples were collected from 45 parks in Ningbo to investigate the relationships among soil physicochemical properties, heavy metals and bacterial communities. The results showed that soil dissolved organic matter (DOM) was of high molecular weight, high aromaticity, and low degree of humification. The contents of heavy metals were all below the China's national standard safety limit (GB 3660-2018). The bioavailability of heavy metals highly correlated with soil pH, the content of DOC, the fluorescent component, the degree of humification and the source of DOM. The most abundant genera were Gemmatimonadaceae_uncultured, Xanthobacteraceae_uncultured, and Acidothermus in all samples, which were related to nitrogen cycle and bioavailability of heavy metals. Soil pH, bioavailability of Zn, Cd, and Pb (CaCl2 extracted) were the main edaphic factors influencing bacterial community composition. It should be noted that there was no significant impact of urbanization on soil physicochemical properties and bacterial composition, but they were determined by the source of soil in urban green spaces. However, with the passage of time, the effect of urbanization on urban green spaces cannot be ignored. Overall, this study provided new insight for understanding the linkage among soil physicochemical properties, heavy metals, and bacterial communities in urban green spaces.
Collapse
Affiliation(s)
- Kaiwen He
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuozhen Dong
- Agricultural Technology Management and Service Station of Haishu District in Ningbo, Ningbo 315012, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chu WC, Gao YY, Wu YX, Liu FF. Biofilm of petroleum-based and bio-based microplastics in seawater in response to Zn(II): Biofilm formation, community structure, and microbial function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172397. [PMID: 38608889 DOI: 10.1016/j.scitotenv.2024.172397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.
Collapse
Affiliation(s)
- Wang-Chao Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuan-Yuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yu-Xin Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
11
|
Ma Y, Yu M, Sun Z, Pan S, Wang Y, Li F, Guo X, Zhao R, Xu Y, Wu X. Biomass-Based, Dual Enzyme-Responsive Nanopesticides: Eco-friendly and Efficient Control of Pine Wood Nematode Disease. ACS NANO 2024; 18:13781-13793. [PMID: 38752333 DOI: 10.1021/acsnano.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.
Collapse
Affiliation(s)
- Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Meng Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Zhe Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shouhe Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yinmin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Fengyu Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Rui Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Guéablé YKD, Jemo M, Soulaimani A, Hafidi M, El Gharous M, El Mejahed K. Sustainable strategy for rehabilitating phosphate mining sites and valorisation of phosphate industry by-products and sludge using pistachio tree (Pistacia atlantica), false pepper (Schinus molle), and eucalyptus (Eucalyptus globulus) trees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173485. [PMID: 38797404 DOI: 10.1016/j.scitotenv.2024.173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The development of anthroposols has been proposed as a new environmentally friendly approach to ensuring the successful revegetation of phosphate mining sites. The phosphate industry's by-products, including phosphogypsum (PG), phosphate sludge (PS), and sewage sludge (SS), can be valuable resources in restoring the ecological balance of mined soil areas. The aim of this study was to safely and sustainably restore the ecological integrity of the phosphate mining site through the evaluation of nutrients and heavy metals dynamics in soil and plant tissues of three tree species and treated by-products containing 65 % PG, 30 % PS, and 5 % SS. The tree species used were Pistacia atlantica, Schinus molle, and Eucalyptus globulus. The experimental layout was a randomised complete block design with six replicates and three treatments. Growth diameter, height, nutrient uptakes and heavy metal dynamic were evaluated from the rhizosphere soils and plant tissues over two years. Hierarchical head maps of correlations between the measured growth parameters, soil and nutrient uptakes of the tree species were analysed using a phylogenetic generalised linear mixed model. S. molle and E. globulus had higher average diameter and height than P. atlantica plants. P. atlantica and S. molle showed greater nitrogen, phosphorus, potassium, calcium, and magnesium concentrations than E. globulus trees. Tree growth parameters were closely linked to soil nutrient bioavailability. The heavy metal accumulation ratio was higher in the E. globulus and S. molle leaves than in stems. Using by-products could be valorised for rehabilitating mine sites together with E. globulus and S. molle species.
Collapse
Affiliation(s)
- Yao Kohou Donatien Guéablé
- Agricultural Innovation and Technology Transfer Center (AITTC), College of Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Martin Jemo
- Agrobiosciences Program, College of Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic (UM6P), 43150 Ben Guerir, Morocco
| | - Aziz Soulaimani
- Agricultural Innovation and Technology Transfer Center (AITTC), College of Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mohamed Hafidi
- Labelled Research Unit N°4 CNRST, Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College of Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco.
| | - Mohamed El Gharous
- Agricultural Innovation and Technology Transfer Center (AITTC), College of Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Khalil El Mejahed
- Agricultural Innovation and Technology Transfer Center (AITTC), College of Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
13
|
Li Q, Chang J, Li L, Lin X, Li Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171399. [PMID: 38458464 DOI: 10.1016/j.scitotenv.2024.171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Soil amendments play a pivotal role in ensuring the safety of food production by inhibiting the transfer of heavy metal ions from soils to crops. Nevertheless, their impact on soil characteristics and the microbial community and their role in reducing cadmium (Cd) accumulation in rice remain unclear. In this study, pot experiments were conducted to investigate the effects of three soil amendments (mineral, organic, and microbial) on the distribution of Cd speciation, organic components, iron oxides, and microbial community structure. The application of soil amendments resulted in significant reductions in the soil available Cd content (16 %-51 %) and brown rice Cd content (16 %-78 %), facilitating the transformation of Cd from unstable forms (decreasing 10 %-20 %) to stable forms (increasing 77 %-150 %) in the soil. The mineral and organic amendments increased the soil cation exchange capacity (CEC) and plant-derived organic carbon (OC), respectively, leading to reduced Cd accumulation in brown rice, while the microbial amendment enhanced OC complexity and the abundances of Firmicutes and Bacteroidota, contributing to the decreased rice Cd uptake. The synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy indicated that soil amendments regulated soil Cd species by promoting iron oxides and OC coupling. Moreover, both organic and microbial amendments significantly reduced the diversity and richness of the bacterial communities and altered their compositions and structures, by increasing the relative abundances of Bacteroidota and Firmicutes and decreasing those of Acidobacteria, Actinobacteria, and Myxococcota. Soil microbiome analysis revealed that the increase of Firmicutes and Bacteroidota associated with Cd adsorption and sequestration contributed to the suppression of soil Cd reactivity. These findings offer valuable insights into the potential mechanisms by which soil amendments regulate the speciation and bioavailability of Cd, and improve the bacterial communities, thereby providing guidance for agricultural management practices.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Linfeng Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyang Lin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yichun Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
14
|
Li J, Zheng Q, Liu J, Pei S, Yang Z, Chen R, Ma L, Niu J, Tian T. Bacterial-fungal interactions and response to heavy metal contamination of soil in agricultural areas. Front Microbiol 2024; 15:1395154. [PMID: 38800759 PMCID: PMC11116572 DOI: 10.3389/fmicb.2024.1395154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.
