1
|
Yu Y, Li Z. Predicting the Potential Distribution of Cheirotonus jansoni (Coleoptera: Scarabaeidae) Under Climate Change. INSECTS 2024; 15:1012. [PMID: 39769614 PMCID: PMC11677015 DOI: 10.3390/insects15121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Cheirotonus jansoni (Jordan, 1898), a beetle species of ecological and ornamental significance, is predominantly found in southern China. With limited dispersal ability, it is classified as a Class 2 protected species in China. In this study, the widely employed maximum entropy (MaxEnt) model and the ensemble Biomod2 model were applied to simulate C. jansoni habitat suitability in China under current environmental conditions based on available distribution data and multiple environmental variables. The optimized MaxEnt model demonstrated improved accuracy and robust predictive capabilities, making it the preferred choice for simulating dynamic changes in potentially suitable habitats for C. jansoni under future climate scenarios. Protection gaps were further identified through analyses of the overlap between nature reserves and highly suitable areas for C. jansoni. The established models indicated that this species primarily resides in southeastern mountainous regions of China below 2000 m, with a preferred altitude of 1000-2000 m. Future climate scenarios suggest a reduction in the overall suitable habitat for C. jansoni with an increase in temperature, underscoring the urgent need for enhanced conservation efforts for this beetle species.
Collapse
Affiliation(s)
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China;
| |
Collapse
|
2
|
Kakar SK, Wang J, Arshed N, Le Hien TT, Abdullahi NM. Investigating the biodiversity conservation capability of technological innovation and FinTech. Heliyon 2024; 10:e40683. [PMID: 39687159 PMCID: PMC11647828 DOI: 10.1016/j.heliyon.2024.e40683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Human activities, primarily economic growth, and technological innovation, threaten global biodiversity. This study utilizes 22-year panel data from 87 developing countries and a novel cross-sectional heterogeneous factor analysis-based financial technology index to investigate how economic growth, renewable energy consumption, technological innovation, natural resources, and financial technology affect biodiversity. To account for cross-sectional dependency, this study employed a Panel Autoregressive Distributive Lagged with Pooled Mean Group specifications within the Driscoll and Kraay standard error estimator. The findings revealed that the log of Gross Domestic Product (GDP) had an inverted U-shaped effect. Moreover, economic growth, renewable energy, and FinTech can improve biodiversity conservation. Traditionally, technological innovation and unregulated resource exploitation have posed threats to biodiversity. This study focused on responsible economic development and practical solutions to biodiversity threats posed by technological innovation and unrestrained resource use. FinTech can promote sustainable behaviors and divert funds from ecosystem-harming projects to biodiversity-friendly ones. Innovative financial instruments enable stakeholders to balance nature. This study demonstrates that FinTech, renewable energy, and responsible economic growth can help reverse biodiversity loss. We provide the policy implications of our research.
Collapse
Affiliation(s)
- Shayan Khan Kakar
- College of Economics and Management, Northwest A&F University, 3 Taicheng Road, Yangling District, Xianyang, Shaanxi, China
| | - Jing Wang
- College of Economics and Management, Tarim University, AlaEr, Xinjiang, China
- College of Economics and Management, Northwest A&F University, 3 Taicheng Road, Yangling District, Xianyang, Shaanxi, China
| | - Noman Arshed
- Department of Business Analystics, Sunway Business School, Sunway University, Kuala Lampur, Malaysia
| | - Tran Thi Le Hien
- Faculty of Finance and Accounting, Ho Chi Minh City University of Industry and Trade, Viet Nam
| | - Nazir Muhammad Abdullahi
- College of Economics and Management, Northwest A&F University, 3 Taicheng Road, Yangling District, Xianyang, Shaanxi, China
- School of Rural Technology and Entrepreneurship Development, Kano State Polytechnic, Kano, Nigeria
| |
Collapse
|
3
|
Bakker W, Morel T, Ozinga W, Scheper J, Vergeer P. The relative importance of nitrogen deposition and climate change in driving plant diversity decline in roadside grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176962. [PMID: 39423894 DOI: 10.1016/j.scitotenv.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NHx and NOy) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NOy deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.
Collapse
Affiliation(s)
- Wiene Bakker
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands.
| | - Toine Morel
- Rijkswaterstaat, 3500 GE Utrecht, the Netherlands
| | - Wim Ozinga
- Wageningen Environmental Research, Department of Vegetation and Landscape Ecology, 6708 PB Wageningen, the Netherlands
| | - Jeroen Scheper
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands
| | - Philippine Vergeer
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Marshak AR, Link JS. Responses of fisheries ecosystems to marine heatwaves and other extreme events. PLoS One 2024; 19:e0315224. [PMID: 39642123 PMCID: PMC11623807 DOI: 10.1371/journal.pone.0315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/21/2024] [Indexed: 12/08/2024] Open
Abstract
Marine ecosystems and their living marine resources (LMRs) continue to respond to the effects of global change, with environmental factors impacting marine fisheries biomass, distribution, harvest, and associated economic performance. Extreme events such as high-category hurricanes, harmful algal blooms, marine heatwaves, and large-scale hypoxia affect major regions and subregions of United States waters, with their frequency expected to increase over the next decades. The impacts of extreme events on fisheries biomass, harvest, and economic performance have not been examined as closely as a system (i.e., cumulatively), or in terms of their differential effects on particular functional groups of a given system. Among several U.S. subregions, we examined responses of fisheries biomass, landings, and revenue for particular functional groups to large-scale environmental perturbations (i.e., marine heatwaves, Hurricane Katrina, Deepwater Horizon oil spill). Distinct negative short-term consequences to annual fisheries biomass, landings, and revenue were observed in all regions, including at the system-level scale for several ecosystems which have higher proportions of pelagic species composition and variable shellfish-based revenue. In addition, shifts in species composition often were associated with environmental perturbations. Recovery to pre-perturbation levels (both in the immediate years following the event and over the post-event period of study) and resilience at the system level was observed in several cases, although post-event declines in biomass and landings occurred in the California ecosystem. Certain extreme events are expected to become more common in marine environments, with resulting perturbations throughout multiple components of U.S. socioecological systems. The recognition and understanding of the consequences of extreme events throughout marine ecosystems is necessary for effective, holistic, and sustainable management practices.
Collapse
Affiliation(s)
- Anthony R. Marshak
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Jason S. Link
- Office of the Assistant Administrator, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
5
|
Aller D, Chatrchyan AM, Calixto A, Cummings J, Ortiz-Bobea A, Peck G, Schouten J, Weikert B, Wolters E, Stevens A. New York State Climate Impacts Assessment Chapter 03: Agriculture. Ann N Y Acad Sci 2024; 1542:146-213. [PMID: 39652373 DOI: 10.1111/nyas.15192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Agriculture is a vital industry in New York State, which ranks among the top-producing states for dairy, fruits, and several other commodities. As agriculture depends on the weather and specific climatic conditions, this sector faces extraordinary challenges as New York's climate changes. This chapter explores the many impacts of a changing climate on agriculture, the ways these impacts interact with other challenges that New York farmers and farmworkers face, and opportunities for the agriculture industry to adapt and build resilience.
Collapse
Affiliation(s)
- Deborah Aller
- School of Integrative Plant Science-Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Allison M Chatrchyan
- School of Integrative Plant Science-Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Alejandro Calixto
- New York State Integrated Pest Management, Cornell University, Geneva, New York, USA
| | | | - Ariel Ortiz-Bobea
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Gregory Peck
- School of Integrative Plant Science-Horticulture Section, Cornell University, Ithaca, New York, USA
| | | | - Benjamin Weikert
- Animal Science, The State University of New York Cobleskill, Cobleskill, New York, USA
| | - Elizabeth Wolters
- New York Farm Bureau, Albany, New York, USA [now with New York State Department of Agriculture and Markets]
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
6
|
Hess SS, Burns DA, Boudinot FG, Brown-Lima C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, Stevens A. New York State Climate Impacts Assessment Chapter 05: Ecosystems. Ann N Y Acad Sci 2024; 1542:253-340. [PMID: 39652386 DOI: 10.1111/nyas.15203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change. The chapter emphasizes how climate change is increasing the vulnerability of ecosystems to existing stressors, such as habitat fragmentation and invasive species, and highlights opportunities for New Yorkers to adapt and build resilience.
