1
|
Hao Z, Hu S, Huang J, Hu J, Zhang Z, Li H, Yan W. Confounding amplifies the effect of environmental factors on COVID-19. Infect Dis Model 2024; 9:1163-1174. [PMID: 39035783 PMCID: PMC11260012 DOI: 10.1016/j.idm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024] Open
Abstract
The global COVID-19 pandemic has severely impacted human health and socioeconomic development, posing an enormous public health challenge. Extensive research has been conducted into the relationship between environmental factors and the transmission of COVID-19. However, numerous factors influence the development of pandemic outbreaks, and the presence of confounding effects on the mechanism of action complicates the assessment of the role of environmental factors in the spread of COVID-19. Direct estimation of the role of environmental factors without removing the confounding effects will be biased. To overcome this critical problem, we developed a Double Machine Learning (DML) causal model to estimate the debiased causal effects of the influencing factors in the COVID-19 outbreaks in Chinese cities. Comparative experiments revealed that the traditional multiple linear regression model overestimated the impact of environmental factors. Environmental factors are not the dominant cause of widespread outbreaks in China in 2022. In addition, by further analyzing the causal effects of environmental factors, it was verified that there is significant heterogeneity in the role of environmental factors. The causal effect of environmental factors on COVID-19 changes with the regional environment. It is therefore recommended that when exploring the mechanisms by which environmental factors influence the spread of epidemics, confounding factors must be handled carefully in order to obtain clean quantitative results. This study offers a more precise representation of the impact of environmental factors on the spread of the COVID-19 pandemic, as well as a framework for more accurately quantifying the factors influencing the outbreak.
Collapse
Affiliation(s)
- Zihan Hao
- College of Atmospheric Sciences, Lanzhou University, Lanzhoum, 730000, China
| | - Shujuan Hu
- College of Atmospheric Sciences, Lanzhou University, Lanzhoum, 730000, China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaxuan Hu
- College of Atmospheric Sciences, Lanzhou University, Lanzhoum, 730000, China
| | - Zhen Zhang
- College of Atmospheric Sciences, Lanzhou University, Lanzhoum, 730000, China
| | - Han Li
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yan
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Li Z, Liu Q, Chen L, Zhou L, Qi W, Wang C, Zhang Y, Tao B, Zhu L, Martinez L, Lu W, Wang J. Ambient air pollution contributed to pulmonary tuberculosis in China. Emerg Microbes Infect 2024; 13:2399275. [PMID: 39206812 PMCID: PMC11378674 DOI: 10.1080/22221751.2024.2399275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Published studies on outdoor air pollution and tuberculosis risk have shown heterogeneous results. Discrepancies in prior studies may be partially explained by the limited geographic scope, diverse exposure times, and heterogeneous statistical methods. Thus, we conducted a multi-province, multi-city time-series study to comprehensively investigate this issue. We selected 67 districts or counties from all geographic regions of China as study sites. We extracted data on newly diagnosed pulmonary tuberculosis (PTB) cases, outdoor air pollutant concentrations, and meteorological factors in 67 sites from January 1, 2014 to December 31, 2019. We utilized a generalized additive model to evaluate the relationship between ambient air pollutants and PTB risk. Between 2014 and 2019, there were 172,160 newly diagnosed PTB cases reported in 67 sites. With every 10-μg/m3 increase in SO2, NO2, PM10, PM2.5, and 1-mg/m3 in CO, the PTB risk increased by 1.97% [lag 0 week, 95% confidence interval (CI): 1.26, 2.68], 1.30% (lag 0 week, 95% CI: 0.43, 2.19), 0.55% (lag 8 weeks, 95% CI: 0.24, 0.85), 0.59% (lag 10 weeks, 95% CI: 0.16, 1.03), and 5.80% (lag 15 weeks, 95% CI: 2.96, 8.72), respectively. Our results indicated that ambient air pollutants were positively correlated with PTB risk, suggesting that decreasing outdoor air pollutant concentrations may help to reduce the burden of tuberculosis in countries with a high burden of tuberculosis and air pollution.
Collapse
Affiliation(s)
- Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Liang Chen
- Guangdong Provincial Institute of Public Health, Guangzhou, People's Republic of China
| | - Liping Zhou
- Institute of Tuberculosis Control, Center for Disease Control and Prevention of Hubei Province, Wuhan, People's Republic of China
| | - Wei Qi
- Department of tuberculosis, Center for Disease Control and Prevention of Liaoning Province, Shenyang, People's Republic of China
| | - Chaocai Wang
- Department of tuberculosis, Center for Disease Control and Prevention of Qinghai Province, Xining, People's Republic of China
| | - Yu Zhang
- Institute of Tuberculosis Control, Center for Disease Control and Prevention of Hubei Province, Wuhan, People's Republic of China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Wei Lu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Hernández-Allauca AD, Pérez Castillo CG, Villacis Uvidia JF, Abdo-Peralta P, Frey C, Ati-Cutiupala GM, Ureña-Moreno J, Toulkeridis T. Relationship between COVID-19 Cases and Environmental Contaminants in Quito, Ecuador. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1336. [PMID: 39457309 PMCID: PMC11507386 DOI: 10.3390/ijerph21101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
The relationship between COVID-19 infections and environmental contaminants provides insight into how environmental factors can influence the spread of infectious diseases. By integrating epidemiological and environmental variables into a mathematical framework, the interaction between virus spread and the environment can be determined. The aim of this study was to evaluate the impact of atmospheric contaminants on the increase in COVID-19 infections in the city of Quito through the application of statistical tests. The data on infections and deaths allowed to identify the periods of greatest contagion and their relationship with the contaminants O3, SO2, CO, PM2.5, and PM10. A validated database was used, and statistical analysis was applied through five models based on simple linear regression. The models showed a significant relationship between SO2 and the increase in infections. In addition, a moderate correlation was shown with PM2.5, O3, and CO, and a low relationship was shown for PM10. These findings highlight the importance of having policies that guarantee air quality as a key factor in maintaining people's health and preventing the proliferation of viral and infectious diseases.
Collapse
Affiliation(s)
- Andrea Damaris Hernández-Allauca
- Faculty of Natural Resources, Escuela Superior Politecnica de Chimborazo, Panamericana Sur, km 1 ½, Riobamba EC-060155, Ecuador; (P.A.-P.); (G.M.A.-C.)
| | | | | | - Paula Abdo-Peralta
- Faculty of Natural Resources, Escuela Superior Politecnica de Chimborazo, Panamericana Sur, km 1 ½, Riobamba EC-060155, Ecuador; (P.A.-P.); (G.M.A.-C.)
| | - Catherine Frey
- Independent Researcher, Riobamba EC-060155, Ecuador; (C.G.P.C.); (C.F.); (J.U.-M.)
| | - Guicela Margoth Ati-Cutiupala
- Faculty of Natural Resources, Escuela Superior Politecnica de Chimborazo, Panamericana Sur, km 1 ½, Riobamba EC-060155, Ecuador; (P.A.-P.); (G.M.A.-C.)
| | - Juan Ureña-Moreno
- Independent Researcher, Riobamba EC-060155, Ecuador; (C.G.P.C.); (C.F.); (J.U.-M.)
| | - Theofilos Toulkeridis
- School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Nguyen-Alley K, Daniel S, Phillippi DT, Armstrong TD, Johnson B, Ihemeremadu W, Lund AK. Diesel exhaust particle inhalation in conjunction with high-fat diet consumption alters the expression of pulmonary SARS-COV-2 infection pathways, which is mitigated by probiotic treatment in C57BL/6 male mice. Part Fibre Toxicol 2024; 21:40. [PMID: 39343929 PMCID: PMC11439268 DOI: 10.1186/s12989-024-00601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Both exposure to air pollutants and obesity are associated with increased incidence and severity of COVID-19 infection; however, the mechanistic pathways involved are not well-characterized. After being primed by the transmembrane protease serine 2 (TMPRSS2) or furin protease, SARS-CoV-2 uses the angiotensin-converting enzyme (ACE)-2 receptor to enter respiratory epithelial cells. The androgen receptor (AR) is known to regulate both TMPRSS2 and ACE2 expression, and neuropilin-1 (NRP1) is a proposed coreceptor for SARS-CoV-2; thus, altered expression of these factors may promote susceptibility to infection. As such, this study investigated the hypothesis that inhalational exposure to traffic-generated particulate matter (diesel exhaust particulate; DEP) increases the expression of those pathways that mediate SARS-CoV-2 infection and susceptibility, which is exacerbated by the consumption of a high-fat (HF) diet. METHODS Four- to six-week-old male C57BL/6 mice fed either regular chow or a HF diet (HF, 45% kcal from fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. Furthermore, as previous studies have shown that probiotic treatment can protect against exposure-related inflammatory outcomes in the lungs, a subset of study animals fed a HF diet were concurrently treated with 0.3 g/day Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS Our results revealed that the expression of ACE2 protein increased with DEP exposure and that TMPRSS2, AR, NRP1, and furin protein expression increased with DEP exposure in conjunction with a HF diet. These DEP ± HF diet-mediated increases in expression were mitigated with probiotic treatment. CONCLUSION These findings suggest that inhalational exposure to air pollutants in conjunction with the consumption of a HF diet contributes to a more susceptible lung environment to SARS-CoV-2 infection and that probiotic treatment could be beneficial as a preventative measure.
Collapse
Affiliation(s)
- Kayla Nguyen-Alley
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Danielle T Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Tyler D Armstrong
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Bailee Johnson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Winston Ihemeremadu
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA.
| |
Collapse
|
5
|
Dasa O, Bai C, Sajdeya R, Kimmel SE, Pepine CJ, Gurka J MJ, Laubenbacher R, Pearson TA, Mardini MT. Identifying Potential Factors Associated With Racial Disparities in COVID-19 Outcomes: Retrospective Cohort Study Using Machine Learning on Real-World Data. JMIR Public Health Surveill 2024; 10:e54421. [PMID: 39326040 PMCID: PMC11467607 DOI: 10.2196/54421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/01/2024] [Accepted: 05/29/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Racial disparities in COVID-19 incidence and outcomes have been widely reported. Non-Hispanic Black patients endured worse outcomes disproportionately compared with non-Hispanic White patients, but the epidemiological basis for these observations was complex and multifaceted. OBJECTIVE This study aimed to elucidate the potential reasons behind the worse outcomes of COVID-19 experienced by non-Hispanic Black patients compared with non-Hispanic White patients and how these variables interact using an explainable machine learning approach. METHODS In this retrospective cohort study, we examined 28,943 laboratory-confirmed COVID-19 cases from the OneFlorida Research Consortium's data trust of health care recipients in Florida through April 28, 2021. We assessed the prevalence of pre-existing comorbid conditions, geo-socioeconomic factors, and health outcomes in the structured electronic health records of COVID-19 cases. The primary outcome was a composite of hospitalization, intensive care unit admission, and mortality at index admission. We developed and validated a machine learning model using Extreme Gradient Boosting to evaluate predictors of worse outcomes of COVID-19 and rank them by importance. RESULTS Compared to non-Hispanic White patients, non-Hispanic Blacks patients were younger, more likely to be uninsured, had a higher prevalence of emergency department and inpatient visits, and were in regions with higher area deprivation index rankings and pollutant concentrations. Non-Hispanic Black patients had the highest burden of comorbidities and rates of the primary outcome. Age was a key predictor in all models, ranking highest in non-Hispanic White patients. However, for non-Hispanic Black patients, congestive heart failure was a primary predictor. Other variables, such as food environment measures and air pollution indicators, also ranked high. By consolidating comorbidities into the Elixhauser Comorbidity Index, this became the top predictor, providing a comprehensive risk measure. CONCLUSIONS The study reveals that individual and geo-socioeconomic factors significantly influence the outcomes of COVID-19. It also highlights varying risk profiles among different racial groups. While these findings suggest potential disparities, further causal inference and statistical testing are needed to fully substantiate these observations. Recognizing these relationships is vital for creating effective, tailored interventions that reduce disparities and enhance health outcomes across all racial and socioeconomic groups.