Collapse
Affiliation(s)
- Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen Yang
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Wang H, Liu H, Su R, Chen Y. Phytostabilization of Heavy Metals and Fungal Community Response in Manganese Slag under the Mediation of Soil Amendments and Plants. TOXICS 2024; 12:333. [PMID: 38787112 PMCID: PMC11125594 DOI: 10.3390/toxics12050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The addition of soil amendments and plants in heavy metal-contaminated soil can result in a significant impact on physicochemical properties, microbial communities and heavy metal distribution, but the specific mechanisms remain to be explored. In this study, Koelreuteria paniculata was used as a test plant, spent mushroom compost (SMC) and attapulgite (ATP) were used as amendments, and manganese slag was used as a substrate. CK (100% slag), M0 (90% slag + 5% SMC + 5% ATP) and M1 (90% slag + 5% SMC + 5% ATP, planting K. paniculata) groups were assessed in a pilot-scale experiment to explore their different impacts on phytoremediation. The results indicated that adding the amendments significantly improved the pH of the manganese slag, enhancing and maintaining its fertility and water retention. Adding the amendments and planting K. paniculata (M1) significantly reduced the bioavailability and migration of heavy metals (HMs). The loss of Mn, Pb and Zn via runoff decreased by 15.7%, 8.4% and 10.2%, respectively, compared to CK. K. paniculata recruited and enriched beneficial fungi, inhibited pathogenic fungi, and a more stable fungal community was built. This significantly improved the soil quality, promoted plant growth and mitigated heavy metal toxicity. In conclusion, this study demonstrated that the addition of SMC-ATP and planting K. paniculata showed a good phytostabilization effect in the manganese slag and further revealed the response process of the fungal community in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Yonghua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (H.L.)
| |
Collapse
|
16
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Peng L, Zou L, Li Q. Impact of Vanadium-Titanium-Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants. Genes (Basel) 2024; 15:526. [PMID: 38790155 PMCID: PMC11121153 DOI: 10.3390/genes15050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
18
|
Zeng T, Sha H, Xie Q, Lu Y, Nong H, Wang L, Tang L. Comprehensive assessment of the microbial community structure in a typical lead-zinc mine soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33377-9. [PMID: 38648006 DOI: 10.1007/s11356-024-33377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Understanding the microbial community structure in soil contaminated with heavy metals (HMs) is a precondition to conduct bioremediation in mine soil. Samples were collected from a typical lead-zinc (Pb-Zn) mine to assess the microbial community structure of the HMs concentrated in the soil. The goal was to analyze the bacterial and fungal community structures and their interactions using the 16S rRNA genes and internal transcribed spacer high-throughput sequencing. Analyses at different sampling sites showed that contamination with HMs significantly reduced the bacterial richness and diversity but increased that of the fungi. The predominant bacteria genera of Acidobacteriales, Gaiellales, Anaerolineaceae, Sulfurifustis, and Gemmatimonadaceae, and predominant fungal genera of Sordariomycetes, Talaromyces, and Mortierella were assumed as HM resistant genera in Pb-Zn mining area. The pH effect on the bacterial and fungal communities was opposite to those of Cd, Pb, and Zn. This study offers comprehensive outlooks for bacterial and fungal community structures upon multiple HM stresses in the soil around a typical Pb-Zn mine area.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
19
|
Zhuang Q, Zhang Y, Liu Q, Sun Y, Sharma S, Tang S, Dhankher OP, Yuan H. Effects of sulfur nanoparticles on rhizosphere microbial community changes in oilseed rape plantation soil under mercury stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1545-1555. [PMID: 38597454 DOI: 10.1080/15226514.2024.2335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.
Collapse
Affiliation(s)
- Qiurong Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yuming Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
20
|
Mallet C, Rossi F, Hassan-Loni Y, Holub G, Thi-Hong-Hanh L, Diez O, Michel H, Sergeant C, Kolovi S, Chardon P, Montavon G. Assessing the chronic effect of the bioavailable fractions of radionuclides and heavy metals on stream microbial communities: A case study at the Rophin mining site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170692. [PMID: 38325491 DOI: 10.1016/j.scitotenv.2024.170692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.
Collapse
Affiliation(s)
- Clarisse Mallet
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| | - Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Yahaya Hassan-Loni
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France
| | - Guillaume Holub
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Le Thi-Hong-Hanh
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Olivier Diez
- Institut de Radioprotection et Sureté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, 31 Avenue de la division Leclerc, F-922602 Fontenay-aux-Roses, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Hervé Michel
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Claire Sergeant
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Sofia Kolovi
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Patrick Chardon
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Gilles Montavon
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| |
Collapse
|
21
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
22
|
Xu L, Wang G, Zhang S, Li T, Xu X, Gong G, Zhou W, Pu Y, Jia Y, Li Y, Long L. Inhibition of high sulfur on functional microorganisms and genes in slightly contaminated soil by cadmium and chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123421. [PMID: 38253166 DOI: 10.1016/j.envpol.2024.123421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
It is generally accepted that sulfur can passivate the bioavailability of heavy metals in soil, but it is not clear whether high sulfur in cadmium (Cd) and chromium (Cr) contaminated soil has negative effect on soil microbial community and ecological function. In this study, total sulfur (TS) inhibited the Chao 1, Shannon, Phylogenetic diversity (Pd) of bacterial and Pd of fungi in slightly contaminated soil by Cd and Cr around pyrite. TS, total potassium, pH, total chromium, total cadmium, total nitrogen, soil organic matter were the predominant factors for soil microbial community; the contribution of TS in shaping bacterial and fungal communities ranked at first and fifth, respectively. Compared with the low sulfur group, the abundance of sulfur sensitive microorganisms Gemmatimonas, Pseudolabrys, MND1, and Schizothecium were decreased by 68.79-97.22% (p < 0.01) at high sulfur one; the carbon fixation, nitrogen cycling, phosphorus cycling and resistance genes abundance were significantly lower (p < 0.01) at the latter. Such variations were strongly and closely correlated to the suppression of energy metabolism (M00009, M00011, M00086) and carbon fixation (M00173, M00376) functional module genes abundance in the high sulfur group. Collectively, high sulfur significantly suppressed the abundances of functional microorganisms and functional genes in slightly contaminated soil with Cd and Cr, possibly through inhibition of energy metabolism and carbon fixation of functional microorganisms. This study provided new insights into the environmental behavior of sulfur in slightly contaminated soil with Cd and Cr.
Collapse
Affiliation(s)
- Longfei Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yun Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| |
Collapse
|
23
|
Ren K, Yang X, Li J, Jin H, Gu K, Chen Y, Liu M, Luo Y, Jiang Y. Alleviating the adverse effects of Cd-Pb contamination through the application of silicon fertilizer: Enhancing soil microbial diversity and mitigating heavy metal contamination. CHEMOSPHERE 2024; 352:141414. [PMID: 38336042 DOI: 10.1016/j.chemosphere.2024.141414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The use of silicon fertilizer (SF) as a means of remediating cadmium (Cd) and lead (Pb) pollution has proven to be beneficial. However, the mechanism via which SF enhances soil quality and crop productivity under Cd- and Pb-contaminated soil (S) remains unclear. This study investigated the impacts of chemical fertilizer, mineral SF (MSF), and organic SF (OSF) on microbial community structure, activity of nutrient acquisition enzymes, and growth of tobacco in the presence of S condition. SF significantly reduced the contents of Cd and Pb in soil under S condition by 6.92-42.43% and increased plant height and leaf area by 15.27-81.77%. Moreover, the use of SF was observed to increase the efficiency of soil carbon and phosphorus cycling under S condition by 6.88-23.08%. Concurrently, SF was found to play a crucial role in facilitating the establishment of a complex, efficient, and interdependent molecular ecological network among soil microorganisms. In this context, Actinobacteriota, Bacteroidota, Ascomycota, and Basidiomycota were observed to be integral components of this network. SF was found to have a substantial positive impact on the metabolic functions and organismal systems of soil microorganisms. Moreover, the combined utilization of the Mantel test and partial least squares path model provided empirical evidence supporting the assertion that the administration of SF had a positive impact on both soil nutrient acquisition enzyme activity and tobacco growth, which was attributed to the enhancement of soil microbial diversity resulting from the application of SF. Furthermore, compared with MSF, OSF has advantages in reducing soil Pb and Cd content, promoting tobacco agronomic traits, increasing the number of key microbial communities, and maintaining the structural stability of microbial networks. The aforementioned findings, therefore, suggest that the OSF played a pivotal role in alleviating the adverse impacts of S, thereby demonstrating its efficacy in this particular process.