Collapse
Affiliation(s)
| | - Douglas A Burns
- New York Water Science Center, United States Geological Survey, Troy, New York, USA
| | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Carrie Brown-Lima
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Jason Corwin
- Department of Indigenous Studies, University at Buffalo, Buffalo, New York, USA
| | - John D Foppert
- Department of Forestry, Paul Smith's College, Paul Smiths, New York, USA
| | - George R Robinson
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew D Schlesinger
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, USA
| | | | - Drake Bradshaw
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
7
|
Ashrafzadeh MR, Moradi M, Khosravi R, Naghipour AA, Chamberlain D. Impacts of climate change on a high elevation specialist bird are ameliorated by terrain complexity. Glob Ecol Conserv 2024; 56:e03281. [DOI: 10.1016/j.gecco.2024.e03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
8
|
Gao R, Liu L, Fan S, Zheng W, Liu R, Zhang Z, Huang R, Zhao L, Shi J. Occurrence and potential diffusion of pine wilt disease mediated by insect vectors in China under climate change. PEST MANAGEMENT SCIENCE 2024; 80:6068-6081. [PMID: 39087738 DOI: 10.1002/ps.8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Pine wilt disease (PWD), a major international quarantined forest pest, causes serious ecological and economic damage to Pinus species in Asia and Europe. In China, PWD has spread northeasterly and northwesterly beyond its original northern limits. Consequently, an evaluation of the insect vector-mediated occurrence and potential diffusion of PWD is needed to identify important transmission routes and control the spread of disease. RESULTS An optimized MaxEnt model was used to assess the current and future geographical distribution of Bursaphelenchus xylophilus and its insect vectors in China. The predicted suitable area for B. xylophilus colonization is currently 212.32 × 104 km2 and mainly concentrated in Central, East, Southwest and South China, although is anticipated to include the northwestern regions of China in the future. As for the insect vectors, Monochamus alternatus and M. saltuarius are expected to spread toward the northwest and southwest, respectively. The maximum predicted dispersion area of PWD mediated by M. alternatus, M. saltuarius and both species was 91.85 × 104, 218.76 × 104 and 29.99 × 104 km2, respectively, with potential diffusion areas being anticipated to increase in the future. Both the suitable probabilities and areas of B. xylophilus and its insect vectors were found to vary substantially along the latitudinal gradient, with the latitudinal range of these species being predicted to expand in the future. CONCLUSION This is the first study to investigate the potential diffusion areas of PWD mediated by insect vectors in China, and our finding will provide a vital theoretical reference and empirical basis for developing more effective management strategies for the control of PWD in China. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruihe Gao
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Lei Liu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Shiming Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Wenfang Zheng
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Ruyuan Liu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Zhiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Ruifen Huang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Lijuan Zhao
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Juan Shi
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Soraire T, Thompson K, Wenzler T, Taibi J, Coffin AB. Effect of pH on Development of the Zebrafish Inner Ear and Lateral Line: Comparisons between High School and University Settings. Zebrafish 2024; 21:409-417. [PMID: 39075066 DOI: 10.1089/zeb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Increasing carbon dioxide levels associated with climate change will likely have a devastating effect on aquatic ecosystems. Aquatic environments sequester carbon dioxide, resulting in acidic conditions that can negatively affect fish development. Increasing climate change impacts in the coming decades will have an outsized effect on younger generations. Therefore, our research had two interconnected goals: 1) understand how aquatic acidification affects the development of zebrafish, and 2) support a high school scientist's ability to address environmental questions of increasing importance to her generation. Working with teachers and other mentors, the first author designed and conducted the research, first in her high school, then in a university research laboratory. Zebrafish embryos were reared in varying pH conditions (6.7-8.2) for up to 7 days. We assessed fish length and development of the inner ear, including the otoliths; structures that depend on calcium carbonate for proper development. Although pH did not affect fish length, fish reared in pH 7.75 had smaller anterior otoliths, showing that pH can impact zebrafish ear development. Furthermore, we demonstrate how zebrafish may be used for high school students to pursue open-ended questions using different levels of available resources.
Collapse
Affiliation(s)
- Theresa Soraire
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Kaitlyn Thompson
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Tracy Wenzler
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Jason Taibi
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington, USA
| |
Collapse
|
10
|
Hannan A, Mehmood S, Ali MA, Raza MH, Farooq MU, Anwar S, Adediran AA. Machining performance, economic and environmental analyses and multi-criteria optimization of electric discharge machining for SS310 alloy. Sci Rep 2024; 14:28930. [PMID: 39572601 PMCID: PMC11582806 DOI: 10.1038/s41598-024-79338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
With the expansion of the manufacturing sector, it has become crucial to incorporate sustainable production methods in order to remain competitive in the market. This study focuses on addressing the needs of the manufacturing industry by conducting a sustainability analysis of electric discharge machining for SS310 alloy. The analysis explores the impact of various electrode materials, for instance, copper and brass, as well as different machining variables, including discharge current (I = 4-12 A), spark gap (SG = 6-12 mu), pulse duration (Pon = 15-45 μs), and duty cycle (DC = 75-85%) using Taguchi method. The objective is to optimize the machining performance measures, which includes material removal rate (MRR), surface roughness (Ra), electrode wear (EW), and energy consumption (EC). In addition, the economic analysis of the machining process takes into account factors such as energy cost, dielectric consumption cost, EW cost, labor cost, and machine depreciation cost for both types of electrodes. Furthermore, the study investigates the carbon emissions resulting from EC, dielectric consumption, and EW to assess the environmental impact of the machining process. Multi-criteria decision-making approach is employed to assess the sustainability of the machining process by taking into account several performance, cost and environmental factors simultaneously. From empirical analysis, it has been observed that the copper electrode outperformed the brass electrode in terms of MRR (2.67 mm3/min), Ra (3.36 µm), EW (0.272 g), and EC (145.08 kJ) due to its superior electrical and thermal characteristics. In the cost analysis, copper offered lower costs for EC (2.02 PKR) attributed to its higher electrical conductivity while higher costs in terms of EW (5.5 PKR) and dielectric consumption (5.2 PKR) than brass. However, the analysis of labor and machine depreciation costs revealed that the application of copper electrode results in lower costs (80.1 and 99.3 PKR, respectively) than the brass electrode primarily due to its shorter machining time. The analysis of the environmental impact showed that the utilization of a copper electrode leads to reduced carbon emissions of 9.8 g CO2 due to its lower EC during the machining process. However, the copper electrode results in higher emissions from EW (5.07 g CO2) and dielectric consumption (54.58 g CO2) compared to the brass electrode. Based on the multi-criteria decision-making using the composite desirability function approach, it is evident that the copper electrode exhibits superior performance in terms of MRR, Ra, and total machining cost. Conversely, the brass electrode demonstrates better performance in terms of overall carbon emissions.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Mechanical Engineering, University of Engineering and Technology, Taxila, 47080, Pakistan
| | - Shahid Mehmood
- Department of Mechanical Engineering, University of Engineering and Technology, Taxila, 47080, Pakistan
| | - Muhammad Asad Ali
- Department of Industrial and Manufacturing Engineering, Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Muhammad Huzaifa Raza
- Department of Data and Systems Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Muhammad Umar Farooq
- The Sargent Centre for Process Systems Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Saqib Anwar
- Industrial Engineering Department, College of Engineering, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Adeolu A Adediran
- Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria.
- Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
11
|
Zhou L, Song C, You C, Liu L. Evaluating the influence of human disturbance on the ecosystem service scarcity value: an insightful exploration in Guangxi region. Sci Rep 2024; 14:27439. [PMID: 39523422 PMCID: PMC11551210 DOI: 10.1038/s41598-024-78914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Investigating how human disturbance affects the ecosystem service scarcity value (ESSV) is crucial for maintaining ecosystem stability and achieving sustainable development goals (SDGs). This study separately assessed ESSV and human disturbance in Guangxi from 1990 to 2020, revealing their spatiotemporal distribution differences over time. The environmental Kuznets curve (EKC) is used to analyze the interrelationship between the two, with the purpose of filling the gap in current research. The main results are as follows: (1) From 1990 to 2020, ESSV in Guangxi increased significantly and reached its highest value in 2020. Under the four scenarios, ESSV increased significantly in Scenarios 2 and 4. Spatially, high ESSV was mainly distributed in some cities in central, southern, western and northeastern Guangxi. (2) The index of human disturbance in Guangxi continued to increase during the study period, with a high level of human disturbance in the central urban area and a low level of human disturbance in the peripheral areas, which were distributed in a radial pattern. (3) According to the EKC, the relationship between ESSV and human disturbance in Guangxi followed an inverted N-shaped curve. In addition, after 2010, the coupling and coordination level was dominated by "slightly balanced development", and the area of "ESSV significantly lagged" gradually increased. This study provides a new perspective for understanding ESSV and its relationship with human disturbances, and provides an important reference for the sustainable management of ecosystems and the formulation of ecological conservation policies.
Collapse
Affiliation(s)
- Lanhui Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Changsu Song
- Department of Social & Ecological Studies, Chinese Academy of Governance, Beijing, 100091, China.
| | - Chang You
- School of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China
| | - Longqing Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
12
|
Quirk ZJ, Smith SY, Paul Acosta R, Poulsen CJ. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16426. [PMID: 39449637 PMCID: PMC11584045 DOI: 10.1002/ajb2.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/26/2024]
Abstract
PREMISE The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Collapse
Affiliation(s)
- Zack J Quirk
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- U.S. Department of Energy, Forrestal Building, Washington, 20585, D.C, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
| | - R Paul Acosta
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, 4400 University Dr., Fairfax, 22030, VA, USA
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Earth Sciences, University of Oregon, Eugene, 97403, OR, USA
| |
Collapse
|
13
|
Liu X, Xu L, Zheng J, Lin J, Li X, Liu L, Tian R, Mu C. Great Gerbils ( Rhombomys opimus) in Central Asia Are Spreading to Higher Latitudes and Altitudes. Ecol Evol 2024; 14:e70517. [PMID: 39530029 PMCID: PMC11554374 DOI: 10.1002/ece3.70517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The great gerbil (Rhombomys opimus) is a gregarious rodent in Central Asia and is one of the major pests found in desert forest and grassland areas. The distribution changes and migration routes of R. opimus in Central Asia under climate change remain unexplored. This study employed multi-model ensemble, correlation analysis, jackknife method, and minimum cumulative resistance (MCR) model to simulate the potential habitat of R. opimus under current and future (2030 and 2050) climate scenarios and estimate its possible migration routes. The results indicate that the ensemble model integrating Random Forest (RF), Gradient Boosting Machine (GBM), and Maximum Entropy Model (MaxEnt) performed best within the present climate context. The model predicted the potential distribution of R. opimus in Central Asia with an area under the curve (AUC) of 0.986 and a True Skill Statistic (TSS) of 0.899, demonstrating excellent statistical accuracy and spatial performance. Under future climate scenarios, northern Xinjiang and southeastern Kazakhstan will remain the core areas of R. opimus distribution. However, the optimal habitat region will expand relative to the current one. This expansion will increase with the rising CO2 emission levels and over time, potentially enlarging the suitable area by up to 39.49 × 104 km2. In terms of spatial distribution, the suitable habitat for R. opimus is shifting toward higher latitudes and elevations. For specific migration routes, R. opimus tends to favor paths through farmland and grassland. This study can provide guidance for managing and controlling R. opimus under future climate change scenarios.