Collapse
Affiliation(s)
- Osama Dasa
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Chen Bai
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Ruba Sajdeya
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Stephen E Kimmel
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew J Gurka J
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Reinhard Laubenbacher
- Laboratory for Systems Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Thomas A Pearson
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mamoun T Mardini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Almutairi MM, Javed NB, Sardar SA, Abdelwahed AY, Fakieh R, Al-Mohaithef M. Impact of short-term exposure to ambient air pollutants and meteorological factors on COVID-19 incidence and mortality: A retrospective study from Dammam, Saudi Arabia. Heliyon 2024; 10:e37248. [PMID: 39296103 PMCID: PMC11407988 DOI: 10.1016/j.heliyon.2024.e37248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The symptoms of COVID-19 included fever with or without respiratory syndrome, but patients subsequently developed pulmonary abnormalities. Exposure to air pollution, meanwhile, is associated with complications such as acute respiratory inflammations, asthma attack, and deaths from cardiorespiratory disease. To analyze the association of the air quality index (AQI), ambient air pollutants (PM10, SO2 and O3) and meteorological parameters (temperature and relative humidity [RH]) with COVID-19 incidence and mortality, a retrospective study was conducted to examine COVID-19 infection, meteorological parameters, ambient air quality and ambient air pollutants in Dammam from 1 January to 30 April 2021. Data of COVID-19 incidence and mortality for Dammam were retrieved from Saudi Arabia Ministry of Health's publicly accessible database. Meteorological data, AQI and average PM10, SO2 and O3 values were extracted from the publicly available website of Ministry of Environment, Water and Agriculture. The correlation of COVID-19 incidence and mortality with the independent variables was analysed by Pearson's correlation test or Spearman's rho test as applicable, and a p-value less than 0.05 was considered significant. COVID-19 incidence exhibited a positive correlation with temperature (r = 0.537, p = .0001) and a negative correlation with RH (r=-0.487, p=.0001). No correlation was observed between the meteorological variables and COVID-19 mortality. COVID-19 incidence showed a positive correlation with AQI (r=0.269, p=.015) and with the ambient air pollutants SO2 and O3 (r=0.258, p=.018), and COVID-19 mortality showed a positive correlation with PM10 (r s = 0.344, p=.002). Short-term exposure to O3, SO2 and higher temperature had direct relationship with COVID-19 incidence, while RH had inverse relationship. PM10 is positively associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Manal Mutieb Almutairi
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
- Occupational Environmental Health, Public Health School, West Virginia University, Morgantown, WV, United States
| | - Nargis Begum Javed
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - Soni Ali Sardar
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - Amal Yousef Abdelwahed
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
- Community Health Nursing, Faculty of Nursing Damanhour University, Damanhour city, Egypt
| | - Razan Fakieh
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - Mohammed Al-Mohaithef
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Latif MT, Purhanudin N, Afandi NZM, Cambaliza MOL, Halim NDA, Hawari NSSL, Hien TT, Hlaing OMT, Jansz WRLH, Khokhar MF, Lestari P, Lung SCC, Naja M, Oanh NTK, Othman M, Salam A, Salim PM, Song CK, Fujinawa T, Tanimoto H, Yu LE, Crawford JH. In-depth analysis of ambient air pollution changes due to the COVID-19 pandemic in the Asian Monsoon region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173145. [PMID: 38768732 DOI: 10.1016/j.scitotenv.2024.173145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has given a chance for researchers and policymakers all over the world to study the impact of lockdowns on air quality in each country. This review aims to investigate the impact of the restriction of activities during the lockdowns in the Asian Monsoon region on the main criteria air pollutants. The various types of lockdowns implemented in each country were based on the severity of the COVID-19 pandemic. The concentrations of major air pollutants, especially particulate matter (PM) and nitrogen dioxide (NO2), reduced significantly in all countries, especially in South Asia (India and Bangladesh), during periods of full lockdown. There were also indications of a significant reduction of sulfur dioxide (SO2) and carbon monoxide (CO). At the same time, there were indications of increasing trends in surface ozone (O3), presumably due to nonlinear chemistry associated with the reduction of oxides of nitrogens (NOX). The reduction in the concentration of air pollutants can also be seen in satellite images. The results of aerosol optical depth (AOD) values followed the PM concentrations in many cities. A significant reduction of NO2 was recorded by satellite images in almost all cities in the Asian Monsoon region. The major reductions in air pollutants were associated with reductions in mobility. Pakistan, Bangladesh, Myanmar, Vietnam, and Taiwan had comparatively positive gross domestic product growth indices in comparison to other Asian Monsoon nations during the COVID-19 pandemic. A positive outcome suggests that the economy of these nations, particularly in terms of industrial activity, persisted during the COVID-19 pandemic. Overall, the lockdowns implemented during COVID-19 suggest that air quality in the Asian Monsoon region can be improved by the reduction of emissions, especially those due to mobility as an indicator of traffic in major cities.
Collapse
Affiliation(s)
- Mohd Talib Latif
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Noorain Purhanudin
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Zulaikha Mohd Afandi
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Maria Obiminda L Cambaliza
- Department of Physics, Ateneo de Manila University, Air Quality Dynamics Laboratory, Manila Observatory, Katipunan Ave., Quezon City, Metro Manila 1101, Philippines
| | - Nor Diana Abdul Halim
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Sarawak Branch, Samarahan 2, 94300 Kota Samarahan, Sarawak, Malaysia
| | | | - To Thi Hien
- Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | | | | | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Puji Lestari
- Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia
| | | | - Manish Naja
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, Uttarakhand 263129, India
| | - Nguyen Thi Kim Oanh
- Environmental Engineering and Management, Asian Institute of Technology, Pathumthani 12120, Thailand
| | - Murnira Othman
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 100, Bangladesh
| | - Pauziyah Mohammad Salim
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Geomatic Science and Natural Resources, College of Built Environment (CBE), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Chang-Keun Song
- Department of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tamaki Fujinawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Tanimoto
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | | |
Collapse
|
8
|
Mohammadi Dashtaki N, Mirahmadizadeh A, Fararouei M, Mohammadi Dashtaki R, Hoseini M, Nayeb MR. The Lag -Effects of Air Pollutants and Meteorological Factors on COVID-19 Infection Transmission and Severity: Using Machine Learning Techniques. J Res Health Sci 2024; 24:e00622. [PMID: 39311105 PMCID: PMC11380733 DOI: 10.34172/jrhs.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Exposure to air pollution is a major health problem worldwide. This study aimed to investigate the effect of the level of air pollutants and meteorological parameters with their related lag time on the transmission and severity of coronavirus disease 19 (COVID-19) using machine learning (ML) techniques in Shiraz, Iran. Study Design: An ecological study. METHODS In this ecological research, three main ML techniques, including decision trees, random forest, and extreme gradient boosting (XGBoost), have been applied to correlate meteorological parameters and air pollutants with infection transmission, hospitalization, and death due to COVID-19 from 1 October 2020 to 1 March 2022. These parameters and pollutants included particulate matter (PM2), sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), nitric oxide (NO), ozone (O3 ), carbon monoxide (CO), temperature (T), relative humidity (RH), dew point (DP), air pressure (AP), and wind speed (WS). RESULTS Based on the three ML techniques, NO2 (lag 5 day), CO (lag 4), and T (lag 25) were the most important environmental features affecting the spread of COVID-19 infection. In addition, the most important features contributing to hospitalization due to COVID-19 included RH (lag 28), T (lag 11), and O3 (lag 10). After adjusting for the number of infections, the most important features affecting the number of deaths caused by COVID-19 were NO2 (lag 20), O3 (lag 22), and NO (lag 23). CONCLUSION Our findings suggested that epidemics caused by COVID-19 and (possibly) similarly viral transmitted infections, including flu, air pollutants, and meteorological parameters, can be used to predict their burden on the community and health system. In addition, meteorological and air quality data should be included in preventive measures.
Collapse
Affiliation(s)
| | - Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- AIDS/HIV Research Center, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hoseini
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Nayeb
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Yang S, Tong T, Wang H, Li Z, Wang M, Ni K. Causal relationship between air pollution and infections: a two-sample Mendelian randomization study. Front Public Health 2024; 12:1409640. [PMID: 39148655 PMCID: PMC11324489 DOI: 10.3389/fpubh.2024.1409640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Background Traditional observational studies exploring the association between air pollution and infections have been limited by small sample sizes and potential confounding factors. To address these limitations, we applied Mendelian randomization (MR) to investigate the potential causal relationships between particulate matter (PM2.5, PM2.5-10, and PM10), nitrogen dioxide, and nitrogen oxide and the risks of infections. Methods Single nucleotide polymorphisms (SNPs) related to air pollution were selected from the genome-wide association study (GWAS) of the UK Biobank. Publicly available summary data for infections were obtained from the FinnGen Biobank and the COVID-19 Host Genetics Initiative. The inverse variance weighted (IVW) meta-analysis was used as the primary method for obtaining the Mendelian randomization (MR) estimates. Complementary analyses were performed using the weighted median method, MR-Egger method, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) test. Results The fixed-effect IVW estimate showed that PM2.5, PM2.5-10 and Nitrogen oxides were suggestively associated with COVID-19 [for PM2.5: IVW (fe): OR 3.573(1.218,5.288), PIVW(fe) = 0.021; for PM2.5-10: IVW (fe): OR 2.940(1.385,6.239), PIVW(fe) = 0.005; for Nitrogen oxides, IVW (fe): OR 1.898(1.318,2.472), PIVW(fe) = 0.010]. PM2.5, PM2.5-10, PM10, and Nitrogen oxides were suggestively associated with bacterial pneumonia [for PM2.5: IVW(fe): OR 1.720 (1.007, 2.937), PIVW(fe) = 0.047; for PM2.5-10: IVW(fe): OR 1.752 (1.111, 2.767), P IVW(fe) = 0.016; for PM10: IVW(fe): OR 2.097 (1.045, 4.208), PIVW(fe) = 0.037; for Nitrogen oxides, IVW(fe): OR 3.907 (1.209, 5.987), PIVW(fe) = 0.023]. Furthermore, Nitrogen dioxide was suggestively associated with the risk of acute upper respiratory infections, while all air pollution were not associated with intestinal infections. Conclusions Our results support a role of related air pollution in the Corona Virus Disease 2019, bacterial pneumonia and acute upper respiratory infections. More work is need for policy formulation to reduce the air pollution and the emission of toxic and of harmful gas.