Collapse
Affiliation(s)
- Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xiongwei Yang
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hongyan Jin
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ming Liu
- College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yigui Luo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650031, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
24
|
Liu J, Pei S, Zheng Q, Li J, Liu X, Ruan Y, Luo B, Ma L, Chen R, Hu W, Niu J, Tian T. Heavy metal contamination impacts the structure and co-occurrence patterns of bacterial communities in agricultural soils. J Basic Microbiol 2024; 64:e2300435. [PMID: 38150647 DOI: 10.1002/jobm.202300435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Heavy metal (HM) contamination caused by mining and smelting activities can be harmful to soil microbiota, which are highly sensitive to HM stress. Here, we explore the effects of HM contamination on the taxonomic composition, predicted function, and co-occurrence patterns of soil bacterial communities in two agricultural fields with contrasting levels of soil HMs (i.e., contaminated and uncontaminated natural areas). Our results indicate that HM contamination does not significantly influence soil bacterial α diversity but changes the bacterial community composition by enriching the phyla Gemmatimonadetes, Planctomycetes, and Parcubacteria and reducing the relative abundance of Actinobacteria. Our results further demonstrate that HM contamination can strengthen the complexity and modularity of the bacterial co-occurrence network but weaken positive interactions between keystone taxa, leading to the gradual disappearance of some taxa that originally played an important role in healthy soil, thereby possibly reducing the resistance of bacterial communities to HM toxicity. The predicted functions of bacterial communities are related to membrane transport, amino acid metabolism, energy metabolism, and carbohydrate metabolism. Among these, functions related to HM detoxification and antioxidation are enriched in uncontaminated soils, while HM contamination enriches functions related to metal resistance. This study demonstrated that microorganisms adapt to the stress of HM pollution by adjusting their composition and enhancing their network complexity and potential ecological functions.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| |
Collapse
|
25
|
Yang Y, Huang Y, Liu Y, Jiao G, Dai H, Liu X, Hughes SS. The migration and transformation mechanism of vanadium in a soil-pore water-maize system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169563. [PMID: 38145672 DOI: 10.1016/j.scitotenv.2023.169563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The μ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yunhe Liu
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ganghui Jiao
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaowen Liu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
26
|
Zhang J, Na M, Wang Y, Ge W, Zhou J, Zhou S. Cadmium levels and soil pH drive structure and function differentiation of endophytic bacterial communities in Sedum plumbizincicola: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168828. [PMID: 38029975 DOI: 10.1016/j.scitotenv.2023.168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Sedum plumbizincicola is a promising hyperaccumulator for heavy metal phytoremediation. It grows in heavy metal polluted soil and stores specific endophyte resources with heavy metal tolerance or growth promotion characteristics. In this study, the endophyte communities of S. plumbizincicola, growing naturally in the field (two former mining locations and one natural location) were investigated, and their structure and function were comparatively studied. The bioaccumulation and translocation characteristics of cadmium (Cd) and selenium (Se) in S. plumbizincicola were also evaluated. The results showed that the heavy metal pollution reduced the richness and diversity of endophyte communities. Soil pH and Cd concentration could be the key factors affecting the composition of the endophyte community. Co-occurrence network analysis identified that 22 keystone taxa belonging to Actinobacteriota, Firmicutes, Myxococcota and Proteobacteria were positively correlated with Cd bioaccumulation and translocation. The predicted endophyte metabolic pathways were enriched in physiological metabolism, immune system, and genetic Information processing. These findings may help to understand how endophytes assist host plants to enhance their adaptability to harsh environments, and provide a basis for further exploration of plant-endophyte interactions and improvement in phytoremediation efficiency.
Collapse
Affiliation(s)
- Jinming Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Meng Na
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yukun Wang
- College of Resources & Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen Ge
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jihai Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shoubiao Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, Anhui 241002, China.
| |
Collapse
|
27
|
Wang Y, Zhang L, Zhang S, Zhu S, Zhang F, Zhang G, Duan B, Ren R, Zhang H, Han M, Xu Y, Li Y. Regulating pathway for bacterial diversities toward improved ecological benefits of thiencarbazone-methyl·isoxaflutole application: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120037. [PMID: 38194872 DOI: 10.1016/j.jenvman.2024.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Herbicide abuse has a significantly negative impact on soil microflora and further influences the ecological benefit. The regulating measures and corresponding mechanisms mitigating the decreased bacterial diversity due to herbicide use have rarely been studied. A field experiment containing the application gradient of an efficient maize herbicide thiencarbazone-methyl·isoxaflutole was performed. The relationship between soil bacterial community and thiencarbazone-methyl·isoxaflutole use was revealed. Modified attapulgite was added to explore its impacts on soil microflora under the thiencarbazone-methyl·isoxaflutole application. Based on the analytic network process-entropy weighting method-TOPSIS method model, the ecological benefit focusing on microbial responses was quantitatively estimated along with technical effectiveness and economic benefit. The results showed that the diversity indices of soil microflora, especially the Inv_Simpson index, were reduced at the recommended, 5 and 10 times the recommended dosages of thiencarbazone-methyl·isoxaflutole use. The Flavisolibacter bacteria was negatively correlated with the residues in soils based on the random forest model and correlation analysis, indicating a potential degrader of thiencarbazone-methyl·isoxaflutole residues. The structural equation model further confirmed that the high soil water content and soil pH promoted the function of Flavisolibacter bacteria, facilitated the dissipation of thiencarbazone-methyl·isoxaflutole residues and further improved the diversity of soil microflora. In addition, the presence of modified attapulgite was found to increase the soil pH, which may improve bacterial diversity through the regulating pathway. This explained the high ecological benefits of the treatment where the thiencarbazone-methyl·isoxaflutole was applied at the recommended dosage rates in conjunction with modified attapulgite addition. Therefore, the comprehensive benefits of thiencarbazone-methyl·isoxaflutole application with a focus on ecological benefits can be improved by regulating the soil pH with modified attapulgite.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Shumin Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Bihua Duan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Meng Han
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Xu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuyang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
28
|
Sun H, Chen M, Wei L, Xue P, Zhao Q, Gao P, Geng L, Wen Q, Liu W. Roots recruited distinct rhizo-microbial communities to adapt to long-term Cd and As co-contaminated soil in wheat-maize rotation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123053. [PMID: 38042468 DOI: 10.1016/j.envpol.2023.123053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Cd and As accumulation in staple crops poses potential risks to food safety and human health. Rhizo-microbial communities are involved in their behaviors from soil to crops. However, the responses of rhizo-microbial communities to different Cd and As co-contaminated soils in wheat‒maize rotation are still unclear. This study explored whether wheat or maize could recruit distinct rhizo-microbial communities to adapt to long-term co-contaminated soils with low or high levels of Cd and As (LS or HS). It was apparent that the average wheat grain-Cd/As concentrations were 17.96-fold/4.81-fold in LS and 5.64-fold/7.70-fold in HS higher than those in maize grains, significantly depending on the mobility of Cd/As in soil-crop system, especially from soil to root and from straw to grain. Meanwhile, wheat or maize roots recruited specific bacteria and fungi in LS and HS, which were substantially associated with Cd/As bioavailability in rhizosphere. Wheat roots recruited specific bacterial genera norank_c__MB-A2-108 (Actinobacteria), norank_f__JG30-KF-CM45 (Chloroflexi), and norank_o__Rokubacteriales (Methylomirabilota) and fungal genera Metarhizium and Olpidium under HS, and their relative abundances were positively correlated with soil Cd/As bioavailability and were resistant to Cd and As co-contamination. However, bacterial genera Arthrobacter, Nocardioides, Devosia, Skermanella, and Pedobacter were sensitive to Cd and As co-contamination and were specifically enriched in wheat rhizospheres under LS. Meanwhile, the bacterial genus norank_c__KD4-96 (Chloroflexi) was resistant to Cd and As co-contamination under HS and was distinctly enriched in maize rhizosphere. Furthermore, the roots of wheat and maize recruited the bacterial genus Marmoricola in LS, which was sensitive to Cd and As co-contamination, and recruited specific fungal genus Fusicolla in HS, which was tolerant to Cd and As co-contamination. These results confirmed that HS and LS shifted the composition and structure of the rhizo-microbial communities in the wheat-maize rotation to promote crops survival in different long-term Cd and As co-contaminated soils.