Collapse
Affiliation(s)
- Xuan Liu
- College of Geography and Remote Sensing SciencesXinjiang UniversityUrumqiChina
| | - Li Xu
- College of Geography and Remote Sensing SciencesXinjiang UniversityUrumqiChina
| | - Jianghua Zheng
- College of Geography and Remote Sensing SciencesXinjiang UniversityUrumqiChina
- Xinjiang Key Laboratory of Oasis EcologyXinjiang UniversityUrumqiChina
| | - Jun Lin
- Xinjiang Uygur Autonomous Region Locust and Rodent PredictionForecasting and Prevention Center StationUrumqiChina
| | - Xuan Li
- Xinjiang Uygur Autonomous Region Locust and Rodent PredictionForecasting and Prevention Center StationUrumqiChina
| | - Liang Liu
- College of Geography and Remote Sensing SciencesXinjiang UniversityUrumqiChina
| | - Ruikang Tian
- College of Geography and Remote Sensing SciencesXinjiang UniversityUrumqiChina
| | - Chen Mu
- Prairie Station of Animal Husbandry Department in XinjiangUrumqiChina
| |
Collapse
|
14
|
Walusiak E, Cieślak E, Wilk-Woźniak E, Szczepaniak M, Herrmann A, Petrulaitis L, Rašomavičius V, Uogintas D, Krztoń W. A wide range of abiotic habitat factors and genetic diversity facilitate expansion of Trapa natans within its native range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122468. [PMID: 39276652 DOI: 10.1016/j.jenvman.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Climate change and intense human activity are exacerbating changes in species' ranges. While the rapid spread of invasive alien species is well documented worldwide, the phenomenon of the spread of native species is poorly understood. To explain the problem of rapidly spreading species in the changing world, it is necessary to understand their ecology, genetic diversity and habitat limitation. The aim of our study was to analyze the ecological requirements and genetic diversity in the population of the macrophyte Trapa natans s. l., an invasive alien species in North America but native in Europe and Asia. We investigated the populations in its native range (Central and Northeastern Europe), where the species is defined as rare or extinct. We found the occurrence of T. natans in Northeastern Europe aquatic habitats where, up to now, it was described as an extinct species. The results of our environmental studies showed that the species has a wide range of tolerance to habitat conditions and lives in medium to highly nutrient-rich water with low and high salinity. Using Amplified Fragment Length Polymorphism (AFLP) analysis, we revealed high genetic variability within populations with relatively limited differentiation between populations. We showed that some populations are highly diverse (possibly refugia; Central Europe) and others are homogeneous (new sites, commercial reintroduction; Northeastern Europe). Conservation status of T. natans in its native range should be reconsidered, as the species has spread rapidly in recent decades and could be detrimental to aquatic habitats. The conclusion is that expansion/invasion can start from small populations, but under favorable conditions these populations spread rapidly. The introduction of species (even native) should be done carefully, if at all, as uncontrolled introduction to new locations, e.g. private ponds, could be the start of dispersal (native habitats) or invasion (non-native area).
Collapse
Affiliation(s)
- Edward Walusiak
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Elżbieta Wilk-Woźniak
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Magdalena Szczepaniak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Armin Herrmann
- Independent Researcher, Weserstr. 6, 12047, Berlin, Germany.
| | - Lukas Petrulaitis
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Valerijus Rašomavičius
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Domas Uogintas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Wojciech Krztoń
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
15
|
Lee CS, Kim DU, Lim BS, Seok JE, Kim GS. Vegetation Succession for 12 Years in a Pond Created Restoratively. BIOLOGY 2024; 13:820. [PMID: 39452129 PMCID: PMC11504714 DOI: 10.3390/biology13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The Najeoer Pond was created in a rice paddy as a part of a plan to build the National Institute of Ecology. To induce the establishment of various plants, the maximum depth of the pond was 2.0 m, and diverse depths were created with a gentle slope on the pond bed. When introducing vegetation, littoral and emergent vegetation were first introduced to stabilize the space secured for the creation of the pond, whereas the introduction of other vegetation was allowed to develop naturally. In this pond, floating, emergent, wetland, and littoral plants have been established to various degrees, reflecting the water depth and water table. As a result of stand ordination, based on vegetation data obtained from the created Najeoer Pond and a natural lagoon selected as the reference site, the species' composition resembled that of the reference site. Diversity, based on vegetation type, community, and species, tended to be higher than that of the reference site. The proportion of exotic species increased due to the disturbance that occurred during the pond creation process but continued to decrease as the vegetation introduced during the creation of the pond became established. Considering these results comprehensively, the restorative treatment served to increase both the biological integrity and ecological stability of the pond and, thus, achieved the creation goal from the viewpoint of the pond structure.
Collapse
Affiliation(s)
- Chang-Seok Lee
- Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (B.-S.L.); (J.-E.S.)
| | - Dong-Uk Kim
- National Institute of Ecology, Seocheon 33657, Republic of Korea; (D.-U.K.); (G.-S.K.)
| | - Bong-Soon Lim
- Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (B.-S.L.); (J.-E.S.)
| | - Ji-Eun Seok
- Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (B.-S.L.); (J.-E.S.)
| | - Gyung-Soon Kim
- National Institute of Ecology, Seocheon 33657, Republic of Korea; (D.-U.K.); (G.-S.K.)
| |
Collapse
|
16
|
Garen JC, Michaletz ST. Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation. Ecol Lett 2024; 27:e70004. [PMID: 39471058 DOI: 10.1111/ele.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
The temperature dependence of carbon assimilation-from leaf photosynthesis to ecosystem productivity-is hypothesised to be driven by the kinetics of Rubisco-catalysed carboxylation and electron transport. However, photosynthetic physiology acclimates to changes in temperature, which may decouple temperature dependencies at higher levels of organisation from the acute temperature sensitivity of photosynthesis. Here, we integrate relative growth rate theory, metabolic theory and biochemical photosynthesis theory to develop a carbon budget model of plant growth that accounts for photosynthetic acclimation to temperature. We test its predictions using a novel experimental approach enabling concurrent measurement of the temperature sensitivity of acute photosynthesis, acclimated photosynthesis and growth rate. We demonstrate for the first time that photosynthetic acclimation mediates how carbon assimilation kinetics 'scale up' from leaf photosynthesis to whole-plant growth. We also find that existing models of photosynthetic acclimation are unable to predict features of growth rate responses to temperature in our system.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
18
|
Mufungizi AA, Musakwa W, Chanza N. Experiences of ecosystem changes on food services of mopane woodland communities in Vhembe, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:961. [PMID: 39302503 PMCID: PMC11415430 DOI: 10.1007/s10661-024-13115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Mopane woodlands have been shifting. While it is important to understand the spatial patterns that characterise this phenomenon, it is even more important to understand the impacts of shifting Mopane woodlands on rural communities that rely on them. This study sought to establish the impacts of shifting mopane woodlands on the production of indigenous plant food in Ward 12 of Musina local municipality in the Vhembe District municipality in the Limpopo province of South Africa. To accomplish this, the study utilised a hybrid inductive approach involving thematic-based questionnaire interviews and an exploratory view to gain insight into the narratives of focus group participants. Results revealed that seven (7) out of eleven (11) indigenous plant foods are becoming extinct, thereby limiting food sources of indigenous and local people who used to rely on them. The spatial pattern of the plant foods that are still available has now changed as they no longer grow within the reach of local communities. The community members are struggling to adapt to these changes. From these observations, we recommend that local and regional levels' policies related to natural resource management should consider the unique challenges faced by communities experiencing disruptive ecosystem changes and provide the necessary support for sustainable adaptation.
Collapse
Affiliation(s)
- Andisa A Mufungizi
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, Gauteng, South Africa.
| | - Walter Musakwa
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Nelson Chanza
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, Gauteng, South Africa
| |
Collapse
|
19
|
Chen F, Jiang F, Ma J, Alghamdi MA, Zhu Y, Yong JWH. Intersecting planetary health: Exploring the impacts of environmental stressors on wildlife and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116848. [PMID: 39116691 DOI: 10.1016/j.ecoenv.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This comprehensive review articulates critical insights into the nexus of environmental stressors and their health impacts across diverse species, underscoring significant findings that reveal profound effects on both wildlife and human health systems. Central to our examination is the role of pollutants, climate variables, and pathogens in contributing to complex disease dynamics and physiological disruptions, with particular emphasis on immune and endocrine functions. This research brings to light emerging evidence on the severe implications of environmental pressures on a variety of taxa, including predatory mammals, raptorial birds, seabirds, fish, and humans, which are pivotal as indicators of broader ecosystem health and stability. We delve into the nuanced interplay between environmental degradation and zoonotic diseases, highlighting novel intersections that pose significant risks to biodiversity and human populations. The review critically evaluates current methodologies and advances in understanding the morphological, histopathological, and biochemical responses of these organisms to environmental stressors. We discuss the implications of our findings for conservation strategies, advocating for a more integrated approach that incorporates the dynamics of zoonoses and pollution control. This synthesis not only contributes to the academic discourse but also aims to influence policy by aligning with the Global Goals for Sustainable Development. It underscores the urgent need for sustainable interactions between humans and their environments, which are critical for preserving biodiversity and ensuring global health security. By presenting a detailed analysis of the interdependencies between environmental stressors and biological health, this review highlights significant gaps in current research and provides a foundation for future studies aimed at mitigating these pressing issues. Our study is significant as it proposes integrative and actionable strategies to address the challenges at the intersection of environmental change and public health, marking a crucial step forward in planetary health science.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Mohammed A Alghamdi
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia.
| | - Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
20
|
Mo Q, Nawaz S, Kulyar MF, Li K, Li Y, Zhang Z, Rahim MF, Ahmed AE, Ijaz F, Li J. Exploring the intricacies of Pasteurella multocida dynamics in high-altitude livestock and its consequences for bovine health: A personal exploration of the yak paradox. Microb Pathog 2024; 194:106799. [PMID: 39025382 DOI: 10.1016/j.micpath.2024.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pasturella multocida (P. multocida), a gram-negative bacterium, has long been a focus of interest in animal health because of its capacity to cause different infections, including hemorrhagic septicemia. Yaks, primarily found in high-altitude environments, are among the several livestock animals affected by these bacteria. Yaks are essential to the socioeconomic life of the people who depend on them since they are adapted to the cold and hypoxic conditions of highland environments. Nevertheless, these terrains exhibit a greater incidence of P. multocida despite the severe environmental complications. This predominance has been linked to the possible attenuation of the yak's immunological responses in such circumstances and the evolution of some bacterial strains to favor survival in the respiratory passages of the animals. Moreover, these particular strains threaten other cattle populations that interact with yaks, which might result in unanticipated outbreaks in areas previously thought to be low risk. Considering these findings, designing and executing preventative and control strategies suited explicitly for these distinct biological environments is imperative. Through such strategies, yaks' health will be guaranteed, and a larger bovine population will be safeguarded against unanticipated epidemics. The current review provides thorough insights that were previously dispersed among several investigations. Its distinct method of connecting the ecology of yaks with the dynamics of infection offers substantial background information for further studies and livestock management plans.