Collapse
Affiliation(s)
- Shengyi Yang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tong Tong
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenwei Li
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaiwen Ni
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Fu H, Zhu C. The impact of population influx on infectious diseases - from the mediating effect of polluted air transmission. Front Public Health 2024; 12:1344306. [PMID: 39139663 PMCID: PMC11319163 DOI: 10.3389/fpubh.2024.1344306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
The global population influx during the COVID-19 pandemic poses significant challenges to public health, making the prevention and control of infectious diseases a pressing concern. This paper aims to examine the impact of population influx on the spread of infectious diseases, with a specific emphasis on the mediating role of air pollution in this process. A theoretical analysis is conducted to explore the relationship between population influx, air pollution, and infectious diseases. Additionally, we establish a series of econometric models and employ various empirical tests and analytical techniques, including mediation effect test, threshold effect test, and systematic GMM test, to evaluate our hypotheses. The results indicate that: (1) Population influx directly and indirectly impacts infectious diseases. Specifically, population influx not only directly elevates the risk of infectious diseases, but also indirectly increases the incidence rate of infectious diseases by intensifying air pollution. (2) The impact of population inflow on infectious diseases exhibits regional heterogeneity. Compared to central and western China, the eastern regions exhibit a significantly higher risk of infectious diseases, exceeding the national average. (3) External factors influence the relationship between population influx and infectious diseases differently. Personal income and medical resources both help mitigate the risk of infectious diseases due to population influx, with medical resources having a more substantial effect. Contrary to expectations, abundant educational resources have not reduced the risk, instead, they have exacerbated the risk associated with population influx. This paper provides a scientific basis for formulating effective strategies for the prevention and control of infectious diseases.
Collapse
Affiliation(s)
- Haifeng Fu
- School of Transportation Management, Jiangxi Vocational and Technical College of Communications, Nanchang, Jiangxi, China
| | - Chaoping Zhu
- School of Software, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Musonye HA, He YS, Bekele MB, Jiang LQ, Fan Cao, Xu YQ, Gao ZX, Ge M, He T, Zhang P, Zhao CN, Chen C, Wang P, Pan HF. Exploring the association between ambient air pollution and COVID-19 risk: A comprehensive meta-analysis with meta-regression modelling. Heliyon 2024; 10:e32385. [PMID: 39183866 PMCID: PMC11341291 DOI: 10.1016/j.heliyon.2024.e32385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Air pollution is speculated to increase the risk of Coronavirus disease-2019 (COVID-19). Nevertheless, the results remain inconsistent and inconclusive. This study aimed to explore the association between ambient air pollution (AAP) and COVID-19 risks using a meta-analysis with meta-regression modelling. Methods The inclusion criteria were: original studies quantifying the association using effect sizes and 95 % confidence intervals (CIs); time-series, cohort, ecological or case-crossover peer-reviewed studies in English. Exclusion criteria encompassed non-original studies, animal studies, and data with common errors. PubMed, Web of Science, Embase and Google Scholar electronic databases were systemically searched for eligible literature, up to 31, March 2023. The risk of bias (ROB) was assessed following the Agency for Healthcare Research and Quality parameters. A random-effects model was used to calculate pooled risk ratios (RRs) and their 95 % CIs. Results A total of 58 studies, between 2020 and 2023, met the inclusion criteria. The global representation was skewed, with major contributions from the USA (24.1 %) and China (22.4 %). The distribution included studies on short-term (43.1 %) and long-term (56.9 %) air pollution exposure. Ecological studies constituted 51.7 %, time-series-27.6 %, cohorts-17.2 %, and case crossover-3.4 %. ROB assessment showed low (86.2 %) and moderate (13.8 %) risk. The COVID-19 incidences increased with a 10 μg/m3 increase in PM2.5 [RR = 4.9045; 95 % CI (4.1548-5.7895)], PM10 [RR = 2.9427: (2.2290-3.8850)], NO2 [RR = 3.2750: (3.1420-3.4136)], SO2 [RR = 3.3400: (2.7931-3.9940)], CO [RR = 2.6244: (2.5208-2.7322)] and O3 [RR = 2.4008: (2.1859-2.6368)] concentrations. A 10 μg/m3 increase in concentrations of PM2.5 [RR = 3.0418: (2.7344-3.3838)], PM10 [RR = 2.6202: (2.1602-3.1781)], NO2 [RR = 3.2226: (2.1411-4.8504)], CO [RR = 1.8021 (0.8045-4.0370)] and O3 [RR = 2.3270 (1.5906-3.4045)] was significantly associated with COVID-19 mortality. Stratified analysis showed that study design, exposure period, and country influenced exposure-response associations. Meta-regression model indicated significant predictors for air pollution-COVID-19 incidence associations. Conclusion The study, while robust, lacks causality demonstration and focuses only on the USA and China, limiting its generalizability. Regardless, the study provides a strong evidence base for air pollution-COVID-19-risks associations, offering valuable insights for intervention measures for COVID-19.
Collapse
Affiliation(s)
- Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Merga Bayou Bekele
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
12
|
Xia C, Delei W. Urban resilience governance mechanism: Insights from COVID-19 prevention and control in 30 Chinese cities. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 38922992 DOI: 10.1111/risa.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Due to the pervasive uncertainty in human society, super large and megacities are increasingly prone to becoming high-risk areas. However, the construction of urban resilience in this new era lacks sufficient research on the core conditions and complex interactive mechanisms governing it. Hence, this study proposes a specialized event-oriented framework for governing urban resilience in China based on the pressure-state-response (PSR) theory. We examined COVID-19 cases in 30 cities across China and analyzed the distribution of prevention and control achievements between high-level and non-high-level conditions. Our findings reveal the following key points: (1) High-level achievements in COVID-19 prevention and control rely on three condition configurations: non-pressure-responsive type, pressure-state type, and pressure-responsive type. (2) High economic resilience may indicate a robust state of urban systems amid demographic pressures. In cities experiencing fewer event pressure factors, the application of digital technology plays a crucial role in daily urban management. (3) The implementation of flexible policies proves beneficial in mitigating the impact of objective pressure conditions, such as environmental factors, on urban resilience.
Collapse
Affiliation(s)
- Cao Xia
- School of Economics and Management, Harbin Engineering University, Harbin, China
| | - Wang Delei
- School of Economics and Management, Harbin Engineering University, Harbin, China
| |
Collapse
|
13
|
De Ridder D, Ladoy A, Choi Y, Jacot D, Vuilleumier S, Guessous I, Joost S, Greub G. Environmental and geographical factors influencing the spread of SARS-CoV-2 over 2 years: a fine-scale spatiotemporal analysis. Front Public Health 2024; 12:1298177. [PMID: 38957202 PMCID: PMC11217542 DOI: 10.3389/fpubh.2024.1298177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Since its emergence in late 2019, the SARS-CoV-2 virus has led to a global health crisis, affecting millions and reshaping societies and economies worldwide. Investigating the determinants of SARS-CoV-2 diffusion and their spatiotemporal dynamics at high spatial resolution is critical for public health and policymaking. Methods This study analyses 194,682 georeferenced SARS-CoV-2 RT-PCR tests from March 2020 and April 2022 in the canton of Vaud, Switzerland. We characterized five distinct pandemic periods using metrics of spatial and temporal clustering like inverse Shannon entropy, the Hoover index, Lloyd's index of mean crowding, and the modified space-time DBSCAN algorithm. We assessed the demographic, socioeconomic, and environmental factors contributing to cluster persistence during each period using eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP), to consider non-linear and spatial effects. Results Our findings reveal important variations in the spatial and temporal clustering of cases. Notably, areas with flatter epidemics had higher total attack rate. Air pollution emerged as a factor showing a consistent positive association with higher cluster persistence, substantiated by both immission models and, to a lesser extent, tropospheric NO2 estimations. Factors including population density, testing rates, and geographical coordinates, also showed important positive associations with higher cluster persistence. The socioeconomic index showed no significant contribution to cluster persistence, suggesting its limited role in the observed dynamics, which warrants further research. Discussion Overall, the determinants of cluster persistence remained across the study periods. These findings highlight the need for effective air quality management strategies to mitigate air pollution's adverse impacts on public health, particularly in the context of respiratory viral diseases like COVID-19.
Collapse
Affiliation(s)
- David De Ridder
- Geographic Information Research and Analysis in Population Health (GIRAPH) Lab, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anaïs Ladoy
- Geographic Information Research and Analysis in Population Health (GIRAPH) Lab, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yangji Choi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Damien Jacot
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Séverine Vuilleumier
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Idris Guessous
- Geographic Information Research and Analysis in Population Health (GIRAPH) Lab, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Joost
- Geographic Information Research and Analysis in Population Health (GIRAPH) Lab, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Bayram H, Konyalilar N, Elci MA, Rajabi H, Aksoy GT, Mortazavi D, Kayalar Ö, Dikensoy Ö, Taborda-Barata L, Viegi G. Issue 4 - Impact of air pollution on COVID-19 mortality and morbidity: An epidemiological and mechanistic review. Pulmonology 2024:S2531-0437(24)00051-5. [PMID: 38755091 DOI: 10.1016/j.pulmoe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.5 to 10 µM, ozone and nitrogen dioxide and SARS-CoV-2 infection, hospital admissions and mortality due to COVID 19 has been reported. Air pollutants can make individuals more susceptible to SARS-CoV-2 infection by inducing the expression of proteins such as angiotensin converting enzyme (ACE)2 and transmembrane protease, serine 2 (TMPRSS2) that are required for viral entry into the host cell, while causing impairment in the host defence system by damaging the epithelial barrier, muco-ciliary clearance, inhibiting the antiviral response and causing immune dysregulation. The aim of this review is to report the epidemiological evidence on impact of air pollutants on COVID 19 in an up-to-date manner, as well as to provide insights on in vivo and in vitro mechanisms.
Collapse
Affiliation(s)
- Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey; Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey.