Collapse
Affiliation(s)
- Hongxin Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China; Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai, 054000, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China
| | - Liang Wei
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Peiying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Quanli Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China
| | - Peipei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Liping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Qingxi Wen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China.
| |
Collapse
|
29
|
Sha H, Song X, Abdullah Al-Dhabi N, Zeng T, Mao Y, Fu Y, Liu Z, Wang G, Tang W. Effects of biochar layer position on treatment performance and microbial community in subsurface flow constructed wetlands for removal of cadmium and lead. BIORESOURCE TECHNOLOGY 2024; 394:130194. [PMID: 38086466 DOI: 10.1016/j.biortech.2023.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Levels of cadmium (Cd) and lead (Pb) correspond to common composition in acid mine wastewater of Hunan Province of China. The removal path of Cd and Pb and the structure of microbial community were investigated by developing constructed wetlands (CWs) with different layer positions of biochar. The biochar as a layer at the bottom of CW (BCW) system exhibited maximum Cd and Pb removal efficiencies of 96.6-98.6% and 97.2-98.9%, respectively. Compared with original soil, BCW increased the relative proportions of Proteobacteria, Firmicutes, Acidobacteriota, Verrucomicrobiota, Desulfobacterota, Armatimonadota, Bacteroidota, Patescibacteria, Basidiomycota (phylum level) and Burkholderia-Caballeronia-Paraburkholderia, Citrifermentans, Chthonomonadales, Cellulomonas, Geothrix, Terracidiphilus, Gallionellaceae, Microbacterium, Vanrija, Apiotrichum, Saitozyma, Fusarium (genus level). The concentrations of Cd and Pb were positively correlated with the abundance of Verrucomicrobiota, Basidiomycota (phylum level), and Methylacidiphilaceae, Meyerozyma, Vanrija (genus level). This study demonstrates that BCW system can improve removal performance toward Cd and Pb, as well as alter microbial community.
Collapse
Affiliation(s)
- Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China.
| | - Yuemei Mao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Yusong Fu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Zheng Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
30
|
He N, Hu L, Jiang C, Liu Y, Zhao H. Effect of Phanerochaete chrysosporium induced phosphate precipitation on bacterial diversity during the soil remediation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13523-13534. [PMID: 38253835 DOI: 10.1007/s11356-024-31993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Biomineralization by phosphate minerals and phosphate solubilizing fungi (PSF) has attracted great interest as a novel remediation method for heavy metal(loid) co-contaminated soil. It was very essential to investigate the microenvironment response with the application of amendments. In this study, three grain sizes of hydroxyapatites (HAP) and Phanerochaete chrysosporium (P. chrysosporium) were used to investigate the change in heavy metal(loid) fractions, soil physicochemical properties, and bacterial community during the remediation of Mangchang and Dabaoshan acidic mine soils. The results showed that the residual fractions in the two soils increased significantly after 35 days of remediation, especially that of As and Zn in Dabaoshan soils were presented at over 87%. In addition, soil pH, organic matter (OM), and available phosphorous (AP) were almost improved. 16S rRNA sequencing analysis indicated that the introduction of culture medium and P. chrysosporium alone changed bacterial abundance, but the addition of HAP changed the bacterial diversity and community composition by altering environmental conditions. The amendments in the research showed good performance on immobilizing heavy metal(loid)s and reducing their bioavailability. Moreover, the research suggested that environmental factors and soil inherent properties could influence the microbial community structure and composition.
Collapse
Affiliation(s)
- Ni He
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Liang Hu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Chunyangzi Jiang
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
31
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Structural and Functional Shifts in the Microbial Community of a Heavy Metal-Contaminated Soil Exposed to Short-Term Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2024; 15:107. [PMID: 38254996 PMCID: PMC10815596 DOI: 10.3390/genes15010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of Enchytraeus crypticus (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured. Irrespective of the presence or absence of invertebrates, the effects were particularly marked upon exposure to increased air temperature and alterations in soil moisture levels (drought and flood scenarios). The observed effects can be partly explained by significant alterations in soil properties such as pH, dissolved organic carbon, and water-extractable heavy metals, which were observed for all scenarios in comparison to standard conditions. The occurrence of invertebrates mitigated some of the impacts observed on the soil microbial community, particularly in bacterial abundance, richness, diversity, and metabolic activity. Our findings emphasize the importance of considering the interplay between climate change, anthropogenic pressures, and soil biotic components to assess the impact of climate change on terrestrial ecosystems and to develop and implement effective management strategies.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF (Center for Biotechnology and Fine Chemistry), School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - M. Nazaret González-Alcaraz
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
- Department of Agricultural Engineering of the E.T.S.I.A., Technical University of Cartagena, 30203 Cartagena, Spain
| |
Collapse
|
32
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
33
|
Tong J, Wu H, Jiang X, Ruan C, Li W, Zhang H, Pan S, Wang J, Ren J, Zhang C, Shi J. Dual Regulatory Role of Penicillium oxalicum SL2 in Soil: Phosphorus Solubilization and Pb Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:603-616. [PMID: 38109294 DOI: 10.1021/acs.est.3c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mechanisms of the P. oxalicum SL2-mediated microbial community on phosphorus solubilization and Pb stabilization were investigated through a 90-day soil experiment. In the treatments inoculated with P. oxalicum SL2, the amount of P. oxalicum SL2-GFP remained at 77.8%-138.6% of the initial inoculation amount after 90 days, and the available phosphorus (AP) content increased 21.7%-40.8% while EDTA-Pb decreased 29.9%-43.2% compared with CK treatment. SEM-EDS results showed that P. oxalicum SL2 changed the agglomeration degree of microaggregates and promoted the combination of Pb with C and O elements. These phenomena were enhanced when applied with Ca3(PO4)2. Microbial community analysis showed that P. oxalicum SL2 improved soil microbial activity, in which the fungi absolute abundance increased about 15 times within 90 days. Correlation analyses and a partial least-squares path model showed that the activation of Penicillium, Ascobolus, Humicola, and Spizellomyces in a fungal community increased the content of oxalate and AP, which directly decreased EDTA-Pb content, while the change of Bacillus, Ramlibacter, Gemmatimonas, and Candidatus Solibacter in the bacterial community regulated Fe/Mn/S/N cycle-related functions, thus promoting the conversion of Pb to oxidizable state. Our findings highlight that P. oxalicum SL2 enhanced the microbial-induced phosphate precipitation process by activating soil microbial communities and regulating their ecological functions.