Collapse
Affiliation(s)
- Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Farhan Rahim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Farah Ijaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
21
|
He F, Liang L, Wang H, Li A, La M, Wang Y, Zhang X, Zou D. Amphibians rise to flourishing under climate change on the Qinghai-Tibetan Plateau. Heliyon 2024; 10:e35860. [PMID: 39224369 PMCID: PMC11367033 DOI: 10.1016/j.heliyon.2024.e35860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Amphibian populations are declining globally due to climate change. However, the impacts on the geographic distribution of amphibians on the Qinghai-Tibetan Plateau (QTP), a global biodiversity hotspot with 112 species of amphibians that is sensitive to global climate change, remains unclear. In this study, MaxEnt and barycentre shift analyses were performed to reveal the impact of climate change on the potential future habitats of amphibians on the QTP using the BCC-CSM2-MR global climate model of the Coupled Model Intercomparison Projects Phase 6 (CMIP6) climate pattern with three shared socioeconomic pathways (SSP). In contrast to the widespread decline in the amphibian population, the future scenarios projected an increase in most amphibian habitats on the QTP, accompanied by migration to higher elevations or latitudes under three climatic projections (SSP 1-2.6, 3-7.0, and 5-8.5). Average annual precipitation was the most crucial environmental variable impacting the future distribution of amphibians. The findings indicate that amphibians would flourish under climate change on the QTP, which is of great significance for the protection of amphibians and biodiversity on the QTP.
Collapse
Affiliation(s)
- Fangfang He
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Lu Liang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Huichun Wang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Aijing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, PR China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Xiaoting Zhang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| |
Collapse
|
22
|
Das S, Choudhury MR, Chatterjee B, Das P, Bagri S, Paul D, Bera M, Dutta S. Unraveling the urban climate crisis: Exploring the nexus of urbanization, climate change, and their impacts on the environment and human well-being - A global perspective. AIMS Public Health 2024; 11:963-1001. [PMID: 39416895 PMCID: PMC11474320 DOI: 10.3934/publichealth.2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 10/19/2024] Open
Abstract
The accelerating pace of urbanization, coupled with the intensifying impacts of climate change, poses unprecedented challenges to both the environment and human well-being. In this review, we delved into the intricate interaction between climate change and urbanization and the various effects they have on the environment and human well-being, shedding light on the emergent urban climate crisis. Urban areas serve as epicenters for diverse socio-economic activities, yet they also contribute significantly to global greenhouse gas emissions and environmental degradation. Through an interdisciplinary lens, we explored the root causes of the urban climate crisis, examining how rapid urbanization exacerbates climate change and vice versa. By synthesizing current research and case studies, we elucidate the various environmental and social ramifications of this nexus, ranging from urban heat island effects to heightened vulnerability to extreme weather events. Furthermore, we delve into the unequal distribution of climate risks within urban populations, highlighting the disproportionate burden borne by marginalized communities. Finally, the chapter presents strategies and interventions for mitigating and adapting to the urban climate crisis, emphasizing the imperative of holistic and equitable approaches that prioritize both environmental sustainability and human well-being. Overall, this review calls for concerted efforts to unravel the complexities of the urban climate crisis and forge a path toward resilient, sustainable, and equitable urban futures.
Collapse
Affiliation(s)
- Sumanta Das
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata 700103, West Bengal, India
- The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Bhagyasree Chatterjee
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata 700103, West Bengal, India
| | - Pinanki Das
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata 700103, West Bengal, India
| | - Sandeep Bagri
- ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, India
| | - Debashis Paul
- ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, India
| | - Mahadev Bera
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata 700103, West Bengal, India
| | - Suman Dutta
- Department of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata 700103, West Bengal, India
| |
Collapse
|
23
|
Wang Z, Wang T, Zhang X, Wang J, Yang Y, Sun Y, Guo X, Wu Q, Nepovimova E, Watson AE, Kuca K. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173377. [PMID: 38796025 DOI: 10.1016/j.scitotenv.2024.173377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Tongxin Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Yu Sun
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaohua Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Alan E Watson
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
24
|
Power ME, Chandra S, Gleick P, Dietrich WE. Anticipating responses to climate change and planning for resilience in California's freshwater ecosystems. Proc Natl Acad Sci U S A 2024; 121:e2310075121. [PMID: 39074267 PMCID: PMC11317582 DOI: 10.1073/pnas.2310075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
As human-caused climate changes accelerate, California will experience hydrologic and temperature conditions different than any encountered in recorded history. How will these changes affect the state's freshwater ecosystems? Rivers, lakes, and wetlands are managed as a water resource, but they also support a complex web of life, ranging from bacteria, fungi, and algae to macrophytes, woody plants, invertebrates, fish, amphibians, reptiles, birds, and mammals. In much of the state, native freshwater organisms already struggle to survive massive water diversions and dams, deteriorating water quality, extensive land cover modification for agriculture and urban development, and invasions of exotic species. In the face of climate change, we need to expand efforts to recover degraded ecosystems and to protect the resilience, health, and viability of existing ecosystems. For this, more process-based understanding of river, lake, and wetlands ecosystems is needed to forecast how systems will respond to future climate change and to our interventions. This will require 1) expanding our ability to model mechanistically how freshwater biota and ecosystems respond to environmental change; 2) hypothesis-driven monitoring and field studies; 3) education and training to build research, practitioner, stewardship, and policy capabilities; and 4) developing tools and policies for building resilient ecosystems. A goals-driven, hypothesis-informed collaboration among tribes, state (and federal) agencies, nongovernmental organizations, academicians, and consultants is needed to accomplish these goals and to advance the skills and knowledge of the future workforce of practitioners, regulators, and researchers who must live with the climate changes that are already upon us and will intensify.
Collapse
Affiliation(s)
- Mary E. Power
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Sudeep Chandra
- Department of Biology, University of Nevada, Reno, NV89557
| | | | | |
Collapse
|
25
|
Moreno-Fernández D, Rubio-Cuadrado Á, Oliveira N, Hernández Mateo L, Alberdi I, Adame P, Cañellas I. Divergent spatio-temporal tree growth trends in Pinus pinaster Ait. in South-Western European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173465. [PMID: 38788934 DOI: 10.1016/j.scitotenv.2024.173465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Climate change influences forest ecosystems in several ways, such as modifying forest growth or ecosystem functionality. To fully understand the impact of changing climatic conditions on forest growth it is necessary to undertake long-term spatiotemporal analyses. The main purpose of this work is to describe the major trends in tree growth of Pinus pinaster in Spain over the last 70 years, differentiating homogeneous ecological units using an unsupervised classification algorithm and additive modelling techniques. We also aim to relate these growth trends with temporal series for precipitation and temperature, as well as forest variables. We leverage information from a large data set of tree cores (around 2200) extracted during the field campaign of the Fourth Spanish National Forest Inventory. An unsupervised algorithm classified the plots into five classes, which were consistent in ecological terms. We also found a general decline in growth in three of the five ecoregions since the 1970s, concomitant with an increase in temperature and a reduction in precipitation. However, this tree growth decline has not been observed in the Atlantic influenced ecoregion, where the cooler, more humid climatic conditions are more stable. Certain stand features, such as low basal area through forest management practices, may have alleviated the impact of harsh climatic conditions on some areas of inner Spain, while denser stands display a more pronounced decline in tree growth. We concluded that Southern populations show some degrees of growth decline and low growth trends while Northern populations did not exhibit growth decline and have the largest growth rates. Under a forecasted increment of temperatures, the growth decline can be expanded.
Collapse
Affiliation(s)
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Nerea Oliveira
- Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, E-28040 Madrid, Spain
| | - Laura Hernández Mateo
- Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, E-28040 Madrid, Spain
| | - Iciar Alberdi
- Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, E-28040 Madrid, Spain
| | - Patricia Adame
- Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, E-28040 Madrid, Spain
| | - Isabel Cañellas
- Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
26
|
Tang C, Xie X, Wei G, Pan L, Qi Z. Exploring the Evolutionary Characteristics of Food Security in China and the United States from a Multidimensional Perspective. Foods 2024; 13:2272. [PMID: 39063356 PMCID: PMC11275272 DOI: 10.3390/foods13142272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Against the backdrop of global warming, intensifying regional conflicts, deglobalization, and the spread of diseases, global food security is facing severe challenges. Studying the food security situation in China and the United States in depth can provide practical experience for formulating food security policies for countries around the world and promoting global food security governance. On the basis of a meticulous review of the evolving connotations of food security, this study adopts six dimensions-quantity security, quality security, circulation security, economic security, ecological resource security, and policy security-as breakthrough points to construct a framework consisting of food security evaluation indicator system comprising 29 specific indicators. The CRITIC-MEREC-MARCOS model is applied to evaluate the status of food security in China and the United States from 2000 to 2022, while the obstacle degree model (ODM) model is utilized to identify factors impeding food security between the two countries. The results indicate that the level of food security in China has shown slight fluctuations initially, followed by a steady upward trend. The gap with the United States is continuously narrowing. However, significant differences between China and the United States still exist in terms of economic security, ecological resource security, and policy security. Furthermore, due to the limited productivity of agricultural labor, scarcity of water and soil resources, and low efficiency in the use of fertilizers and pesticides, China's food security is subject to economic and environmental constraints. The restrictions imposed by economic security and ecological resource security on China's food security are showing an increasing trend year by year. For the United States, with the obstruction of grain exports and the increasing frequency of drought disasters, the impact of circulation security and ecological resource security on food security is becoming increasingly prominent. In the future, China and the United States should join hands to address challenges, actively promote international cooperation in food security, and drive sustainable development for humanity.