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | | | - Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - G Tuşe Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Özgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Öner Dikensoy
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Luis Taborda-Barata
- UBIAir - Clinical and Experimental Lung Centre UBIMedical, University of Beira Interior, Covilhã, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
15
|
Liu J, Ruan Z, Gao X, Yuan Y, Dong S, Li X, Liu X. Investigating the cumulative lag effects of environmental exposure under urban differences on COVID-19. J Infect Public Health 2024; 17 Suppl 1:76-81. [PMID: 37291027 PMCID: PMC10239149 DOI: 10.1016/j.jiph.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Although all walks of life are paying less attention to COVID-19, the spread of COVID-19 has never stopped. As an infectious disease, its transmission speed is closely related to the atmosphere environment, particularly the temperature (T) and PM2.5 concentrations. However, How T and PM2.5 concentrations are related to the spread of SARS-CoV-2 and how much their cumulative lag effect differ across cities is unclear. To identify the characteristics of cumulative lag effects of environmental exposure under city differences, this study used a generalized additive model to investigate the associations between T/PM2.5 concentrations and the daily number of new confirmed COVID-19 cases (NNCC) during the outbreak period in the second half of 2021 in Shaoxing, Shijiazhuang, and Dalian. The results showed that except for PM2.5 concentrations in Shaoxing, the NNCC in the three cities generally increased with the unit increase of T and PM2.5 concentrations. In addition, the cumulative lag effects of T/PM2.5 concentrations on NNCC in the three cities reached a peak at lag 26/25, lag 10/26, and lag 18/13 days, respectively, indicating that the response of NNCC to T and PM2.5 concentrations varies among different regions. Therefore, combining local meteorological and air quality conditions to adopt responsive measures is an important way to prevent and control the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Jiemei Liu
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Zhaohui Ruan
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiuyan Gao
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yuan Yuan
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Shikui Dong
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xia Li
- Science and Technology on Optical Radiation Laboratory, Beijing 1008541, China
| | - Xingrun Liu
- Science and Technology on Optical Radiation Laboratory, Beijing 1008541, China
| |
Collapse
|
16
|
Deji Z, Tong Y, Huang H, Zhang Z, Fang M, Crabbe MJC, Zhang X, Wang Y. Influence of Environmental Factors and Genome Diversity on Cumulative COVID-19 Cases in the Highland Region of China: Comparative Correlational Study. Interact J Med Res 2024; 13:e43585. [PMID: 38526532 DOI: 10.2196/43585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/20/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The novel coronavirus SARS-CoV-2 caused the global COVID-19 pandemic. Emerging reports support lower mortality and reduced case numbers in highland areas; however, comparative studies on the cumulative impact of environmental factors and viral genetic diversity on COVID-19 infection rates have not been performed to date. OBJECTIVE The aims of this study were to determine the difference in COVID-19 infection rates between high and low altitudes, and to explore whether the difference in the pandemic trend in the high-altitude region of China compared to that of the lowlands is influenced by environmental factors, population density, and biological mechanisms. METHODS We examined the correlation between population density and COVID-19 cases through linear regression. A zero-shot model was applied to identify possible factors correlated to COVID-19 infection. We further analyzed the correlation of meteorological and air quality factors with infection cases using the Spearman correlation coefficient. Mixed-effects multiple linear regression was applied to evaluate the associations between selected factors and COVID-19 cases adjusting for covariates. Lastly, the relationship between environmental factors and mutation frequency was evaluated using the same correlation techniques mentioned above. RESULTS Among the 24,826 confirmed COVID-19 cases reported from 40 cities in China from January 23, 2020, to July 7, 2022, 98.4% (n=24,430) were found in the lowlands. Population density was positively correlated with COVID-19 cases in all regions (ρ=0.641, P=.003). In high-altitude areas, the number of COVID-19 cases was negatively associated with temperature, sunlight hours, and UV index (P=.003, P=.001, and P=.009, respectively) and was positively associated with wind speed (ρ=0.388, P<.001), whereas no correlation was found between meteorological factors and COVID-19 cases in the lowlands. After controlling for covariates, the mixed-effects model also showed positive associations of fine particulate matter (PM2.5) and carbon monoxide (CO) with COVID-19 cases (P=.002 and P<.001, respectively). Sequence variant analysis showed lower genetic diversity among nucleotides for each SARS-CoV-2 genome (P<.001) and three open reading frames (P<.001) in high altitudes compared to 300 sequences analyzed from low altitudes. Moreover, the frequencies of 44 nonsynonymous mutations and 32 synonymous mutations were significantly different between the high- and low-altitude groups (P<.001, mutation frequency>0.1). Key nonsynonymous mutations showed positive correlations with altitude, wind speed, and air pressure and showed negative correlations with temperature, UV index, and sunlight hours. CONCLUSIONS By comparison with the lowlands, the number of confirmed COVID-19 cases was substantially lower in high-altitude regions of China, and the population density, temperature, sunlight hours, UV index, wind speed, PM2.5, and CO influenced the cumulative pandemic trend in the highlands. The identified influence of environmental factors on SARS-CoV-2 sequence variants adds knowledge of the impact of altitude on COVID-19 infection, offering novel suggestions for preventive intervention.
Collapse
Affiliation(s)
- Zhuoga Deji
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Information School, The University of Sheffield, Sheffield, United Kingdom
| | - Yuantao Tong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Honglian Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Bedfordshire, United Kingdom
- School of Life Sciences, Shanxi University, Shanxi, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Guo Z, Xue H, Fan L, Wu D, Wang Y, Chung Y, Liao Y, Ruan Z, Du W. Differential effects of size-specific particulate matter on frailty transitions among middle-aged and older adults in China: findings from the China Health and Retirement Longitudinal Study (CHARLS), 2015-2018. Int Health 2024; 16:182-193. [PMID: 37161970 PMCID: PMC10939306 DOI: 10.1093/inthealth/ihad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND This study aimed to assess the long-term effects of size-specific particulate matter (PM) on frailty transitions in middle-aged and older Chinese adults. METHODS We included 13 910 participants ≥45 y of age from the China Health and Retirement Longitudinal Study (CHARLS) for 2015 and 2018 who were classified into three categories in 2015 according to their frailty states: robust, prefrail and frail. Air quality data were obtained from the National Urban Air Quality Real-time Publishing Platform. A two-level logistic regression model was used to examine the association between concentrations of PM and frailty transitions. RESULTS At baseline, the total number of robust, prefrail and frail participants were 7516 (54.0%), 4324 (31.1%) and 2070 (14.9%), respectively. Significant associations were found between PM concentrations and frailty transitions. For each 10 μg/m3 increase in the 3-y averaged 2.5-μm PM (PM2.5) concentrations, the risk of worsening in frailty increased in robust (odds ratio [OR] 1.06 [95% confidence interval {CI} 1.01 to 1.12]) and prefrail (OR 1.07 [95% CI 1.01 to 1.13]) participants, while the probability of improvement in frailty in prefrail (OR 0.91 [95% CI 0.84 to 0.98]) participants decreased. In addition, the associations of PM10 and coarse fraction of PM with frailty transitions showed similar patterns. CONCLUSIONS Long-term exposure to PM was associated with higher risks of worsening and lower risks of improvement in frailty among middle-aged and older adults in China.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lijun Fan
- Department of Medical Insurance, School of Public Health, Southeast University, Nanjing 210009, China
| | - Di Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yiming Wang
- Department of Medical Insurance, School of Public Health, Southeast University, Nanjing 210009, China
| | - Younjin Chung
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Yilan Liao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zengliang Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei Du
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
Yen CC, Hsiao PJ, Chu CM, Chen PL. The impact of COVID-19 pandemic on air particulate matter exposure and heart attacks: a 5-year retrospective cohort study in Taiwan (2017-2021). Front Public Health 2024; 12:1321129. [PMID: 38476499 PMCID: PMC10927788 DOI: 10.3389/fpubh.2024.1321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Background Heart attacks including acute ST-segment elevation myocardial infarction (STEMI) and acute decompensated heart failure (ADHF) caused from the particulate matter (PM) and air pollutant exposures are positively associated with regional air pollution severity and individual exposure. The exceptional coronavirus disease epidemic of 2019 (COVID-19) may enhance the air conditions in areas under COVID-19 pandemic. We sought to study the impact of COVID-19 pandemic on air particulate matter (PM) exposure and heart attacks in Taiwan. Methods This retrospective cohort study was conducted in one teaching hospital in Taichung, Taiwan. We examined emergency patients diagnosed with acute STEMI and ADHF from January 1, 2017, to March 31, 2020, (i.e., before the COVID-19 pandemic) and from April 1, 2020, to December 31, 2021, (after the COVID-19 pandemic). The effects of particulate matter with a diameter of less than 2.5 micrometers (PM2.5) and PM10 as well as temperature and humidity on environmental air pollutants were recorded. The analysis was performed with a unidirectional case-crossover research design and a conditional logistic regression model. Results Both PM2.5 and PM10 levels had a positive association with the risk of acute STEMI before the COVID-19 pandemic (PM2.5 adjusted odds ratio (OR): 1.016, 95% confidence interval (CI): 1.003-1.032 and PM10 adjusted OR: 1.009, 95% CI: 1.001-1.018) and ADHF (PM2.5 adjusted OR: 1.046, 95% CI: 1.034-1.067 and PM10 adjusted OR: 1.023, 95% CI: 1.027-1.047). Moreover, the results demonstrated that PM2.5 and PM10 were not associated with the risk of acute STEMI or ADHF after the COVID-19 pandemic. Reduction in PM2.5 and PM10 levels after the COVID-19 pandemic were noted. Hospital admissions for acute STEMI (7.4 and 5.8/per month) and ADHF (9.7 and 8.2/per month) also decreased (21.6 and 15.5%) after the COVID-19 pandemic. Conclusion In Taiwan, paradoxical reductions in PM2.5 and PM10 levels during the COVID-19 pandemic may decrease the number of hospital admissions for acute STEMI and ADHF. As the COVID-19 pandemic eases, the condition of air pollution may gradually become worse again. The governments should formulate better policies to improve the health of the public and the quality of the air.
Collapse
Affiliation(s)
- Chih-Chien Yen
- Department of Surgery, Division of Cardiovascular Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Po-Jen Hsiao
- Department of Internal Medicine, Division of Nephrology, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Public Health, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ping-Ling Chen
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Rybarczyk Y, Zalakeviciute R, Ortiz-Prado E. Causal effect of air pollution and meteorology on the COVID-19 pandemic: A convergent cross mapping approach. Heliyon 2024; 10:e25134. [PMID: 38322928 PMCID: PMC10844283 DOI: 10.1016/j.heliyon.2024.e25134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Environmental factors have been suspected to influence the propagation and lethality of COVID-19 in the global population. However, most of the studies have been limited to correlation analyses and did not use specific methods to address the dynamic of the causal relationship between the virus and its external drivers. This work focuses on inferring and understanding the causal effect of critical air pollutants and meteorological parameters on COVID-19 by using an Empirical Dynamic Modeling approach called Convergent Cross Mapping. This technique allowed us to identify the time-delayed causation and the sign of interactions. Considering its remarkable urban environment and mortality rate during the pandemic, Quito, Ecuador, was chosen as a case study. Our results show that both urban air pollution and meteorology have a causal impact on COVID-19. Even if the strength and the sign of the causality vary over time, a general trend can be drawn. NO2, SO2, CO and PM2.5 have a positive causation for COVID-19 infections (ρ > 0.35 and ∂ > 9.1). Contrary to current knowledge, this study shows a rapid effect of pollution on COVID-19 cases (1 < lag days <24) and a negative impact of O3 on COVID-19-related deaths (ρ = 0.53 and ∂ = -0.3). Regarding the meteorology, temperature (ρ = 0.24 and ∂ = -0.4) and wind speed (ρ = 0.34 and ∂ = -3.9) tend to mitigate the epidemiological consequences of SARS-CoV-2, whereas relative humidity seems to increase the excess deaths (ρ = 0.4 and ∂ = 0.05). A causal network is proposed to synthesize the interactions between the studied variables and to provide a simple model to support the management of coronavirus outbreaks.