Collapse
Affiliation(s)
- Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilong Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Wang Y, Zhang F, Liao X, Yang X, Zhang G, Zhang L, Wei C, Shi P, Wen J, Ju X, Xu C, Liu Y, Lan Y. Disturbance mitigation of thiencarbazone-methyl·isoxaflutole on bacterial communities through nitrification inhibitor and attapulgite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122840. [PMID: 37926417 DOI: 10.1016/j.envpol.2023.122840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
There is a knowledge gap in the interaction between the effects of herbicide thiencarbazone-methyl·isoxaflutole on soil microflora and environmental parameters, which leads to a lack of measures in mitigating damage to bacterial communities from the herbicide use. The impacts of thiencarbazone-methyl·isoxaflutole and soil parameters on the diversity, structure and functions of soil bacterial communities were clarified, and the effects and potential mitigation mechanisms of nitrapyrin and modified attapulgite with bacterial function intervention on bacterial communities were explored through incubation and field experiments. The results showed that as thiencarbazone-methyl·isoxaflutole application increased, the stress on soil bacterial community structure and diversity also increased. The relative abundance of bacteria including Aridibacter and GP7 and functional annotations including "nitrate_reduction" were significantly negatively correlated with thiencarbazone-methyl·isoxaflutole residues in soils. The remarkable toxic effects on the Adhaeribacter bacteria were detected at the recommended dose of thiencarbazone-methyl·isoxaflutole application. The residue of isoxaflutole (one of the effective ingredients of thiencarbazone-methyl·isoxaflutole) directly and more strongly affected the diversity of soil bacterial communities than thiencarbazone-methyl. Increasing soil pH was recognised as an important factor in improving the diversity and structure of soil microflora based on the results of the Mantel test and canonical correspondence analysis. Supplemental use of nitrapyrin or modified attapulgite was found to increase soil pH, and further improve the expression of "manganese oxidation" function annotation. This contributed to the increased bacterial diversity (Shannon index). Therefore, the disturbance of soil microflora caused by thiencarbazone-methyl·isoxaflutole application can be mitigated by the use of nitrapyrin and modified attapulgite through raising soil pH.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Chaojun Wei
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Pengge Shi
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiongxin Wen
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Xiaorong Ju
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Can Xu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Yang Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| | - Ying Lan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| |
Collapse
|
35
|
Luo XF, Liu MY, Tian ZX, Xiao Y, Zeng P, Han ZY, Zhou H, Gu JF, Liao BH. Physiological tolerance of black locust (Robinia pseudoacacia L.) and changes of rhizospheric bacterial communities in response to Cd and Pb in the contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2987-3003. [PMID: 38079046 DOI: 10.1007/s11356-023-31260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil. The results showed that R. pseudoacacia L. had strong physiological regulation ability in response to Cd and Pb stress in contaminated soil. The total chlorophyll, malondialdehyde (MDA), soluble protein, and sulfhydryl contents, as well as antioxidant enzymes (superoxide dismutase, peroxidase, catalase) activities in R. pseudoacacia L. leaves under the 40 mg·kg-1 Cd and 1000 mg·kg-1 Pb co-contaminated soil were slightly altered. Cd uptake in R. pseudoacacia L. roots and stems increased, while the Pb content in the shoots of R. pseudoacacia L. under the combined Cd and Pb treatments decreased in relative to that in the single Pb treatments. The bacterial α-diversity indices (e.g., Sobs, Shannon, Simpson, Ace, and Chao) of R. pseudoacacia L. rhizosphere soil under Cd and Pb stress were changed slightly relative to the CK treatment. However, Cd and Pb stress could significantly (p < 0.05) alter the rhizosphere soil microbial communities. According to heat map and LEfSe (Linear discriminant analysis Effect Size) analysis, Bacillus, Sphingomonas, Terrabacter, Roseiflexaceae, Paenibacillus, and Myxococcaceae at the genus level were notably (p < 0.05) accumulated in the Cd- and/or Pb-contaminated soil. Furthermore, the MDA content was notably (p < 0.05) negatively correlated with the relative abundances of Isosphaeraceae, Gaiellales, and Gemmatimonas. The total biomass of R. pseudoacacia L. was positively (p < 0.05) correlated with the relative abundances of Xanthobacteraceae and Vicinamibacreraceae. Network analysis showed that Cd and Pb combined stress might enhance the modularization of bacterial networks in the R. pseudoacacia L. rhizosphere soil. Thus, the assembly of the soil bacterial communities in R. pseudoacacia L. rhizosphere may improve the tolerance of plants in response to Cd and/or Pb stress.
Collapse
Affiliation(s)
- Xu-Feng Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meng-Yu Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zi-Xi Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yue Xiao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zi-Yu Han
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
36
|
Tamburini E, Mandaresu M, Lussu R, Sergi S, Vitali F, Carucci A, Cappai G. Metal phytostabilization by mastic shrub (Pistacia lentiscus L.) and its root-associated bacteria in different habitats of Sardinian abandoned mining areas (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122107-122120. [PMID: 37964146 DOI: 10.1007/s11356-023-30776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Pistacia lentiscus L. is an excluder metallophyte proposed for the revegetation and phytostabilization of metal-contaminated sites in the Mediterranean area. The present study aims at evaluating the linking between bacterial communities and plants spontaneously growing in ecosystems chronically impacted by mining activities. Environmental properties and metal accumulation into hypogeal and epigeal tissues were analyzed in wild plants of two contrasting habitats with extreme metal contamination (> 2300 mg/kg for Zn, > 1100 mg/kg for Pb, > 10 mg/kg for Cd). The community structures of rhizospheric and root endophytic bacteria were fingerprinted by terminal restriction fragment length polymorphism of the 16S rRNA gene. The wild shrubs efficiently restrict the accumulation of the three major contaminants to the epigeal tissues in the two habitats under study (249 ± 68 mg/kg dw for Zn, 43 ± 21 mg/kg dw for Pb, and 1.4 ± 0.5 mg/kg dw for Cd). Evidence was provided that the combined but not individual effect of environmental conditions (moisture, inorganic carbon, pH) and proportion between Zn and Cd in the mine substrate play a role in structuring rhizosphere bacterial communities. The observed changes in community structures of root endophytes were found to be strongly associated with Pb level in roots and substrate properties (inorganic carbon and Zn/Cd ratio). Overall, our study highlights the importance of the analysis of multifactorial interactions among mine substrate, plant, and microbes for understanding how the environmental context affects phytoremediation under real conditions.