Collapse
Affiliation(s)
- Chang Tang
- School of Science, Hunan University of Technology and Business, Changsha 410205, China; (X.X.)
- Changsha Social Laboratory of Artificial Intelligence, Changsha 410205, China
| | - Xiaoliang Xie
- School of Science, Hunan University of Technology and Business, Changsha 410205, China; (X.X.)
- Changsha Social Laboratory of Artificial Intelligence, Changsha 410205, China
| | - Guo Wei
- Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA;
| | - Linglong Pan
- School of Science, Hunan University of Technology and Business, Changsha 410205, China; (X.X.)
- Changsha Social Laboratory of Artificial Intelligence, Changsha 410205, China
| | - Zihan Qi
- School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China
| |
Collapse
|
27
|
Braga A, Laurini M. Spatial heterogeneity in climate change effects across Brazilian biomes. Sci Rep 2024; 14:16414. [PMID: 39014072 PMCID: PMC11252347 DOI: 10.1038/s41598-024-67244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
We present a methodology designed to study the spatial heterogeneity of climate change. Our approach involves decomposing the observed changes in temperature patterns into multiple trend, cycle, and seasonal components within a spatio-temporal model. We apply this method to test the hypothesis of a global long-term temperature trend against multiple trends in distinct biomes. Applying this methodology, we delve into the examination of heterogeneity of climate change in Brazil-a country characterized by a spectrum of climate zones. The findings challenge the notion of a global trend, revealing the presence of distinct trends in warming effects, and more accelerated trends for the Amazon and Cerrado biomes, indicating a composition between global warming and deforestation in determining changes in permanent temperature patterns.
Collapse
Affiliation(s)
- Adriano Braga
- Department of Economics, University of São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto, São Paulo, 100190, Brazil
| | - Márcio Laurini
- Department of Economics, University of São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto, São Paulo, 100190, Brazil.
| |
Collapse
|
28
|
Xu M, Feng W, Liu Z, Li Z, Song X, Zhang H, Zhang C, Yang L. Seasonal-Spatial Distribution Variations and Predictions of Loliolus beka and Loliolus uyii in the East China Sea Region: Implications from Climate Change Scenarios. Animals (Basel) 2024; 14:2070. [PMID: 39061532 PMCID: PMC11273479 DOI: 10.3390/ani14142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Global climate change profoundly impacts the East China Sea ecosystem and poses a major challenge to fishery management in this region. In addition, closely related species with low catches are often not distinguished in fishery production and relevant data are commonly merged in statistics and fishing logbooks, making it challenging to accurately predict their habitat distribution range. Here, merged fisheries-independent data of the closely related squid Loliolus beka (Sasaki, 1929) and Loliolus uyii (Wakiya and Ishikawa, 1921) were used to explore the construction and prediction performance of species distribution models. Data in 2018 to 2019 from the southern Yellow and East China Seas were used to identify the seasonal-spatial distribution characteristics of both species, revealing a boundary line at 29.00° N for L. uyii during the autumn, with the highest average individual weight occurring during the summer, with both larvae and juveniles occurring during the autumn. Thus, the life history of L. uyii can be divided into winter-spring nursery and summer-autumn spawning periods. L. beka showed a preference for inshore areas (15-60 m) during the summer and offshore areas (32.00-78.00 m) during the winter. High-value areas of both species included inshore areas of the southern Yellow and mid-East China Seas during the autumn, enlarging during the spring to include central areas of the survey region, before significantly decreasing during the summer. Therefore, this study provides both a novel perspective for modeling biological habitat distribution with limited data and a scientific basis for the adjustment of fishery resource management and conservation measures in the context of climate change.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wangjue Feng
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zunlei Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhiguo Li
- Xiangshan County Fisheries Bureau, Ningbo 315700, China
| | - Xiaojing Song
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hui Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Chongliang Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Linlin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
29
|
González-Bernardo E, Moreno-Rueda G, Camacho C, Martínez-Padilla J, Potti J, Canal D. Environmental conditions influence host-parasite interactions and host fitness in a migratory passerine. Integr Zool 2024. [PMID: 38978458 DOI: 10.1111/1749-4877.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.
Collapse
Affiliation(s)
- Enrique González-Bernardo
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain
- University of Oviedo, Oviedo, Asturias, Spain
| | | | - Carlos Camacho
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jaime Potti
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - David Canal
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
30
|
Segala FV, Di Gennaro F, Giannini LAA, Stroffolini G, Colpani A, De Vito A, Di Gregorio S, Frallonardo L, Guido G, Novara R, Amendolara A, Ritacco IA, Ferrante F, Masini L, Iannetti I, Mazzeo S, Marello S, Veronese N, Gobbi F, Iatta R, Saracino A. Perspectives on climate action and the changing burden of infectious diseases among young Italian doctors and students: a national survey. Front Public Health 2024; 12:1382505. [PMID: 39015393 PMCID: PMC11250467 DOI: 10.3389/fpubh.2024.1382505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Background The eco-climatic crisis has been defined by the World Health Organization as the "single biggest health threat facing humanity," influencing both the emergence of zoonoses and the spread of vector-borne and water-borne diseases. The aim of this survey was to explore knowledge, eco-anxiety and attitudes toward the ecological and climate crisis among young Italian doctors and medical students. Methods A cross-sectional, multicenter survey was conducted from November 2022 to June 2023, by administering an anonymous questionnaire to Italian doctors and students of medicine. Endpoint of the study was a Knowledge, Attitudes and Practices (KAP) score on ecological and climate crisis (0-20 points). Association between variables and KAP score was assessed by Kruskal-Wallis' or Spearman's test, as appropriate, and significant variables were included into ordinal regression model and reported as adjusted odds ratio (aOR) with their 95% confidence intervals (CI). Results Both KAP and eco-anxiety scores showed acceptable levels of consistency with Cronbach's alpha. A total of 605 medical doctors and students living in 19 Italian regions were included in the study. Median age [Q1-Q3] was 27.6 [24.1-31.3] and females were 352 (58.2%). Despite showing good attitudes toward climate action, knowledge gap were found, with 42.5% (n = 257) of the respondents not knowing the temperature limits set by the Paris Agreements and 45.5% (n = 275) believing that climate change is caused by sunspots. Fears suggestive for eco-anxiety were common. At multivariable ordinal regression, high levels of eco-anxiety (aOR 1.29, p = 0.001) and low trust in government action (aOR 1.96, p = 0.003) were associated with a higher KAP score. Only one Italian medical school offered an educational module on climate change. Conclusion Young Italian doctors and medical students are concerned about the climate crisis but show poor knowledge of these topics. The Italian academic system should urgently respond to this need.
Collapse
Affiliation(s)
- Francesco Vladimiro Segala
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
- Doctors4Future, “Chi si Cura di Te?”, Rome, Italy
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | | | - Giacomo Stroffolini
- Doctors4Future, “Chi si Cura di Te?”, Rome, Italy
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital Negrar, Verona, Italy
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
- PhD School in Biomedical Science, Biomedical Science Department, University of Sassari, Sassari, Italy
| | - Stefano Di Gregorio
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Luisa Frallonardo
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Giacomo Guido
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Novara
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Amendolara
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Ilenia Annunziata Ritacco
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Francesca Ferrante
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | | | | | | | | | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, Palermo, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital Negrar, Verona, Italy
| | - Roberta Iatta
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
31
|
Parker EJ, Weiskopf SR, Oliver RY, Rubenstein MA, Jetz W. Insufficient and biased representation of species geographic responses to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17408. [PMID: 38984769 DOI: 10.1111/gcb.17408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
The geographic redistributions of species due to a rapidly changing climate are poised to perturb ecological communities and significantly impact ecosystems and human livelihoods. Effectively managing these biological impacts requires a thorough understanding of the patterns and processes of species geographic range shifts. While substantial recent redistributions have been identified and recognized to vary by taxon, region, and range geometry, there are large gaps and biases in the available evidence. Here, we use the largest compilation of geographic range change observations to date, comprised of 33,016 potential redistributions across 12,009 species, to formally assess within- and cross-species coverage and biases and to motivate future data collection. We find that species coverage varies strongly by taxon and underrepresents species at high and low latitudes. Within species, assessments of potential redistributions came from parts of their geographic range that were highly uneven and non-representative. For most species and taxa, studies were strongly biased toward the colder parts of species' distributions and thus significantly underrepresented populations that might get pushed beyond their maximum temperature limits. Coverage of potential leading and trailing geographic range edges under a changing climate was similarly uneven. Only 8% of studied species were assessed at both high and low latitude and elevation range edges, with most only covered at one edge. This suggests that substantial within-species biases exacerbate the considerable geographic and taxonomic among-species unevenness in evidence. Our results open the door for a more quantitative accounting for existing knowledge biases in climate change ecology and a more informed management and conservation. Our findings offer guidance for future data collection that better addresses information gaps and provides a more effective foundation for managing the biological impacts of climate change.
Collapse
Affiliation(s)
- Evan J Parker
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
| | - Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Ruth Y Oliver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Madeleine A Rubenstein
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
33
|
Lu J, Cheng Y, Qi X, Chen H, Lin X. Rethinking urban wilderness: Status, hotspots, and prospects of ecosystem services. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121366. [PMID: 38870786 DOI: 10.1016/j.jenvman.2024.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
An urban wilderness (UW) portrays a coupled relationship between natural dominance and human management in urban spaces. Superior ecosystem services support sustainable urban development. Systematic assessments of the status, changes, and trends of urban wilderness ecosystem services (UWESs) are a debated and complex issue in the field of ecology despite their importance as key components for ensuring the sustainable development of human society. We aimed to analyze the scientific literature on UWESs published between 2000 and 2022. Hence, we used bibliometric methods to comprehensively understand the research lineages, hotspots, and trends in UWESs. We found that the research has roughly encompassed two phases: initial exploration (2000-2011)and rapid growth (2012-2022). The number of publications has shown a continuous growth trend; the research hotspots include UWs compared with urban greenfield ecosystems, the spatio-temporal dynamics of UWs, ecosystem services and value assessments, and the coupling and linkage between ecosystem maintenance and human health. We summarized relevant trends for the concept of harmonious coexistence between human beings and nature, focusing on spatio-temporal dynamics and multidisciplinary integration as well as reinforcing the link with human health. This study can serve as a reference for demonstrating the value of UWESs and their practical application in a UW.