Collapse
Affiliation(s)
- Yves Rybarczyk
- School of Information and Engineering, Dalarna University, Falun, Sweden
| | | | | |
Collapse
|
20
|
Alari A, Ranzani O, Olmos S, Milà C, Rico A, Ballester J, Basagaña X, Dadvand P, Duarte-Salles T, Nieuwenhuijsen M, Vivanco-Hidalgo RM, Tonne C. Short-term exposure to air pollution and hospital admission after COVID-19 in Catalonia: the COVAIR-CAT study. Int J Epidemiol 2024; 53:dyae041. [PMID: 38514998 DOI: 10.1093/ije/dyae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A growing body of evidence has reported positive associations between long-term exposure to air pollution and poor COVID-19 outcomes. Inconsistent findings have been reported for short-term air pollution, mostly from ecological study designs. Using individual-level data, we studied the association between short-term variation in air pollutants [nitrogen dioxide (NO2), particulate matter with a diameter of <2.5 µm (PM2.5) and a diameter of <10 µm (PM10) and ozone (O3)] and hospital admission among individuals diagnosed with COVID-19. METHODS The COVAIR-CAT (Air pollution in relation to COVID-19 morbidity and mortality: a large population-based cohort study in Catalonia, Spain) cohort is a large population-based cohort in Catalonia, Spain including 240 902 individuals diagnosed with COVID-19 in the primary care system from 1 March until 31 December 2020. Our outcome was hospitalization within 30 days of COVID-19 diagnosis. We used individual residential address to assign daily air-pollution exposure, estimated using machine-learning methods for spatiotemporal prediction. For each pandemic wave, we fitted Cox proportional-hazards models accounting for non-linear-distributed lagged exposure over the previous 7 days. RESULTS Results differed considerably by pandemic wave. During the second wave, an interquartile-range increase in cumulative weekly exposure to air pollution (lag0_7) was associated with a 12% increase (95% CI: 4% to 20%) in COVID-19 hospitalizations for NO2, 8% (95% CI: 1% to 16%) for PM2.5 and 9% (95% CI: 3% to 15%) for PM10. We observed consistent positive associations for same-day (lag0) exposure, whereas lag-specific associations beyond lag0 were generally not statistically significant. CONCLUSIONS Our study suggests positive associations between NO2, PM2.5 and PM10 and hospitalization risk among individuals diagnosed with COVID-19 during the second wave. Cumulative hazard ratios were largely driven by exposure on the same day as hospitalization.
Collapse
Affiliation(s)
- Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
21
|
Arter CA, Buonocore JJ, Isakov V, Pandey G, Arunachalam S. Air pollution benefits from reduced on-road activity due to COVID-19 in the United States. PNAS NEXUS 2024; 3:pgae017. [PMID: 38292536 PMCID: PMC10825624 DOI: 10.1093/pnasnexus/pgae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
On-road transportation is one of the largest contributors to air pollution in the United States. The COVID-19 pandemic provided the unintended experiment of reduced on-road emissions' impacts on air pollution due to lockdowns across the United States. Studies have quantified on-road transportation's impact on fine particulate matter (PM2.5)-attributable and ozone (O3)-attributable adverse health outcomes in the United States, and other studies have quantified air pollution-attributable health outcome reductions due to COVID-19-related lockdowns. We aim to quantify the PM2.5-attributable, O3-attributable, and nitrogen dioxide (NO2)-attributable adverse health outcomes from traffic emissions as well as the air pollution benefits due to reduced on-road activity during the pandemic in 2020. We estimate 79,400 (95% CI 46,100-121,000) premature mortalities each year due to on-road-attributable PM2.5, O3, and NO2. We further break down the impacts by pollutant and vehicle types (passenger [PAS] vs. freight [FRT] vehicles). We estimate PAS vehicles to be responsible for 63% of total impacts and FRT vehicles 37%. Nitrogen oxide (NOX) emissions from these vehicles are responsible for 78% of total impacts as it is a precursor for PM2.5 and O3. Utilizing annual vehicle miles traveled reductions in 2020, we estimate that 9,300 (5,500-14,000) deaths from air pollution were avoided in 2020 due to the state-specific reductions in on-road activity across the continental United States. By quantifying the air pollution public health benefits from lockdown-related reductions in on-road emissions, the results from this study stress the need for continued emission mitigation policies, like the U.S. Environmental Protection Agency's (EPA) recently proposed NOX standards for heavy-duty vehicles, to mitigate on-road transportation's public health impact.
Collapse
Affiliation(s)
- Calvin A Arter
- Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan J Buonocore
- Department of Environment Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Vlad Isakov
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Gavendra Pandey
- Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saravanan Arunachalam
- Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Shousha HI, Ayman H, Hashem MB. Climate Changes and COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:217-231. [PMID: 39102199 DOI: 10.1007/978-3-031-61943-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Climatic change, which influences population growth and land usage, has been theorized to be linked to the emergence and spread of new viruses like the currently unfolding COVID-19 pandemic. In this chapter, we explain how climate change may have altered the beginning, transmission, and maybe even the sickness consequences of the COVID-19 pandemic. Where possible, we also provide mechanistic explanations for how this may have occurred. We have presented evidence that suggests climate change may have had a role in the establishment and transmission of SARS-CoV-2 infection, and most possibly even in some of its clinical effects. Human activities bringing people into closer contact with bats and animals like pangolins that potentially represent the intermediate hosts, and evidence that climate-induced changes in vegetation are the main reservoir source of coronaviruses for human infection, are among the explanations. Although there are still unsubstantiated indications that the first viral pathogen may have escaped from a laboratory, it is possible that this encounter took place in the field or in marketplaces in the instance of COVID-19. We also present the argument that climate change is working to enhance transmission between diseased and uninfected humans, and this is true regardless of the source of the original development of the disease. Changes in temperature and humidity make it easier for viruses to survive, and the impacts of industrial pollution induce people to cough and sneeze, which releases highly infectious aerosols into the air. These three factors combine to make this a more likely scenario than it would otherwise be. We suggest that changes in climate are contributing to create conditions that are favorable for the development of more severe symptoms of illness. It is more difficult to build the argument for this circumstance, and much of it is indirect. However, climate change has caused some communities to adjust their nutritional habits, both in terms of the quantity of food they eat and the quality of the foods they consume. The effects frequently become apparent as a result of alterations that are imposed on the microbiome of the gut, which, in turn, influence the types of immune responses that are produced. The incidence of comorbidities like diabetes and animal vectors like bats that transmit other illnesses that modify vulnerability to SARS-CoV-2 are also two examples of the factors that have been affected by climate change. In order to curb the development of infectious illnesses caused by new viruses, it is necessary to understand the connection between environmental dynamics and the emergence of new coronaviruses. This knowledge should lead to initiatives aimed at reducing global greenhouse gas emissions.
Collapse
Affiliation(s)
- Hend Ibrahim Shousha
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt.
| | - Hedy Ayman
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| | - Mohamed B Hashem
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| |
Collapse
|
23
|
Nakhjirgan P, Kashani H, Kermani M. Exposure to outdoor particulate matter and risk of respiratory diseases: a systematic review and meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:20. [PMID: 38153542 DOI: 10.1007/s10653-023-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
According to epidemiological studies, particulate matter (PM) is an important air pollutant that poses a significant threat to human health. The relationship between particulate matter and respiratory diseases has been the subject of numerous studies, but these studies have produced inconsistent findings. The purpose of this systematic review was to examine the connection between outdoor particulate matter (PM2.5 and PM10) exposure and respiratory disorders (COPD, lung cancer, LRIs, and COVID-19). For this purpose, we conducted a literature search between 2012 and 2022 in PubMed, Web of Science, and Scopus. Out of the 58 studies that were part of the systematic review, meta-analyses were conducted on 53 of them. A random effect model was applied separately for each category of study design to assess the pooled association between exposure to PM2.5 and PM10 and respiratory diseases. Based on time-series and cohort studies, which are the priorities of the strength of evidence, a significant relationship between the risk of respiratory diseases (COPD, lung cancer, and COVID-19) was observed (COPD: pooled HR = 1.032, 95% CI: 1.004-1.061; lung cancer: pooled HR = 1.017, 95% CI: 1.015-1.020; and COVID-19: pooled RR = 1.004, 95% CI: 1.002-1.006 per 1 μg/m3 increase in PM2.5). Also, a significant relationship was observed between PM10 and respiratory diseases (COPD, LRIs, and COVID-19) based on time-series and cohort studies. Although the number of studies in this field is limited, which requires more investigations, it can be concluded that outdoor particulate matter can increase the risk of respiratory diseases.
Collapse
Affiliation(s)
- Pegah Nakhjirgan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
He Y, Zhang P, Yang J, Wang S, Li J. Fabrication of MnO 2 coating on aluminum honeycomb for fast catalytic decomposition of ozone at room temperature. J Environ Sci (China) 2023; 134:34-43. [PMID: 37673531 DOI: 10.1016/j.jes.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 09/08/2023]
Abstract
Herein, the coating of MnO2 nanomaterials on the surface of aluminum honeycomb was carried out to meet the requirements of high air velocity, low pressure drop and high activity in ozone removal scenarios. A commercially readily available waterborne silica sol mixed with waterborne acrylate latex was creatively utilized as the binder. A series of coating samples were prepared by spray coating method and evaluated focusing on their adhesion strength and catalytic activity towards ozone decomposition in an air duct at room temperature, by varying MnO2/binder mass ratio and number of sprayings. It was found that the adhesion strength of the catalytic coatings on the aluminum honeycomb increased with the increase of binder mass ratio, but the increased binder made the catalyst particles closely packed, resulting in reduced exposure of active sites and decrease of ozone conversion. Accordingly, catalyst slurry with 81.8 wt.% MnO2 in dry coating and spraying times of two were determined as the optimal process parameters. As-prepared aluminum honeycomb filter with MnO2 layer of 50 µm thickness achieved ozone conversion of 29.3%±1.7% under conditions of air velocity 3.0 m/sec, relative humidity ∼50%, room temperature (26°C) and initial ozone concentration of 200 ppbV. This filter can be well adaptable to indoor air purification equipment operating at high air velocity with low wind resistance.
Collapse
Affiliation(s)
- Yunjuan He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| | - Jie Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shan Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinge Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Horne J, Dunne N, Singh N, Safiuddin M, Esmaeili N, Erenler M, Ho I, Luk E. Building parameters linked with indoor transmission of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2023; 238:117156. [PMID: 37717799 DOI: 10.1016/j.envres.2023.117156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The rapid spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the importance of understanding and adapting to the indoor remediation of transmissible diseases to decrease the risk for future pandemic threats. While there were many precautions in place to hinder the spread of COVID-19, there has also been a substantial increase of new research on SARS-CoV-2 that can be utilized to further mitigate the transmission risk of this novel virus. This review paper aims to identify the building parameters of indoor spaces that could have considerable influence on the transmission of SARS-CoV-2. The following building parameters have been identified and analyzed, emphasizing their link with the indoor transmission of SARS-CoV-2: temperature and relative humidity, temperature differences between rooms, ventilation rate and access to natural ventilation, occupant density, surface type and finish, airflow direction and speed, air stability, indoor air pollution, central air conditioning systems, capacity of air handling system and HVAC filter efficiency, edge sealing of air filters, room layout and interior design, and compartmentalization of interior space. This paper also explains the interactions of SARS-CoV-2 with indoor environments and its persistence. Furthermore, the modifications of the key building parameters have been discussed for controlling the transmission of SARS-CoV-2 in indoor spaces. Understanding the information provided in this paper is crucial to develop effective health and safety measures that will aid in infection prevention.