Collapse
Affiliation(s)
- Elena Tamburini
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy.
| | - Melinda Mandaresu
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Raffaela Lussu
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Simona Sergi
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Francesco Vitali
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Via Di Lanciola 12/A, 50125, Florence, Italy
| | - Alessandra Carucci
- Department of Civil- Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil- Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| |
Collapse
|
37
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
38
|
Narayanan M, Ma Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118732. [PMID: 37536126 DOI: 10.1016/j.jenvman.2023.118732] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Agricultural as well as industrial processes, such as mining and textile activities, are just a few examples of anthropogenic activities that have a long-term negative impact on the environment. Each of the aforementioned factors increases the concentration of heavy metals in soil. Heavy metal contamination in soil causes a wide range of environmental issues and is harmful to microbes, plants, and animals. Because of their non-biodegradability and toxic effects, preventing additional metal contamination and remediating the vast majority of contaminated sites around the world is critical. Hence, this review focuses on the effects of metal contamination on soil microbes, as well as plant-microbe interactions. Plant-associated probiotics reduce metal accumulation; the introduction of beneficial microbes is regarded as one of the most promising approaches to improving metal stress tolerance; thus, the study focuses on plant-microbe interactions as well as their actual implications via phytoremediation. Plant-microbe interaction can play an important role in acclimating vegetation (plants) to metalliferous conditions and should thus be studied to improve microbe-aided metal tolerance in plants. Plant-interacted microbes reduce metal accumulation in plant cells and metal bioaccumulation in the soil through a variety of processes. A novel phytobacterial approach, such as genetically modified microbes, is now being used to improve heavy metal cleanup as well as stress tolerance among plants. This review examines our current understanding of such negative consequences of heavy metal stresses, signaling responses, and the role of plant-associated microbiota in heavy metal stress tolerance and interaction.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India.
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
39
|
Li H, Yao J, Min N, Sunahara G, Duran R. New insights on the effect of non-ferrous metal mining and smelting activities on microbial activity characteristics and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131301. [PMID: 37043852 DOI: 10.1016/j.jhazmat.2023.131301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Mining and smelting activities have brought potentially serious heavy metal(loid)s pollution to their surrounding locale. However, studies on microbial metabolic activities, community structure, and adaptation in soils proximal to non-ferrous metal mining and smelting areas are still lacking. Here the effects of biotic and abiotic characteristics of soil taken from sites surrounding inactive and active non-ferrous metal mine smelting facilities on microbial enzyme activity, microcalorimetry, and high-throughput sequencing of 16S rRNA gene barcoding were studied. Data indicated that the soils were heavily polluted by toxic metal(loid)s, of which As and Cd were the main contaminants. Microbial acid phosphatase activity and microcalorimetric total heat value were sensitive metabolic indicators in the studied areas. Actinobacteriota had the highest relative abundance, followed by Proteobacteria, Chloroflexi, and Acidobacteria. Microbial metabolic activity, bacterial community structure and phenotype varied between inactive and active sites (p < 0.05). Such analyses indicated that electrical conductivity, total As, Cu, and Mn contents, and bioavailable As, Cu, Cd, and Mn concentrations were key factors determining microbial activities, bacterial community structure, and phenotypes. Knowledge of microbial adaptation to heavy metal stressors is important for better understanding the aerial transfer of fugitive heavy metal(loid)s (and possibly microbes) and for designing future strategies for improved soil bioremediation.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Universite de Pau et des Pays de l'Adour, E2S-UPPA, IPREM 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
40
|
Chen Z, Li Y, Hu M, Xiong Y, Huang Q, Jin S, Huang G. Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant-microbe interactions in saline-sodic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163113. [PMID: 36966830 DOI: 10.1016/j.scitotenv.2023.163113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Lignite-converted bioorganic fertilizer substantially improves soil physiochemical properties, but little is known about how lignite bioorganic fertilizer (LBF) affects soil microbial communities and how the changed microbial communities impact their stability, functions, and crop growth in saline-sodic soil. Therefore, a two-year field experiment was conducted in saline-sodic soil in the upper Yellow River basin, Northwest China. Three treatments, i.e., the control treatment without organic fertilizer (CK), the farmyard manure treatment (FYM) amended with 21 t ha-1 (same as local farmers) sheep manure, and the LBF treatment amended with the optimal rate of LBF (3.0 and 4.5 t ha-1), were designed in this study. The results showed that after two years of application of LBF and FYM, the percentage of aggregate destruction (PAD) was significantly reduced by 14.4 % and 9.4 %, respectively, while the saturated hydraulic conductivity (Ks) was obviously increased by 114.4 % and 99.7 %, respectively. The LBF treatment significantly increased the contributions of nestedness to total dissimilarity by 101.4 % and 156.2 % in bacterial and fungal communities, respectively. LBF contributed to the shift from stochasticity to variable selection in the assembly of the fungal community. The LBF treatment enriched the bacterial classes of Gammaproteobacteria, Gemmatimonadetes, and Methylomirabilia and fungal classes of Glomeromycetes and GS13, which were mainly driven by PAD and Ks. Additionally, the LBF treatment significantly increased the robustness and positive cohesions and decreased the vulnerability of the bacterial co-occurrence networks in both 2019 and 2020 in comparison with the CK treatment, indicating that the LBF treatment increased stability of bacterial community. The relative abundance of chemoheterotrophy and arbuscular mycorrhizae in the LBF treatment were 89.6 % and 854.4 % higher than those in the CK treatment, respectively, showing that the LBF enhanced sunflower-microbe interactions. The FYM treatment improved the functions mainly regarding sulfur respiration and hydrocarbon degradation by 309.7 % and 212.8 % in comparison with the CK treatment, respectively. The core rhizomicrobiomes in the LBF treatment showed strong positive connections with the stabilities of both bacterial and fungal co-occurrence networks, as well as the relative abundance and potential functions of chemoheterotrophy and arbuscular mycorrhizae. These factors were also linked to the growth of sunflowers. This study reveals that the LBF improved sunflower growth due to enhance microbial community stability and sunflower-microbe interactions through altering core rhizomicrobiomes in saline-sodic farmland.
Collapse
Affiliation(s)
- Zhijun Chen
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yue Li
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; Center for Agricultural Water Research, China Agricultural University, Beijing 100083, PR China
| | - Min Hu
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; Center for Agricultural Water Research, China Agricultural University, Beijing 100083, PR China
| | - Yunwu Xiong
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; Center for Agricultural Water Research, China Agricultural University, Beijing 100083, PR China.