Collapse
Affiliation(s)
- Jianbin Lu
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Yu Cheng
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Xinhua Qi
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Huayang Chen
- Fujian Institute of Education, Fuzhou 350025, China.
| | - Xijie Lin
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| |
Collapse
|
34
|
Lenard T, Ejankowski W. The ice phenology as a predictor of Planktothrix rubescens bloom in vegetation season in temperate lakes. Front Microbiol 2024; 15:1384435. [PMID: 38989017 PMCID: PMC11233451 DOI: 10.3389/fmicb.2024.1384435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Global warming affects air and water temperatures, which impacts the phenology of lakes and aquatic ecosystems. These changes are most noticeable during winter, when the potentially toxic Planktothrix rubescens forms its inoculum for annual blooms. Mostly, research has been conducted on alpine lakes, where blooms have persisted for decades, while a few have focused on temperate lakes. Our study aimed to determine the factors influencing the dynamics of the development of P. rubescens in temperate lakes where blooms occasionally occur, with a particular emphasis on the role of ice phenology. Methods We investigated the vertical distribution of P. rubescens in an annual cycle in three temperate lakes. Samples were collected monthly in the winter and biweekly during the vegetative seasons. Overall, 434 samples were collected and analyzed according to biological and chemical parameters. Physical parameters were measured in situ. Results The vegetation seasons in temperate lakes showed a similar development pattern in the P. rubescens population as that in alpine lakes. Our results also show the influence of physical and chemical factors on the vertical distribution of this cyanobacterium. These results revealed the significant impact of P. rubescens filaments on phytoplankton biodiversity and biomass. Our data show the role of ice phenology in the establishment of the winter inoculum of P. rubescens and its further mass development until its disappearance in autumn. Conclusion A climate-zone-independent pattern of P. rubescens blooms was observed during the vegetation periods. The population of P. rubescens was more influenced by physical factors than by the availability of dissolved nutrients in the water. Despite the same etiology, global warming has been shown to cause different responses in aquatic ecosystems, which affect the different nature of P. rubescens appearances. We associated blooms in temperate lakes, in contrast to alpine lakes, mainly with the presence of ice cover during severe winters, when the species establishes its inoculum. Hence, blooms in temperate lakes occur at different time intervals. Therefore, the dynamics of periodic blooms of P. rubescens in temperate lakes provide novel knowledge to the case study and a counterpoint to permanent blooms found in deep alpine lakes.
Collapse
Affiliation(s)
- Tomasz Lenard
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | | |
Collapse
|
35
|
Testard C, Shergold C, Acevedo-Ithier A, Hart J, Bernau A, Negron-Del Valle JE, Phillips D, Watowich MM, Sanguinetti-Scheck JI, Montague MJ, Snyder-Mackler N, Higham JP, Platt ML, Brent LJN. Ecological disturbance alters the adaptive benefits of social ties. Science 2024; 384:1330-1335. [PMID: 38900867 DOI: 10.1126/science.adk0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
Extreme weather events radically alter ecosystems. When ecological damage persists, selective pressures on individuals can change, leading to phenotypic adjustments. For group-living animals, social relationships may be a mechanism enabling adaptation to ecosystem disturbance. Yet whether such events alter selection on sociality and whether group-living animals can, as a result, adaptively change their social relationships remain untested. We leveraged 10 years of data collected on rhesus macaques before and after a category 4 hurricane caused persistent deforestation, exacerbating monkeys' exposure to intense heat. In response, macaques demonstrated persistently increased tolerance and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival after the hurricane, but not before it, revealing a shift in the adaptive function of sociality.
Collapse
Affiliation(s)
- C Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - C Shergold
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - J Hart
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - A Bernau
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - J E Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - D Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - M M Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - J I Sanguinetti-Scheck
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - M J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - N Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - J P Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - M L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - L J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
36
|
Smith KE, Aubin M, Burrows MT, Filbee-Dexter K, Hobday AJ, Holbrook NJ, King NG, Moore PJ, Sen Gupta A, Thomsen M, Wernberg T, Wilson E, Smale DA. Global impacts of marine heatwaves on coastal foundation species. Nat Commun 2024; 15:5052. [PMID: 38871692 DOI: 10.1038/s41467-024-49307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
With increasingly intense marine heatwaves affecting nearshore regions, foundation species are coming under increasing stress. To better understand their impacts, we examine responses of critical, habitat-forming foundation species (macroalgae, seagrass, corals) to marine heatwaves in 1322 shallow coastal areas located across 85 marine ecoregions. We find compelling evidence that intense, summer marine heatwaves play a significant role in the decline of foundation species globally. Critically, detrimental effects increase towards species warm-range edges and over time. We also identify several ecoregions where foundation species don't respond to marine heatwaves, suggestive of some resilience to warming events. Cumulative marine heatwave intensity, absolute temperature, and location within a species' range are key factors mediating impacts. Our results suggest many coastal ecosystems are losing foundation species, potentially impacting associated biodiversity, ecological function, and ecosystem services provision. Understanding relationships between marine heatwaves and foundation species offers the potential to predict impacts that are critical for developing management and adaptation approaches.
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, Plymouth, UK.
| | - Margot Aubin
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | | | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Bergen, Norway
| | | | - Neil J Holbrook
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, TAS, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Nathan G King
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | - Pippa J Moore
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mads Thomsen
- The Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Aarhus University, Department of Ecoscience, 4000, Roskilde, Denmark
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Bergen, Norway
| | - Edward Wilson
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, UK
| |
Collapse
|
37
|
Sakti AD, Deliar A, Hafidzah DR, Chintia AV, Anggraini TS, Ihsan KTN, Virtriana R, Suwardhi D, Harto AB, Nurmaulia SL, Aritenang AF, Riqqi A, Hernandi A, Soeksmantono B, Wikantika K. Machine learning based urban sprawl assessment using integrated multi-hazard and environmental-economic impact. Sci Rep 2024; 14:13385. [PMID: 38862550 PMCID: PMC11166669 DOI: 10.1038/s41598-024-62001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The increasing demand for land development due to human activities has fueled urbanization. However, uncontrolled urban development in some regions has resulted in urban environmental problems arising from an imbalance between supply and demand. This study aims to develop an integrated model for evaluating and prioritizing the management of hazardous urban sprawl in the Bandung metropolitan region of Indonesia. The novelty of this study lies in its pioneering application of long-term remote sensing data-based and machine learning techniques to formulate an urban sprawl priority index. This index is unique in its consideration of the impacts stemming from human economic activity, environmental degradation, and multi-disaster levels as integral components. The analysis of hazardous urban sprawl across three distinct time periods (1985-1993, 1993-2008, and 2008-2018) revealed that the 1993-2008 period had the highest increase in human economic activity, reaching 172,776 ha. The 1985-1993 period experienced the highest level of environmental degradation in the study area. Meanwhile, the 1993-2008 period showed the highest concentration of multi-hazard locations. The combined model of hazardous urban sprawl, incorporating the three parameters, indicated that the highest priority for intervention was on the outskirts of urban areas, specifically in West Bandung Regency, Cimahi, Bandung Regency, and East Bandung Regency. Regions with high-priority indices require greater attention from the government to mitigate the negative impacts of hazardous urban sprawl. This model, driven by the urban sprawl priority index, is envisioned to regulate urban movement in a more sustainable manner. Through the efficient monitoring of urban environments, the study seeks to guarantee the preservation of valuable natural resources while promoting sustainable urban development practices.
Collapse
Affiliation(s)
- Anjar Dimara Sakti
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Albertus Deliar
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Center for Spatial Data Infrastructure, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Dyah Rezqy Hafidzah
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Adria Viola Chintia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Tania Septi Anggraini
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Kalingga Titon Nur Ihsan
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Riantini Virtriana
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Deni Suwardhi
- Spatial System and Cadastre Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Agung Budi Harto
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Sella Lestari Nurmaulia
- Spatial System and Cadastre Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Adiwan Fahlan Aritenang
- Department of Urban and Regional Planning, School of Architecture, Planning and Policy Development, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Akhmad Riqqi
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Spatial Data Infrastructure, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Andri Hernandi
- Spatial System and Cadastre Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Budhy Soeksmantono
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Spatial Data Infrastructure, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ketut Wikantika
- Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
38
|
Magang DS, Ojara MA, Yunsheng L, King'uza PH. Future climate projection across Tanzania under CMIP6 with high-resolution regional climate model. Sci Rep 2024; 14:12741. [PMID: 38830967 PMCID: PMC11148196 DOI: 10.1038/s41598-024-63495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Climate change is one of the most pressing challenges faced by developing countries due to their lower adaptive capacity, with far-reaching impacts on agriculture. The mid-century period is widely regarded as a critical moment, during which adaptation is deemed essential to mitigating the associated impacts. This study presents future climate projections across Tanzania using the latest generation of global climate models (CMIP6) combined with a high-resolution regional climate model. The findings indicate that, the trends in temperature and precipitation in Tanzania from 1991 to 2020, minimum temperatures showed the highest variability with a trend of 0.3 °C, indicating significant fluctuations in minimum temperature over the decades. Maximum temperatures also showed high variability with a trend of 0.4 °C. There is a range of variability in precipitation per decade for different regions in Tanzania, with some regions experiencing significant decreases in precipitation of up to - 90.3 mm and - 127.6 mm. However, there were also regions that experienced increases in precipitation, although these increases were generally less than 4.8 mm over the decades. The projections of minimum and maximum temperatures from 2040 to 2071 under the Shared Socioeconomic Pathways (SSP) 2-4.5 and SSP 5-8.5 are projected to increase by 0.14 °C to 0.21 °C per decade, across different regions. The average projected precipitation changes per decade vary across regions. Some regions are projected to experience increases in precipitation. Other regions are projected to show decreases in precipitation within the range of - 0.6 mm to 15.5 mm and - 1.5 mm to 47.4 mm under SSP2-4.5 and SSP5-8.5 respectively. Overall, both scenarios show an increase in projected temperatures and precipitation for most regions in Tanzania, with some areas experiencing more significant increases compared to others. The changes in temperatures and precipitation are expected to have significant impacts on agriculture and water resources in Tanzania.