Collapse
Affiliation(s)
- Jacqueline Horne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nicholas Dunne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nirmala Singh
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Md Safiuddin
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada.
| | - Navid Esmaeili
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Merve Erenler
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Ian Ho
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| | - Edwin Luk
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| |
Collapse
|
26
|
Wong WM, Wang X, Wang Y. The intersection of COVID-19 and air pollution: A systematic literature network analysis and roadmap for future research. ENVIRONMENTAL RESEARCH 2023; 237:116839. [PMID: 37611787 DOI: 10.1016/j.envres.2023.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
This paper employs systematic literature network analysis, including a literature review and bibliometric network analysis, to explore the COVID-19 and air pollution literature. A total of 1208 relevant documents from the Scopus database were analyzed using VOSviewer and SciMAT to examine author, keyword, and country interconnections. The paper addresses three research questions: (1) the latest studies on COVID-19 and air pollution, (2) influential authors, documents, and sources in the field, and (3) the study's findings as a roadmap for future research. Visual representations of author and country networks highlight influential entities based on citation rate. Keyword cluster analysis via VOSviewer summarizes connections based on link strength. The strategic diagram generated by SciMAT offers insights into future research directions in specific thematic keywords: (1) air pollution, (2) nitrogen dioxide, (3) epidemiology, and (4) atmospheric aerosol. This analysis enhances understanding of COVID-19 and air pollution and guides future research endeavors.
Collapse
Affiliation(s)
| | - Xing Wang
- Krirk University, Thailand; Shandong Agriculture and Engineering University, China
| | | |
Collapse
|
27
|
Miyashita L, Foley G, Semple S, Gibbons JM, Pade C, McKnight Á, Grigg J. Curbside particulate matter and susceptibility to SARS-CoV-2 infection. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100141. [PMID: 37781647 PMCID: PMC10509961 DOI: 10.1016/j.jacig.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/22/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023]
Abstract
Background Biologic plausibility for the association between exposure to particulate matter (PM) less than 10 μm in aerodynamic diameter (PM10) and coronavirus disease 2019 (COVID-19) morbidity in epidemiologic studies has not been determined. The upregulation of angiotensin-converting enzyme 2 (ACE2), the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) entry receptor on host cells, by PM10 is a putative mechanism. Objective We sought to assess the effect of PM10 on SARS-CoV-2 infection of cells in vitro. Methods PM10 from the curbside of London's Marylebone Road and from exhaust emissions was collected by cyclone. A549 cells, human primary nasal epithelial cells (HPNEpCs), SARS-CoV-2-susceptible Vero-E6 and Calu3 cells were cultured with PM10. ACE2 expression (as determined by median fluorescent intensity) was assessed by flow cytometry, and ACE2 mRNA transcript level was assessed by PCR. The role of oxidative stress was determined by N-acetyl cysteine. The cytopathic effect of SARS-CoV-2 (percentage of infection enhancement) and expression of SARS-CoV-2 genes' open reading frame (ORF) 1ab, S protein, and N protein (focus-forming units/mL) were assessed in Vero-E6 cells. Data were analyzed by either the Mann-Whitney U test or Kruskal-Wallis test with the Dunn multiple comparisons test. Results Curbside PM10 at concentrations of 10 μg/mL or more increased ACE2 expression in A549 cells (P = .0021). Both diesel PM10 and curbside PM10 in a concentration of 10 μg/mL increased ACE2 expression in HPNEpCs (P = .0022 and P = .0072, respectively). ACE2 expression simulated by curbside PM10 was attenuated by N-acetyl cysteine in HPNEpCs (P = .0464). Curbside PM10 increased ACE2 expression in Calu3 cells (P = .0256). In Vero-E6 cells, curbside PM10 increased ACE2 expression (P = .0079), ACE2 transcript level (P = .0079), SARS-CoV-2 cytopathic effect (P = .0002), and expression of the SARS-CoV-2 genes' ORF1ab, S protein, and N protein (P = .0079). Conclusions Curbside PM10 increases susceptibility to SARS-COV-2 infection in vitro.
Collapse
Affiliation(s)
- Lisa Miyashita
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Gary Foley
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sean Semple
- Institute for Social Marketing, University of Stirling, Stirling, United Kingdom
| | - Joseph M. Gibbons
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Corinna Pade
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Áine McKnight
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Grigg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
28
|
Cho SH, Oh WO, Suk M, Park SK. Development and Effectiveness of the School-Based Education Program for Coping With Particulate Matter. THE JOURNAL OF SCHOOL HEALTH 2023; 93:1016-1028. [PMID: 36948789 DOI: 10.1111/josh.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Adolescents are considered to be vulnerable to particulate matter (PM). This study aims to develop and verify the effectiveness of the "school-based education program for coping with particulate matter (SEPC_PM)." This program was designed by employing the health belief model. METHODS High school students between the ages of 15 and 18 in South Korea participated in the program. This study employed a nonequivalent control group pretest-posttest design. A total of 113 students participated in the study; of these, 56 students participated in the intervention group, and 57 in the control group. The intervention group received 8 intervention sessions the SEPC_PM over the course of 4 weeks. RESULTS After the completion of the program, the intervention group's knowledge about PM showed a statistically significant increase (t = 4.79, p < .001). The practice of engaging in health-managing behaviors to protect against PM also showed statistically significant improvement in the intervention group, with the greatest progress in practicing precaution when outdoors (t = 2.22, p = .029). No statistically significant changes were observed regarding other dependent variables. However, a subdomain of the variable of perceived self-efficacy for engaging in health-managing behaviors to protect against PM (degree of body cleansing after returning home) demonstrated a statistically significant increase in the intervention group (t = 1.99, p = .049). CONCLUSIONS The SEPC_PM may be proposed for incorporation into regular high school curricula to improve students' health by encouraging them to take necessary actions against PM.
Collapse
Affiliation(s)
- Soo Hyun Cho
- Yumkwang Girls' Meditech High School, Wolgye-ro 45-9, Nowon-gu, Seoul, 01874, South Korea
| | - Won-Oak Oh
- College of Nursing, Korea University Nursing Research Institute, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Minhyun Suk
- College of Nursing, CHA University, Haeryong-ro 120, Pocheon-si, Gyeonggi Province, 11160, South Korea
| | - Soo Kyung Park
- College of Nursing, Korea University Nursing Research Institute, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
29
|
Abril GA, Mateos AC, Tavera Busso I, Carreras HA. Environmental, meteorological and pandemic restriction-related variables affecting SARS-CoV-2 cases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115938-115949. [PMID: 37897573 DOI: 10.1007/s11356-023-30578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Three years have passed since the outbreak of Coronavirus Disease 2019 (COVID-19) brought the world to standstill. In most countries, the restrictions have ended, and the immunity of the population has increased; however, the possibility of new dangerous variants emerging remains. Therefore, it is crucial to develop tools to study and forecast the dynamics of future pandemics. In this study, a generalized additive model (GAM) was developed to evaluate the impact of meteorological and environmental variables, along with pandemic-related restrictions, on the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Córdoba, Argentina. The results revealed that mean temperature and vegetation cover were the most significant predictors affecting SARS-CoV-2 cases, followed by government restriction phases, days of the week, and hours of sunlight. Although fine particulate matter (PM2.5) and NO2 were less related, they improved the model's predictive power, and a 1-day lag enhanced accuracy metrics. The models exhibited strong adjusted coefficients of determination (R2adj) but did not perform as well in terms of root-mean-square error (RMSE). This suggests that the number of cases may not be the primary variable for controlling the spread of the disease. Furthermore, the increase in positive cases related to policy interventions may indicate the presence of lockdown fatigue. This study highlights the potential of data science as a management tool for identifying crucial variables that influence epidemiological patterns and can be monitored to prevent an overload in the healthcare system.
Collapse
Affiliation(s)
- Gabriela Alejandra Abril
- IMBIV, Instituto Multidisciplinario de Biología Vegetal, Av. Vélez Sarsfield 1611, X5016 GCA Cordoba, Argentina.
| | - Ana Carolina Mateos
- IMBIV, Instituto Multidisciplinario de Biología Vegetal, Av. Vélez Sarsfield 1611, X5016 GCA Cordoba, Argentina
| | - Iván Tavera Busso
- IMBIV, Instituto Multidisciplinario de Biología Vegetal, Av. Vélez Sarsfield 1611, X5016 GCA Cordoba, Argentina
| | - Hebe Alejandra Carreras
- IMBIV, Instituto Multidisciplinario de Biología Vegetal, Av. Vélez Sarsfield 1611, X5016 GCA Cordoba, Argentina
| |
Collapse
|
30
|
Popescu IM, Baditoiu LM, Reddy SR, Nalla A, Popovici ED, Margan MM, Anghel M, Laitin SMD, Toma AO, Herlo A, Fericean RM, Baghina N, Anghel A. Environmental Factors Influencing the Dynamics and Evolution of COVID-19: A Systematic Review on the Study of Short-Term Ozone Exposure. Healthcare (Basel) 2023; 11:2670. [PMID: 37830707 PMCID: PMC10572520 DOI: 10.3390/healthcare11192670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
The potential influence of environmental factors, particularly air pollutants such as ozone (O3), on the dynamics and progression of COVID-19 remains a significant concern. This study aimed to systematically review and analyze the current body of literature to assess the impact of short-term ozone exposure on COVID-19 transmission dynamics and disease evolution. A rigorous systematic review was conducted in March 2023, covering studies from January 2020 to January 2023 found in PubMed, Web of Science, and Scopus. We followed the PRISMA guidelines and PROSPERO criteria, focusing exclusively on the effects of short-term ozone exposure on COVID-19. The literature search was restricted to English-language journal articles, with the inclusion and exclusion criteria strictly adhered to. Out of 4674 identified studies, 18 fulfilled the inclusion criteria, conducted across eight countries. The findings showed a varied association between short-term ozone exposure and COVID-19 incidence, severity, and mortality. Some studies reported a higher association between ozone exposure and incidence in institutional settings (OR: 1.06, 95% CI: 1.00-1.13) compared to the general population (OR: 1.00, 95% CI: 0.98-1.03). The present research identified a positive association between ozone exposure and both total and active COVID-19 cases as well as related deaths (coefficient for cases: 0.214; for recoveries: 0.216; for active cases: 0.467; for deaths: 0.215). Other studies also found positive associations between ozone levels and COVID-19 cases and deaths, while fewer reports identified a negative association between ozone exposure and COVID-19 incidence (coefficient: -0.187) and mortality (coefficient: -0.215). Conversely, some studies found no significant association between ozone exposure and COVID-19, suggesting a complex and potentially region-specific relationship. The relationship between short-term ozone exposure and COVID-19 dynamics is complex and multifaceted, indicating both positive and negative associations. These variations are possibly due to demographic and regional factors. Further research is necessary to bridge current knowledge gaps, especially considering the potential influence of short-term O3 exposure on COVID-19 outcomes and the broader implications on public health policy and preventive strategies during pandemics.