| | - Quanzhong Huang
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; Center for Agricultural Water Research, China Agricultural University, Beijing 100083, PR China
| | - Song Jin
- Advanced Environmental Technologies LLC, Fort Collins, CO 80525, USA; Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Guanhua Huang
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China; Center for Agricultural Water Research, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
41
|
Wang J, Chen Y, Du W, Yang S, He Y, Zhao X, Sun W, Chen Q. Insights into the responses of fungal taxonomy and function to different metal(loid) contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162931. [PMID: 36934934 DOI: 10.1016/j.scitotenv.2023.162931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Fungi possess prominent tolerance and detoxification capacities in highly metal(loid)-polluted systems, yet little is known about their responding behaviors under different contamination conditions. Here, we systematically investigated the structure and function profiles of fungal communities in an abandoned reservoir mainly contaminated by multiple metal(loid)s such as Al, Be, Cd, Co, Cr, and Cu. This abandoned reservoir consisted of three distinct zones, i.e., Zone I with the shortest deprecation time and the highest metal(loid) contamination; Zone II with the medium deprecation time and medium metal(loid) contamination; and Zone III with the longest abandonment time and the lowest metal(loid)contamination. The lowest pH and the highest contents of OM, TN, and TP were also observed for the high-contamination Zone I, followed by the moderate-contamination Zone II and the low-contamination Zone III. Fungal biodiversity was found to be robust and dominated by many endurable genera in Zone I, and notable cooperative relationships among fungal species facilitated their viability and prosperity under severe metal(loid) contaminations. Differently, the lowest biodiversity and fragile co-occurrence network were identified in Zone II. As metal(loid) contaminations reduced from Zone I to Zone III, dominant fungal functions gradually changed from undefined saprotroph guild to parasites or pathogens of plant-animal (i.e. animal pathogen, endophyte, and plant pathogen). Moreover, metal(loid)s combined with physicochemical properties jointly mediated the fungal taxonomic and functional responses to different metal(loid) contamination levels. Overall, this study not only broadens the understanding of taxonomic and functional repertoires of fungal communities under different metal(loid) contaminated conditions, but also highlights the crucial contributions of specific fungi to bioremediation and management in varying metal(loid)-polluted environments.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Ying Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yifan He
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
42
|
Lu M, Huang L, Wang Q, Cao X, Lin Q, He Z, Feng Y, Yang X. Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes. J Environ Sci (China) 2023; 128:117-128. [PMID: 36801027 DOI: 10.1016/j.jes.2022.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) bioavailability in the rhizosphere makes an important difference in grain Cd accumulation in wheat. Here, pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cd-accumulating genotype in grains (HT), grown on four different soils with Cd contamination. Results showed that there was non-significant difference in total Cd concentration among four soils. However, except for black soil, DTPA-Cd concentrations in HT rhizospheres were higher than those of LT in fluvisol, paddy soil and purple soil. Results of 16S rRNA gene sequencing showed that soil type (52.7%) was the strongest determinant of root-associated community, while there were still some differences in rhizosphere bacterial community composition between two wheat genotypes. Taxa specifically colonized in HT rhizosphere (Acidobacteria, Gemmatimonadetes, Bacteroidetes and Deltaproteobacteria) could participate in metal activation, whereas LT rhizosphere was highly enriched by plant growth-promoting taxa. In addition, PICRUSt2 analysis also predicted high relative abundances of imputed functional profiles related to membrane transport and amino acid metabolism in HT rhizosphere. These results revealed that the rhizosphere bacterial community may be an important factor regulating Cd uptake and accumulation in wheat and indicated that the high Cd-accumulating cultivar might improve Cd bioavailability in the rhizosphere by recruiting taxa related to Cd activation, thus promoting Cd uptake and accumulation.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lukuan Huang
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wang
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Qiang Lin
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Ying Feng
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Qian F, Su X, Zhang Y, Bao Y. Variance of soil bacterial community and metabolic profile in the rhizosphere vs. non-rhizosphere of native plant Rumex acetosa L. from a Sb/As co-contaminated area in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131681. [PMID: 37245371 DOI: 10.1016/j.jhazmat.2023.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.
Collapse
Affiliation(s)
- Fanghan Qian
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Xiangmiao Su
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Yanyu Bao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| |
Collapse
|
44
|
Wu J, Hua Y, Feng Y, Xie W. Nitrated hydrochar reduce the Cd accumulation in rice and shift the microbial community in Cd contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118135. [PMID: 37216875 DOI: 10.1016/j.jenvman.2023.118135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Rice grown on Cd-contaminated soil may accumulate Cd in grain, which is extremely harmful to human health. Several managements are developed to reduce the Cd load in rice, while in-situ immobilization by soil amendments has been attractive for its feasibility. Waste-derived hydrochar (HC) has been shown effective at immobilizing Cd in soil. However, potential plant negative effects and huge application amount are crucial to resolving in extensive application of HC. Nitric acid ageing may be an effective method to deal with these problems. In this paper, HC and nitrated hydrochar (NHC) were added to the Cd-contaminated soil at rates of 1% and 2% in a rice-soil column experiment. Results showed that NHC markedly promoted root biomass of rice by 58.70-72.78%, whereas HC had effects of 35.86-47.57%. Notably, NHC at 1% reduced the accumulation of Cd in rice grain, root and straw by 28.04%, 15.08% and 11.07%, respectively. A consistent decrease of 36.30% in soil EXC-Cd concentration was caused by NHC-1%. Following soil microbial community was shifted greatly under HC and NHC applications. The relative abundance of Acidobacteria was decreased by 62.57% in NHC-2% and by 56.89% in HC-1%. Nevertheless, Proteobacteria and Firmicutes were promoted by NHC addition. In contrast to HC, co-occurrence network of dominated bacteria was more complex and centralized generated by NHC. Key bacteria in that metabolic network of NHC such as Anaerolineae and Archangiaceae played key roles in Cd immobilization. These observations verified that NHC was more efficient to decrease Cd accumulation in rice and could alleviate the negative roles to plant by microbial changings in community composition and network. It could provide an enrichment of paddy soil microbial responds to the interaction of NHC with Cd and lay a foundation for the remediation of Cd-contaminated soil by NHC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Environmental Science & Engineering, School of Energy & Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Yun Hua
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - YanFang Feng
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - WenPing Xie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
45
|
Hou X, Zhu Y, Wu L, Wang J, Yan W, Gao S, Wang Y, Ma Y, Wang Y, Peng Z, Tao Y, Tang Q, Yang J, Xiao L. The investigation of the physiochemical factors and bacterial communities indicates a low-toxic infectious risk of the Qiujiang River in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69135-69149. [PMID: 37131005 DOI: 10.1007/s11356-023-27144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The overall water quality of urban rivers is closely related to the community structure and the physiochemical factors in them. In this study, the bacterial communities and physiochemical factors of the Qiujiang River, an important urban river in Shanghai, were explored. Water samples were collected from nine sites of the Qiujiang River on November 16, 2020. The water quality and bacterial diversity were studied through physicochemical detection, microbial culture and identification, luminescence bacteria method, and 16S rRNA Illumina MiSeq high-throughput sequencing technology. The water pollution of the Qiujiang River was quite serious with three water quality evaluation indexes, including Cd2+, Pb2+, and NH4+-N, exceeding the Class V standard set by the Environmental Quality Standards for Surface Water (China, GB3838-2002), while the luminescent bacteria test indicated low toxicity of nine sampling sites. Through 16S rRNA sequencing, a total of 45 phyla, 124 classes, and 963 genera were identified, in which Proteobacteria, Gammaproteobacteria, and Limnohabitans were the most abundant phylum, class, and genus, respectively. The Spearman correlation heatmap and redundancy analysis showed that the bacterial communities in the Qiujiang River were correlated with pH; the concentrations of K+, and NH4+-N, and the Limnohabitans were significantly correlated with the concentrations of K+, and NH4+-N in the Zhongyuan Road bridge segment. In addition, opportunistic pathogens Enterobacter cloacae complex and Klebsiella pneumoniae in the samples collected in the Zhongyuan Road bridge segment and Huangpu River segment, respectively, were successfully cultured. The Qiujiang River was a heavily polluted urban river. The bacterial community structure and diversity were greatly affected by the physiochemical factors of the Qiujiang River, and it displayed low toxicity while a relatively high infectious risk of intestinal and lung infectious diseases.