Collapse
Affiliation(s)
- Dawido S Magang
- Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - Moses A Ojara
- Directorate of Training and Research, Uganda National Meteorological Authority, Plot 21, 28 Port Bell Rd, P.O.BOX 7025, Kampala, Uganda
| | - Lou Yunsheng
- Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
| | - Philemon H King'uza
- School of Atmospheric Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, Jiangsu, China
| |
Collapse
|
39
|
Khattak WA, Sun J, Hameed R, Zaman F, Abbas A, Khan KA, Elboughdiri N, Akbar R, He F, Ullah MW, Al-Andal A, Du D. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. Biol Rev Camb Philos Soc 2024; 99:753-777. [PMID: 38174626 DOI: 10.1111/brv.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, PO Box 215009, Suzhou City, Jiangsu Province, P.R. China
| | - Rashida Hameed
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
| | - Adeel Abbas
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Rasheed Akbar
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Department of Entomology, The University of Haripur, PO Box 22620, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Feng He
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of The Environmental and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, PO Box 960, Abha, 61413, Saudi Arabia
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
40
|
Jameson TJM, Johnston GR, Barr M, Sandow D, Head JJ, Turner EC. Squamate scavenging services: Heath goannas ( Varanus rosenbergi) support carcass removal and may suppress agriculturally damaging blowflies. Ecol Evol 2024; 14:e11535. [PMID: 38919645 PMCID: PMC11197000 DOI: 10.1002/ece3.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Human-induced environmental change has caused widespread loss of species that support important functions for ecosystems and society. For example, vertebrate scavengers contribute to the functional health of ecosystems and provide services to agricultural landscapes by removing carcasses and associated pests. Widespread extirpation of native Australian mammals since the arrival of Europeans in Australia has removed many scavenging species from landscapes, while scavenging mammals such as European red foxes (Vulpes vulpes) have been introduced. In much of Australia, squamate reptiles are the largest native terrestrial scavengers remaining, where large native mammals are extinct and conservation management is being undertaken to remove invasive mammals. The contribution of reptiles to scavenging functions is not well understood. In this study, we investigated the ecosystem functions provided by large reptiles as scavengers to better understand how populations can be managed to support ecosystem services. We investigated the ecosystem services provided by vertebrate scavengers in Australian coastal mallee ecosystems, focusing on the heath goanna (Varanus rosenbergi), the only extant native terrestrial scavenger in the region. We carried out exclosure experiments, isolating the scavenging activity of different taxonomic groups to quantify the contribution of different taxa to scavenging services, specifically the removal of rat carcasses, and its impact on the occurrence of agriculturally damaging blowflies. We compared areas with different native and invasive scavenger communities to investigate the impact of invasive species removal and native species abundance on scavenging services. Our results indicated that vertebrate scavenging significantly contributes to carcass removal and limitation of necrophagous fly breeding in carcasses and that levels of removal are higher in areas associated with high densities of heath goannas and low densities of invasive mammals. Therefore, augmentation of heath goanna populations represents a promising management strategy to restore and maximize scavenging ecosystem services.
Collapse
Affiliation(s)
- Tom J. M. Jameson
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| | - Gregory R. Johnston
- College of Science & EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Max Barr
- Northern and Yorke Landscape BoardMinlatonSouth AustraliaAustralia
| | - Derek Sandow
- Northern and Yorke Landscape BoardClareSouth AustraliaAustralia
| | - Jason J. Head
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| | - Edgar C. Turner
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
41
|
Wang S, Zhang M, Tang N, Ali Q. Catalyzing sustainable development: Exploring the interplay between access to clean water, sanitation, renewable energy and electricity services in shaping China's energy, economic growth, and environmental landscape. Heliyon 2024; 10:e31097. [PMID: 38807884 PMCID: PMC11130698 DOI: 10.1016/j.heliyon.2024.e31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The Sustainable Development Goals (SDGs) reflect the shift in global economic conversation toward inclusive growth. The growth can promote inclusivity and widespread sharing of its advancements by concentrating on four key dimensions. (a) Equality of opportunity, (b) sharing prosperity, (3) environmental sustainability/climate adaptation, and (4) macroeconomic stability. We used the Kao cointegration test to study how certain variables are connected over a long period. The relationship between CO2 and GDP per capita, renewable energy and tourism, improved water and sanitation, and access to power all have a positive feedback effect on each other. Based on FMOLS's findings, a 1 % increase in Inclusive growth leads to a 0.342 % (Model 1) and 0.258 % (Model 3) increase in CO2 emissions. An increase of 1 percent in energy consumption per person resulted in a rise of 1.343 % in CO2 emissions in Case 1, 0.524 % in Case 2, and 0.618 % in Case 3. Increasing the tourism sector's proportion of total exports by just one percent will reduce CO2 emissions by 0.221 % (case 1) and 0.234 % (case 3). Based on CCR findings, a 1 % improvement in inclusive growth leads to a 0.403.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Art and Design, Guilin Tourism University, Guilin, Guangxi, 541006, China
| | - Manman Zhang
- School of Food and Health, Guilin Tourism University, Guilin, Guangxi, 541006, China
| | - Nana Tang
- School of Art and Design, Guilin Tourism University, Guilin, Guangxi, 541006, China
| | - Qamar Ali
- Department of Economics, Virtual University of China, Faisalabad Campus, 38000, China
| |
Collapse
|
42
|
Weiskopf SR, Isbell F, Arce-Plata MI, Di Marco M, Harfoot M, Johnson J, Lerman SB, Miller BW, Morelli TL, Mori AS, Weng E, Ferrier S. Biodiversity loss reduces global terrestrial carbon storage. Nat Commun 2024; 15:4354. [PMID: 38778013 PMCID: PMC11111688 DOI: 10.1038/s41467-024-47872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Natural ecosystems store large amounts of carbon globally, as organisms absorb carbon from the atmosphere to build large, long-lasting, or slow-decaying structures such as tree bark or root systems. An ecosystem's carbon sequestration potential is tightly linked to its biological diversity. Yet when considering future projections, many carbon sequestration models fail to account for the role biodiversity plays in carbon storage. Here, we assess the consequences of plant biodiversity loss for carbon storage under multiple climate and land-use change scenarios. We link a macroecological model projecting changes in vascular plant richness under different scenarios with empirical data on relationships between biodiversity and biomass. We find that biodiversity declines from climate and land use change could lead to a global loss of between 7.44-103.14 PgC (global sustainability scenario) and 10.87-145.95 PgC (fossil-fueled development scenario). This indicates a self-reinforcing feedback loop, where higher levels of climate change lead to greater biodiversity loss, which in turn leads to greater carbon emissions and ultimately more climate change. Conversely, biodiversity conservation and restoration can help achieve climate change mitigation goals.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Mike Harfoot
- Vizzuality, 123 Calle de Fuencarral, 28010, Madrid, Spain
| | - Justin Johnson
- Department of Applied Economics, University of Minnesota, 1994 Buford Ave, Saint Paul, MN, 55105, USA
| | | | - Brian W Miller
- U.S. Geological Survey North Central Climate Adaptation Science Center, Boulder, CO, USA
| | - Toni Lyn Morelli
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Akira S Mori
- Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Ensheng Weng
- Columbia University/NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, 10025, USA
| | | |
Collapse
|
43
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
44
|
Ke Z, Mao M, Steve Bamisile B, Li Z, Xu Y. Predicting the potential distribution of the Pheidole megacephala in light of present and future climate variations. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:457-469. [PMID: 38289983 DOI: 10.1093/jee/toae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/16/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
The big-headed ant, Pheidole megacephala (Fabricius), has a widespread distribution across numerous regions globally. The International Union for Conservation of Nature (IUCN) has identified it as one of the 100 worst invasive alien species worldwide, given the severe ecological and economic harm it causes in invaded areas. In this study, we predicted the present and future global distribution of P. megacephala, taking into account known distribution points and bioclimatic factors. Our results indicated that temperature is the primary factor affecting the distribution of P. megacephala, with potential suitable areas currently found mainly in South America, Southern North America, Western Europe, Coastal areas of the Mediterranean and Red Seas, Southern Africa, Southern Asia, Islands in Southeast Asia, and coastal regions of Australia. The total suitable area spans 3,352.48 × 104 km2. In China, the potential suitable area for P. megacephala is 109.02 × 104 km2, representing 11.36% of China's land area. In the future, based on different climatic conditions, the suitable area of P. megacephala generally showed a declining trend, but some newly added suitable areas showed that it had a tendency to expand to higher latitudes. Relevant agencies should implement effective measures to control P. megacephala populations to mitigate damage in invaded areas and slow down or prevent the spread of big-headed ants into noninvaded regions.