Collapse
Affiliation(s)
- Irina-Maria Popescu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Luminita Mirela Baditoiu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sandhya Rani Reddy
- Department of General Medicine, Prathima Institute of Medical Sciences, Nagunur 505417, Telangana, India;
| | - Akhila Nalla
- Department of General Medicine, MNR Medical College, Sangareddy 502294, Telangana, India;
| | - Emilian Damian Popovici
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Madalin-Marius Margan
- Department of Functional Sciences, Discipline of Public Health, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Mariana Anghel
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sorina Maria Denisa Laitin
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Ana-Olivia Toma
- Department of Dermatology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alexandra Herlo
- Department of Infectious Diseases, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Roxana Manuela Fericean
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Nina Baghina
- National Meteorological Administration of Romania, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania;
| | - Andrei Anghel
- Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
31
|
Gutman L, Pauly V, Papazian L, Roch A. Effects of ambient air pollutants on ARDS incidence and outcome: a narrative review. Ann Intensive Care 2023; 13:84. [PMID: 37704926 PMCID: PMC10499767 DOI: 10.1186/s13613-023-01182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Exposure to air pollutants promotes inflammation, cancer, and mortality in chronic diseases. Acute respiratory distress syndrome (ARDS) is a common condition among intensive care unit patients and is associated with a high mortality rate. ARDS is characterized by significant lung inflammation, which can be replicated in animal models by acute exposure to high doses of various air pollutants. Recently, several clinical studies have been conducted in different countries to investigate the role of chronic or acute air pollutant exposure in enhancing both ARDS incidence and severity. RESULTS Chronic exposure studies have mainly been conducted in the US and France. The results of these studies suggest that some air pollutants, notably ozone, nitrogen dioxide, and particulate matter, increase susceptibility to ARDS and associated mortality. Furthermore, their impact may differ according to the cause of ARDS. A cohort study conducted in an urbanized zone in China showed that exposure to very high levels of air pollutants in the few days preceding intensive care unit admission was associated with an increased incidence of ARDS. The effects of acute exposure are more debatable regarding ARDS incidence and severity. CONCLUSION There is a likely relationship between air pollutant exposure and ARDS incidence and severity. However, further studies are required to determine which pollutants are the most involved and which patients are the most affected. Due to the prevalence of ARDS, air pollutant exposure may have a significant impact and could be a key public health issue.
Collapse
Affiliation(s)
- Laëtitia Gutman
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Chemin Des Bourrely, 13015, Marseille, France.
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France.
| | - Vanessa Pauly
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
- Unité d'Analyse Des Données de Santé, Assistance Publique, Hôpitaux de Marseille, 13005, Marseille, France
| | - Laurent Papazian
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
- Médecine Intensive Réanimation, Centre Hospitalier de Bastia, 20600, Bastia, Corsica, France
| | - Antoine Roch
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Chemin Des Bourrely, 13015, Marseille, France
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
| |
Collapse
|
32
|
Marchetti S, Gualtieri M, Pozzer A, Lelieveld J, Saliu F, Hansell AL, Colombo A, Mantecca P. On fine particulate matter and COVID-19 spread and severity: An in vitro toxicological plausible mechanism. ENVIRONMENT INTERNATIONAL 2023; 179:108131. [PMID: 37586275 DOI: 10.1016/j.envint.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
COVID-19 pandemic had a significant impact on global public health. The spread of the disease was related to the high transmissibility of SARS-CoV-2 virus but incidence and mortality rate suggested a possible relationship with environmental factors. Air pollution has been hypothesized to play a role in the transmission of the virus and the resulting severity of the disease. Here we report a plausible in vitro toxicological mode of action by which fine particulate matter (PM2.5) could promote a higher infection rate of SARS-CoV-2 and severity of COVID-19 disease. PM2.5 promotes a 1.5 fold over-expression of the angiotensin 2 converting enzyme (ACE2) which is exploited by viral particles to enter human lung alveolar cells (1.5 fold increase in RAB5 protein) and increases their inflammatory state (IL-8 and NF-kB protein expression). Our results provide a basis for further exploring the possible synergy between biological threats and air pollutants and ask for a deeper understanding of how air quality could influence new pandemics in the future.
Collapse
Affiliation(s)
- S Marchetti
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - M Gualtieri
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy.
| | - A Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - J Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - F Saliu
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - A L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, United Kingdom; National Institute for Health Research NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - A Colombo
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - P Mantecca
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| |
Collapse
|
33
|
Zahid RA, Ali Q, Saleem A, Sági J. Impact of geographical, meteorological, demographic, and economic indicators on the trend of COVID-19: A global evidence from 202 affected countries. Heliyon 2023; 9:e19365. [PMID: 37810034 PMCID: PMC10558342 DOI: 10.1016/j.heliyon.2023.e19365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Research problem Public health and the economy face immense problems because of pathogens in history globally. The outbreak of novel SARS-CoV-2 emerged in the form of coronavirus (COVID-19), which affected global health and the economy in almost all countries of the world. Study design The objective of this research is to examine the trend of COVID-19, deaths, and transmission rates in 202 affected countries. The virus-affected countries were grouped according to their continent, meteorological indicators, demography, and income. This is quantitative research in which we have applied the Poisson regression method to assess how temperature, precipitation, population density, and income level impact COVID-19 cases and fatalities. This has been done by using a semi-parametric and additive polynomial model. Findings The trend analysis depicts that COVID-19 cases per million were comparatively higher for two groups of countries i.e., (a) average temperature below 7.5 °C and (b) average temperature between 7.5 °C and 15 °C, up to the 729th day of the outbreak. However, COVID-19 cases per million were comparatively low in the countries having an average temperature between 22.5 °C and 30 °C. The day-wise trend was comparatively higher for the countries having average precipitation between (a) 1 mm and 750 mm and (b) 750 mm and 1500 mm up to the 729th day of the outbreak. The day-wise trend was comparatively higher for the countries having more than 1000 people per sq. km. Discussing the COVID-19 cases per million, the day-wise trend was higher for the HICs, followed by UMICs, LMICs, and LIC. Conclusion The study highlights the need for targeted interventions and responses based on the specific circumstances and factors affecting each country, including their geographical location, temperature, precipitation levels, population density, and per capita income.
Collapse
Affiliation(s)
- R.M. Ammar Zahid
- School of Accounting, Yunnan Technology and Business University, Yunnan, PR China
| | - Qamar Ali
- Department of Economics, Virtual University of Pakistan, Faisalabad Campus 38000, Pakistan
| | - Adil Saleem
- Doctoral School of Economics and Regional Studies, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Judit Sági
- Faculty of Finance and Accountancy, Budapest Business University — University of Applied Sciences, H-1149 Budapest, Hungary
| |
Collapse
|
34
|
Bailey JM, Wang L, McDonald JM, Gray JS, Petrie JG, Martin ET, Savitz DA, Karrer TA, Fisher KA, Geiger MJ, Wasilevich EA. Immune response to COVID-19 vaccination in a population with a history of elevated exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:725-736. [PMID: 37337047 PMCID: PMC10541329 DOI: 10.1038/s41370-023-00564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to lower vaccine-induced antibody concentrations in children, while data from adults remains limited and equivocal. Characteristics of PFAS exposure and age at vaccination may modify such effects. OBJECTIVE We used the mass administration of novel COVID-19 vaccines to test the hypothesis that prior exposure to environmentally-relevant concentrations of PFAS affect antibody response to vaccines in adolescents and adults. METHODS Between April and June 2021, 226 participants aged 12-90 years with a history of exposure to PFAS in drinking water and who received an mRNA COVID-19 vaccine participated in our prospective cohort study. SARS-CoV-2 anti-spike and anti-nucleocapsid antibodies (IgG) were quantified before the first and second vaccine doses and again at two follow-ups in the following months (up to 103 days post dose 1). Serum PFAS concentrations (n = 39 individual PFAS) were measured once for each participant during baseline, before their first vaccination. The association between PFAS exposure and immune response to vaccination was investigated using linear regression and generalized estimating equation (GEE) models with adjustment for covariates that affect antibody response. PFAS mixture effects were assessed using weighted quantile sum and Bayesian kernel machine regression methods. RESULTS The geometric mean (standard deviation) of perfluorooctane sulfonate and perfluorooctanoic acid serum concentrations in this population was 10.49 (3.22) and 3.90 (4.90) µg/L, respectively. PFAS concentrations were not associated with peak anti-spike antibody response, the initial increase in anti-spike antibody response following vaccination, or the waning over time of the anti-spike antibody response. Neither individual PFAS concentrations nor their evaluation as a mixture was associated with antibody response to mRNA vaccination against COVID-19. IMPACT STATEMENT Given the importance of understanding vaccine response among populations exposed to environmental contaminants and the current gaps in understanding this relationship outside of early life/childhood vaccinations, our manuscript contributes meaningful data from an adolescent and adult population receiving a novel vaccination.
Collapse
Affiliation(s)
- Jordan M Bailey
- Division of Environmental Health, Michigan Department of Health and Human Services, Lansing, MI, USA.
| | - Ling Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer M McDonald
- Division of Environmental Health, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Jennifer S Gray
- Division of Environmental Health, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Joshua G Petrie
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Timothy A Karrer
- Division of Chemistry and Toxicology, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Keri A Fisher
- Division of Chemistry and Toxicology, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Matthew J Geiger
- Division of Chemistry and Toxicology, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Elizabeth A Wasilevich
- Division of Environmental Health, Michigan Department of Health and Human Services, Lansing, MI, USA
| |
Collapse
|
35
|
Li W, Dai F, Diehl JA, Chen M, Bai J. Exploring the spatial pattern of community urban green spaces and COVID-19 risk in Wuhan based on a random forest model. Heliyon 2023; 9:e19773. [PMID: 37809821 PMCID: PMC10559124 DOI: 10.1016/j.heliyon.2023.e19773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Since 2019, COVID-19 has triggered a renewed investigation of the urban environment and disease outbreak. While the results have been inconsistent, it has been observed that the quantity of urban green spaces (UGS) is correlated with the risk of COVID-19. However, the spatial pattern has largely been ignored, especially on the community scale. In high-density communities where it is difficult to increase UGS quantity, UGS spatial pattern could be a crucial predictive variable. Thus, this study investigated the relative contribution of quantity and spatial patterns of UGS on COVID-19 risk at the community scale using a random forest (RF) regression model based on (n = 44) communities in Wuhan. Findings suggested that 8 UGS indicators can explain 35% of the risk of COVID-19, and the four spatial pattern metrics that contributed most were core, edge, loop, and branch whereas UGS quantity contributed least. The potential mechanisms between UGS and COVID-19 are discussed, including the influence of UGS on residents' social distance and environmental factors in the community. This study offers a new perspective on optimizing UGS for public health and sustainable city design to combat pandemics and inspire future research on the specific relationship between UGS spatial patterns and pandemics and therefore help establish mechanisms of UGS and pandemics.
Collapse
Affiliation(s)
- Wenpei Li
- Department of Architecture, College of Design and Engineering, National University of Singapore, 117566, Singapore
| | - Fei Dai
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan, 430074, PR China
- Hubei Engineering and Technology Research Center of Urbanization, Wuhan, 430074, PR China
| | - Jessica Ann Diehl
- Department of Architecture, College of Design and Engineering, National University of Singapore, 117566, Singapore
| | - Ming Chen
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan, 430074, PR China
- Hubei Engineering and Technology Research Center of Urbanization, Wuhan, 430074, PR China
| | | |
Collapse
|
36
|
Oduniyi OS, Riveros JM, Hassan SM, Çıtak F. Testing the theory of Kuznet curve on environmental pollution during pre- and post-Covid-19 era. Sci Rep 2023; 13:12851. [PMID: 37553418 PMCID: PMC10409723 DOI: 10.1038/s41598-023-38962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Covid-19 has brought about significant changes in people's daily lives, leading to a slowdown in economic activities and the implementation of restrictions and lockdowns. As a result, there have been noticeable effects on the environment. In this study, we examine the impact of Covid-19 total cases on the monthly average of carbon monoxide emissions in developed economies known for heavy pollution, covering the period from 2014 to 2023. We apply the Ambiental Kuznets curve approach to analyze the data. By employing different panel estimation techniques such as fixed effects and Driscoll-Kraay regressions, we observe a marked shift in environmental dynamics during the post-Covid era. This shift alters the statistical significance of the N-shaped Kuznets curve, rendering the relationship between economic activity and environmental impact non-significant. Interestingly, the Covid-related variables utilized in the various estimations are not statistically significant in explaining the long-term environmental effects.