Collapse
Affiliation(s)
- Xiaochuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ling Wu
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Jie Wang
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Wei Yan
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Songyu Gao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yushi Ma
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhaoyun Peng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ye Tao
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing, 100120, China
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
46
|
Xu H, Huang Y, Xiong X, Zhu H, Lin J, Shi J, Tang C, Xu J. Changes in soil Cd contents and microbial communities following Cd-containing straw return. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121753. [PMID: 37127235 DOI: 10.1016/j.envpol.2023.121753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Contamination of soil with cadmium (Cd) threatens food safety and human health. In general, crop straws from contaminated soils could accumulate considerable amounts of Cd. The addition of Cd-containing rice straw can have negative effects on soil environment. In this study, straws varying in Cd concentration were added to soil at a rate of 5% (w/w) to investigate the effects of Cd-containing straw on soil Cd dynamics and soil microbial communities. Results showed that large amounts of Cd, especially bioavailable Cd, were released into soil during the decomposition of Cd-containing straws. The addition of straws with 10, 20 and 40 mg kg-1 Cd increased total Cd in soils from 0.31 mg kg-1 to 0.89, 1.39 and 2.09 mg kg-1, respectively, exceeding the screening value of total Cd < 0.4 mg kg-1 for paddy soils of pH 5.5-6.5 according to Chinese Soil Environmental Quality Standards. Moreover, the addition of Cd-containing straw decreased alpha-diversity of bacterial and fungal communities compared to the clean straw. Indeed, changes in soil factors including pH, Eh, dissolved organic C and Cd level jointly reconstructed soil microbial communities. The addition of Cd-containing straw increased the relative abundance of bacterial species Acidobacteria and Proteobacteria but decreased that of Firmicutes. Meanwhile, it increased the relative abundance of fungal species Basidiomycota and Fusarium which were considered Cd-tolerant. This study revealed the potential environmental risk and the variation of microbial communities caused by increasing soil Cd bioavailability after direct application of Cd-containing rice straw to the field.
Collapse
Affiliation(s)
- Haojie Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xinquan Xiong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Hang Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences / La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
48
|
Liu X, Pang L, Yue Y, Li H, Chatzisymeon E, Lu Y, Yang P. Insights into the shift of microbial community related to nitrogen cycle, especially N 2O in vanadium-polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121253. [PMID: 36773688 DOI: 10.1016/j.envpol.2023.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soil is a vital contributor to the production of nitrous oxide (N2O), a potent greenhouse gas, through the nitrogen cycle, which can be influenced by accumulated vanadium (V) in soil but it is less pronounced. This work investigated the response of soil N2O fluxes along with major nitrogen cycle products (ammonium, nitrate, and nitrite) to different vanadium contents (0, 200, 500, 800, and 1100 mg V/kg), and the underlying microbial mechanisms. N2O fluxes was significantly influenced at high V content (1100 mg V/kg) due to its corresponding high water-soluble V content. Microbial composition and their correlations with nitrogen cycle products showed that microbes in dominant phyla (Actinobacteriota and Proteobacteria) and genus (Nocardioides, Lysobacter, Sphingomonas, and Marmoricola) might be the important contributor to N2O fluxes regardless of the V content. Moreover, high V contents (800, and 1100 mg V/kg) could enrich microbes involved in nitrogen cycle, but weaken their correlations with nitrogen-related products, such as in genus Bacillus, and change microbial correlation with N2O from associated with nitrate and nitrite to ammonium. Meanwhile, functional gene predication results showed that denitrifying genes nirKS and nosZ were negatively and positively correlated with V contents, respectively. These all further suggested that the shift of possible N2O metabolic pathways induced mainly by water-soluble V might be the underlying reason for N2O fluxes. These findings promote an understanding of the potential effect of metal pollution on N2O fluxes in soil.
Collapse
Affiliation(s)
- Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, PR China.
| | - Yao Yue
- State Key Laboratory of Water Resources and Hydropower Engineering Science, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Hongna Li
- Chinese Academy of Agricultural Science, Beijing, 100081, PR China
| | - Efthalia Chatzisymeon
- Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom
| | - Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
49
|
Yang R, Ma G, Liu C, Wang C, Kang X, Wu M, Zhang B. Effects of different heavy metal pollution levels on microbial community structure and risk assessment in Zn-Pb mining soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52749-52761. [PMID: 36843164 DOI: 10.1007/s11356-023-26074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination in soils seriously threatens human health and aggravates the global pollution burden. In this study, we investigated the risk of heavy metal contamination in soils at a Zn-Pb mineral processing plant in Longnan, China, and the effects of different heavy metal contamination levels on diverse microbial communities. Statistical analysis showed that, except for Ni, the average content of all detected metals (Zn, Pb, As, Cu, Cd, Hg) in the soil was higher than the background value of soil in the study area, which was most seriously contaminated with Pb and As. Comparison of functional divisions showed that heavy metal soil contamination was most serious in the raw material stacking area and the production area. Interpolation analysis showed that areas closer to the wastewater discharge area had higher contents of each heavy metal and were more seriously polluted. From the point of pollution index, the risk of heavy metal soil pollution in the study area was very high (RI = 2845.24, i.e., > 600), with Cd and Hg being the most serious pollutants compared with other heavy metals. Microbial community abundance, diversity, and structure differed at different levels of heavy metal contamination. The community diversity of bacteria decreased with increasing heavy metal concentrations, while no significant change in fungi was observed. Evidence from variation redundancy analysis (RDA) and the Spearman correlation analysis showed that the leading factors affecting microbial community composition were Cu, Cd, Hg, and pH. Actinobacteria and Gemmatimonadetes at the uncontaminated level (CL) were significantly and negatively correlated with the concentrations of Cu, Zn, Cd, and Pb. Proteobacteria and Chloroflexi at the severely contaminated level (SL) were significantly correlated with pH and Hg. However, heavy metal contamination had less effect on most of the dominant fungi. In conclusion, microbial communities such as Proteobacteria, Actinobacteria, Chloroflexi, and Ascomycota showed greater tolerance to heavy metals. These results could be used as important references for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Ruiqi Yang
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China.
| | - Gaogao Ma
- Lanzhou Mineral Exploration Institute, Gansu Nonferrous Metals Geological Prospecting Bureau, Lanzhou, 730000, China
| | - Chenglong Liu
- Lanzhou Mineral Exploration Institute, Gansu Nonferrous Metals Geological Prospecting Bureau, Lanzhou, 730000, China
| | - Chao Wang
- College of City Construction, Lanzhou City University, Lanzhou, 730070, China
| | - Xiaoyang Kang
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Minghui Wu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
50
|
Lin Y, Yang L, Chen Z, Gao Y, Kong J, He Q, Su Y, Li J, Qiu Q. Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Front Microbiol 2023; 14:1113616. [PMID: 37056748 PMCID: PMC10086269 DOI: 10.3389/fmicb.2023.1113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Climatic change causes obvious seasonal meteorological drought in southern China, yet there is a lack of comprehensive in situ studies on the effects of drought in Eucalyptus plantations. Here, a 50% throughfall reduction (TR) experiment was conducted to investigate the seasonal variations of soil bacterial and fungal communities and functions in a subtropical Eucalyptus plantation and their responses to TR treatment. Soil samples were collected from control (CK) and TR plots in the dry and rainy seasons and were subjected to high-throughput sequencing analysis. Results showed that TR treatment significantly reduced soil water content (SWC) in the rainy season. In CK and TR treatments, fungal alpha-diversity decreased in the rainy season while bacterial alpha-diversity did not change significantly between dry and rainy seasons. Moreover, bacterial networks were more affected by seasonal variations compared with fungal networks. Redundancy analysis showed that alkali hydrolyzed nitrogen and SWC contributed the most to the bacterial and fungal communities, respectively. Functional prediction indicated that the expression of soil bacterial metabolic functions and symbiotic fungi decreased in the rainy season. In conclusion, seasonal variations have a stronger effect on soil microbial community composition, diversity, and function compared with TR treatment. These findings could be used to develop management practices for subtropical Eucalyptus plantations and help maintain soil microbial diversity to sustain long-term ecosystem function and services in response to future changes in precipitation patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Quan Qiu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|