Collapse
Affiliation(s)
- Zengyuan Ke
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Mengfei Mao
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Bamisope Steve Bamisile
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Li
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen Administration for Market Regulation, Shenzhen 518057, China
| | - Yijuan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Malpeli KC, Endyke SC, Weiskopf SR, Thompson LM, Johnson CG, Kurth KA, Carlin MA. Existing evidence on the effects of climate variability and climate change on ungulates in North America: a systematic map. ENVIRONMENTAL EVIDENCE 2024; 13:8. [PMID: 39294746 PMCID: PMC11378825 DOI: 10.1186/s13750-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Climate is an important driver of ungulate life-histories, population dynamics, and migratory behaviors. Climate conditions can directly impact ungulates via changes in the costs of thermoregulation and locomotion, or indirectly, via changes in habitat and forage availability, predation, and species interactions. Many studies have documented the effects of climate variability and climate change on North America's ungulates, recording impacts to population demographics, physiology, foraging behavior, migratory patterns, and more. However, ungulate responses are not uniform and vary by species and geography. Here, we present a systematic map describing the abundance and distribution of evidence on the effects of climate variability and climate change on native ungulates in North America. METHODS We searched for all evidence documenting or projecting how climate variability and climate change affect the 15 ungulate species native to the U.S., Canada, Mexico, and Greenland. We searched Web of Science, Scopus, and the websites of 62 wildlife management agencies to identify relevant academic and grey literature. We screened English-language documents for inclusion at both the title and abstract and full-text levels. Data from all articles that passed full-text review were extracted and coded in a database. We identified knowledge clusters and gaps related to the species, locations, climate variables, and outcome variables measured in the literature. REVIEW FINDINGS We identified a total of 674 relevant articles published from 1947 until September 2020. Caribou (Rangifer tarandus), elk (Cervus canadensis), and white-tailed deer (Odocoileus virginianus) were the most frequently studied species. Geographically, more research has been conducted in the western U.S. and western Canada, though a notable concentration of research is also located in the Great Lakes region. Nearly 75% more articles examined the effects of precipitation on ungulates compared to temperature, with variables related to snow being the most commonly measured climate variables. Most studies examined the effects of climate on ungulate population demographics, habitat and forage, and physiology and condition, with far fewer examining the effects on disturbances, migratory behavior, and seasonal range and corridor habitat. CONCLUSIONS The effects of climate change, and its interactions with stressors such as land-use change, predation, and disease, is of increasing concern to wildlife managers. With its broad scope, this systematic map can help ungulate managers identify relevant climate impacts and prepare for future changes to the populations they manage. Decisions regarding population control measures, supplemental feeding, translocation, and the application of habitat treatments are just some of the management decisions that can be informed by an improved understanding of climate impacts. This systematic map also identified several gaps in the literature that would benefit from additional research, including climate effects on ungulate migratory patterns, on species that are relatively understudied yet known to be sensitive to changes in climate, such as pronghorn (Antilocapra americana) and mountain goats (Oreamnos americanus), and on ungulates in the eastern U.S. and Mexico.
Collapse
Affiliation(s)
- Katherine C Malpeli
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA.
| | - Sarah C Endyke
- Appalachian Laboratory, University of Maryland Center for Environmental Science, College Park, USA
| | - Sarah R Weiskopf
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| | - Laura M Thompson
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
- School of Natural Resources, University of Tennessee, Knoxville, USA
| | - Ciara G Johnson
- Department of Environmental Science & Policy, George Mason University, Fairfax, USA
| | - Katherine A Kurth
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| | - Maxfield A Carlin
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| |
Collapse
|
46
|
Alter K, Jacquemont J, Claudet J, Lattuca ME, Barrantes ME, Marras S, Manríquez PH, González CP, Fernández DA, Peck MA, Cattano C, Milazzo M, Mark FC, Domenici P. Hidden impacts of ocean warming and acidification on biological responses of marine animals revealed through meta-analysis. Nat Commun 2024; 15:2885. [PMID: 38570485 PMCID: PMC10991405 DOI: 10.1038/s41467-024-47064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.
Collapse
Affiliation(s)
- Katharina Alter
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790, AB, Den Burg, The Netherlands.
| | - Juliette Jacquemont
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, 98195, Seattle, WA, USA
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - María E Lattuca
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Ushuaia, Argentina
| | - María E Barrantes
- Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE, Ushuaia, Argentina
| | - Stefano Marras
- CNR-IAS, Consiglio Nazionale delle Ricerche, Instituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino. Località Sa Mardini, 09170, Torregrande, Oristano, Italy
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Daniel A Fernández
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Ushuaia, Argentina
- Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE, Ushuaia, Argentina
| | - Myron A Peck
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790, AB, Den Burg, The Netherlands
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708, WD, Wageningen, The Netherlands
| | - Carlo Cattano
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn (SZN), Lungomare Cristoforo Colombo, I-90149, Palermo, Italy
| | - Marco Milazzo
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy
| | - Felix C Mark
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Paolo Domenici
- CNR-IAS, Consiglio Nazionale delle Ricerche, Instituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino. Località Sa Mardini, 09170, Torregrande, Oristano, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- CNR-IBF, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124, Pisa, Italy
| |
Collapse
|
47
|
Dickie M, Serrouya R, Becker M, DeMars C, Noonan MJ, Steenweg R, Boutin S, Ford AT. Habitat alteration or climate: What drives the densities of an invading ungulate? GLOBAL CHANGE BIOLOGY 2024; 30:e17286. [PMID: 38660810 DOI: 10.1111/gcb.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Anthropogenic habitat alteration and climate change are two well-known contributors to biodiversity loss through changes to species distribution and abundance; yet, disentangling the effects of these two factors is often hindered by their inherent confound across both space and time. We leveraged a contrast in habitat alteration associated with the jurisdictional boundary between two Canadian provinces to evaluate the relative effects of spatial variation in habitat alteration and climate on white-tailed deer (Odocoileus virginianus) densities. White-tailed deer are an invading ungulate across much of North America, whose expansion into Canada's boreal forest is implicated in the decline of boreal caribou (Rangifer tarandus caribou), a species listed as Threatened in Canada. We estimated white-tailed deer densities using 300 remote cameras across 12 replicated 50 km2 landscapes over 5 years. White-tailed deer densities were significantly lower in areas where winter severity was higher. For example, predicted deer densities declined from 1.83 to 0.35 deer/km2 when winter severity increased from the lowest value to the median value. There was a tendency for densities to increase with increasing habitat alteration; however, the magnitude of this effect was approximately half that of climate. Our findings suggest that climate is the primary driver of white-tailed deer populations; however, understanding the mechanisms underpinning this relationship requires further study of over-winter survival and fecundity. Long-term monitoring at the invasion front is needed to evaluate the drivers of abundance over time, particularly given the unpredictability of climate change and increasing prevalence of extreme weather events.
Collapse
Affiliation(s)
- Melanie Dickie
- Wildlife Science Centre, Biodiversity Pathways, University of British Columbia, Kelowna, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Serrouya
- Wildlife Science Centre, Biodiversity Pathways, University of British Columbia, Kelowna, British Columbia, Canada
| | - Marcus Becker
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Craig DeMars
- Wildlife Science Centre, Biodiversity Pathways, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael J Noonan
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Computer Science, Math, Physics, and Statistics, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Robin Steenweg
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, Kelowna, British Columbia, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Adam T Ford
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
48
|
You Y, Jiang W, Yi L, Zhang G, Peng Z, Chang S, Hou F. Seeding alpine grasses in low altitude region increases global warming potential during early seedling growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120679. [PMID: 38531141 DOI: 10.1016/j.jenvman.2024.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude. Measurements of GHG emissions at early seedling growth in the mesocosm experiment using static chamber method showed a strong increase in the cumulative emissions of CO2 (5.71%-9.19%) and N2O (11.36%-13.64%) (p < 0.05), as well as an elevated CH4 uptake (2.75%-5.50%) in sites where the four grass species were introduced, compared to bare soil. Consequently, there was a substantial rise in global warming potential (13.87%-16.33%) (p < 0.05) at grass-introduced sites. Redundancy analysis showed that seed traits, plant biomass, and seedling emergence percentage were the main driving biotic factors of three GHGs fluxes. Our study unveils the potential risk of escalating GHG emissions induced by introducing high altitude grasses to low altitude bare soil, elucidating the mechanism through linking seed traits with seedling establishment and environmental feedback. Furthermore, this offers a new perspective for assessing the impact of grass introduction on ecological environment of introduced site.
Collapse
Affiliation(s)
- Yang You
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Weiqi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lingxin Yi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guangyun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zechen Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shenghua Chang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
49
|
Caratenuto A, Leach K, Liu Y, Zheng Y. Nanofibrous Biomaterial-Based Passive Cooling Paint Structurally Linked by Alkane-Oleate Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12717-12730. [PMID: 38427802 PMCID: PMC10941070 DOI: 10.1021/acsami.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Passive radiative cooling materials, which provide cooling without consuming electricity, are widely recognized as an important technology for reducing greenhouse gas emissions and delivering thermal comfort to less industrialized communities. Optimizing thermal and optical properties is of primary importance for these materials, but for real-world utilization, ease of application and scalability also require significant emphasis. In this work, we embed the biomaterial hydroxyapatite, in the form of nanoscale fibers, within an oil-based medium to achieve passive cooling from an easy-to-apply paint-like solution. The chemical structure and bonding behaviors of this mixture are studied in detail using FTIR, providing transferable conclusions for pigment-like passive cooling solutions. By reflecting 95% of solar energy and emitting 92% of its radiative output through the atmospheric transparency window, this composite material realizes an average subambient cooling performance of 3.7 °C in outdoor conditions under a mean solar irradiance of 800 W m-2. The inflammability of the material provides enhanced durability as well as unique opportunities for recycling which promote circular economic practices. Finally, the surface structure can be easily altered to tune bonding behaviors and hydrophobicity, making it an ideal passive cooling coating candidate for outdoor applications.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kyle Leach
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Liu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Zheng
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Song Y, Xu GB, Long KX, Wang CC, Chen R, Li H, Jiang XL, Deng M. Ensemble species distribution modeling and multilocus phylogeography provide insight into the spatial genetic patterns and distribution dynamics of a keystone forest species, Quercus glauca. BMC PLANT BIOLOGY 2024; 24:168. [PMID: 38438905 PMCID: PMC10910841 DOI: 10.1186/s12870-024-04830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.
Collapse
Affiliation(s)
- Ying Song
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Gang-Biao Xu
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ke-Xin Long
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chun-Cheng Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ran Chen
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - He Li
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiao-Long Jiang
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Min Deng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China.
| |
Collapse
|