Collapse
Affiliation(s)
| | - John M Riveros
- Estudios Y Evaluación de La Gestión Pública Colombian, Colombia, USA
| | | | | |
Collapse
|
37
|
Luo J, Zhang H, Liu Z, Zhang Z, Pan Y, Liang X, Wu S, Xu H, Xu S, Jiang C. A review of regeneration mechanism and methods for reducing soot emissions from diesel particulate filter in diesel engine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86556-86597. [PMID: 37421534 DOI: 10.1007/s11356-023-28405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
With the global emphasis on environmental protection and the proposal of the climate goal of "carbon neutrality," countries around the world are calling for reductions in carbon dioxide, nitrogen oxide, and particulate matter pollution. These pollutants have severe impacts on human lives and should be effectively controlled. Engine exhaust is the most serious pollution source, and diesel engine is an important contributor to particulate matter. Diesel particulate filter (DPF) technology has proven to be an effective technology for soot control at the present and in the future. Firstly, the exacerbating effect of particulate matter on human infectious disease viruses is discussed. Then, the latest developments in the influence of key factors on DPF performance are reviewed at different observation scales (wall, channel, and entire filter). In addition, current soot catalytic oxidant schemes are presented in the review, and the significance of catalyst activity and soot oxidation kinetic models are highlighted. Finally, the areas that need further research are determined, which has important guiding significance for future research. Current catalytic technologies are focused on stable materials with high mobility of oxidizing substances and low cost. The challenge of DPF optimization design is to accurately calculate the balance between soot and ash load, DPF regeneration control strategy, and exhaust heat management strategy.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhonghang Liu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China.
| | - Yajuan Pan
- School of Mechanical Engineering, Liuzhou Institute of Technology, Liuzhou, 545616, China
| | - Xiguang Liang
- Liuzhou Jindongfang Automotive Parts Co., Ltd., Liuzhou, 545036, China
| | - Shizhuo Wu
- Liuzhou Branch, Aisn AUTO R&D Co., Ltd., Liuzhou, 545616, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
38
|
Sánchez-de Prada L, Eiros-Bachiller JM, Tamayo-Velasco Á, Martín-Fernández M, Álvarez FJ, Giner-Baixauli C, Tamayo E, Resino S, Alvaro-Meca A. Environmental factors are associated to hospital outcomes in COVID-19 patients during lockdown and post-lockdown in 2020: A nationwide study. ENVIRONMENTAL RESEARCH 2023; 229:115904. [PMID: 37080281 PMCID: PMC10112945 DOI: 10.1016/j.envres.2023.115904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE This study analyzed, at a postcode detailed level, the relation-ship between short-term exposure to environmental factors and hospital ad-missions, in-hospital mortality, ICU admission, and ICU mortality due to COVID-19 during the lockdown and post-lockdown 2020 period in Spain. METHODS We performed a nationwide population-based retrospective study on 208,744 patients admitted to Spanish hospitals due to COVID-19 based on the Minimum Basic Data Set (MBDS) during the first two waves of the pandemic in 2020. Environmental data were obtained from Copernicus Atmosphere Monitoring Service. The association was assessed by a generalized additive model. RESULTS PM2.5 was the most critical environmental factor related to hospital admissions and hospital mortality due to COVID-19 during the lockdown in Spain, PM10, NO2, and SO2and also showed associations. The effect was considerably reduced during the post-lockdown period. ICU admissions in COVID-19 patients were mainly associated with PM2.5, PM10, NO2, and SO2 during the lockdown as well. During the lockdown, exposure to PM2.5 and PM10 were the most critical environmental factors related to ICU mortality in COVID-19. CONCLUSION Short-term exposure to air pollutants impacts COVID-19 out-comes during the lockdown, especially PM2.5, PM10, NO2, and SO2. These pollutants are associated with hospital admission, hospital mortality and ICU admission, while ICU mortality is mainly associated with PM2.5 and PM10. Our findings reveal the importance of monitoring air pollutants in respiratory infectious diseases.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Biomedicine Group in Critical Care (BioCritic), Spain
| | | | - Álvaro Tamayo-Velasco
- Biomedicine Group in Critical Care (BioCritic), Spain; Department of Haematology and Hemotherapy, Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Martín-Fernández
- Biomedicine Group in Critical Care (BioCritic), Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain.
| | - F Javier Álvarez
- Biomedicine Group in Critical Care (BioCritic), Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Carlos Giner-Baixauli
- Department of Statistics and Operations Research, Faculty of Mathematics, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Tamayo
- Biomedicine Group in Critical Care (BioCritic), Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Salvador Resino
- Biomedicine Group in Critical Care (BioCritic), Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unit of Viral Infection and Immunity, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alejandro Alvaro-Meca
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| |
Collapse
|
39
|
DiSalvatore R, Bauer SK, Ahn JE, Jahan K. Development of a COVID-19 Vulnerability Index (CVI) for the Counties and Residents of New Jersey, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6312. [PMID: 37444160 PMCID: PMC10341843 DOI: 10.3390/ijerph20136312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The coronavirus disease 2019, or COVID-19, has impacted countless aspects of everyday life since it was declared a global pandemic by the World Health Organization in March of 2020. From societal to economic impacts, COVID-19 and its variants will leave a lasting impact on our society and the world. During the height of the pandemic, it became increasingly evident that indices, such as the Center for Disease Control's (CDC) Social Vulnerability Index (SVI), were instrumental in predicting vulnerabilities within a community. The CDC's SVI provides important estimates on which communities will be more susceptible to 'hazard events' by compiling a variety of data from the U.S. Census and the American Community Survey. The CDC's SVI does not directly consider the susceptibility of a community to a global pandemic, such as the COVID-19 pandemic, due to the four themes and 15 factors that contribute to the index. Thus, the objective of this research is to develop a COVID-19 Vulnerability Index, or CVI, to evaluate a community's susceptibility to future pandemics. With 15 factors considered for CDC's SVI, 26 other factors were also considered for the development of the CVI that covered themes such as socioeconomic status, environmental factors, healthcare capacity, epidemiological factors, and disability. All factors were equally weighted to calculate the CVI based on New Jersey. The CVI was validated by comparing index results to real-world COVID-19 data from New Jersey's 21 counties and CDC's SVI. The results present a stronger positive linear relationship between the CVI and the New Jersey COVID-19 mortality/population and infection/population than there is with the SVI. The results of this study indicate that Essex County has the highest CVI, and Hunterdon County has the lowest CVI. This is due to factors such as disparity in wealth, population density, minority status, and housing conditions, as well as other factors that were used to compose the CVI. The implications of this research will provide a critical tool for decision makers to utilize in allocating resources should another global pandemic occur. This CVI, developed through this research, can be used at the county, state, and global levels to help measure the vulnerability to future pandemics.
Collapse
Affiliation(s)
- Remo DiSalvatore
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA; (R.D.); (K.J.)
| | - Sarah K. Bauer
- Department of Environmental and Civil Engineering, Mercer University, Macon, GA 31207, USA;
| | - Jeong Eun Ahn
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA; (R.D.); (K.J.)
| | - Kauser Jahan
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA; (R.D.); (K.J.)
| |
Collapse
|
40
|
Vos S, De Waele E, Goeminne P, Bijnens EM, Bongaerts E, Martens DS, Malina R, Ameloot M, Dams K, De Weerdt A, Dewyspelaere G, Jacobs R, Mistiaen G, Jorens P, Nawrot TS. Pre-admission ambient air pollution and blood soot particles predict hospitalisation outcomes in COVID-19 patients. Eur Respir J 2023; 62:2300309. [PMID: 37343978 PMCID: PMC10288811 DOI: 10.1183/13993003.00309-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Air pollution exposure is one of the major risk factors for aggravation of respiratory diseases. We investigated whether exposure to air pollution and accumulated black carbon (BC) particles in blood were associated with coronavirus disease 2019 (COVID-19) disease severity, including the risk for intensive care unit (ICU) admission and duration of hospitalisation. METHODS From May 2020 until March 2021, 328 hospitalised COVID-19 patients (29% at intensive care) were recruited from two hospitals in Belgium. Daily exposure levels (from 2016 to 2019) for particulate matter with aerodynamic diameter <2.5 µm and <10 µm (PM2.5 and PM10, respectively), nitrogen dioxide (NO2) and BC were modelled using a high-resolution spatiotemporal model. Blood BC particles (internal exposure to nano-sized particles) were quantified using pulsed laser illumination. Primary clinical parameters and outcomes included duration of hospitalisation and risk of ICU admission. RESULTS Independent of potential confounders, an interquartile range (IQR) increase in exposure in the week before admission was associated with increased duration of hospitalisation (PM2.5 +4.13 (95% CI 0.74-7.53) days, PM10 +4.04 (95% CI 1.24-6.83) days and NO2 +4.54 (95% CI 1.53-7.54) days); similar effects were observed for long-term NO2 and BC exposure on hospitalisation duration. These effect sizes for an IQR increase in air pollution on hospitalisation duration were equivalent to the effect of a 10-year increase in age on hospitalisation duration. Furthermore, for an IQR higher blood BC load, the OR for ICU admission was 1.33 (95% CI 1.07-1.65). CONCLUSIONS In hospitalised COVID-19 patients, higher pre-admission ambient air pollution and blood BC levels predicted adverse outcomes. Our findings imply that air pollution exposure influences COVID-19 severity and therefore the burden on medical care systems during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- S. Vos and E. De Waele contributed equally
| | - Elien De Waele
- Hospital VITAZ Sint-Niklaas, Sint-Niklaas, Belgium
- S. Vos and E. De Waele contributed equally
| | | | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Environmental Sciences, Faculty of Science, Open University, Heerlen, The Netherlands
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Robert Malina
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Karolien Dams
- Antwerp University Hospital, University of Antwerp (LEMP), Edegem, Belgium
| | - Annick De Weerdt
- Antwerp University Hospital, University of Antwerp (LEMP), Edegem, Belgium
| | | | - Rita Jacobs
- Antwerp University Hospital, University of Antwerp (LEMP), Edegem, Belgium
| | | | - Philippe Jorens
- Antwerp University Hospital, University of Antwerp (LEMP), Edegem, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Zhao S, Shi A, An H, Zhou H, Hu F. Does the low-carbon city pilot contribute to the blue sky defense? Evidence from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84595-84608. [PMID: 37368210 DOI: 10.1007/s11356-023-28262-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
China's goal of ecological civilization construction simultaneously faces the dual strategic tasks of pollution control and carbon reduction (PCCR). In addition to carbon reduction, does the low-carbon city pilot (LCCP) further contribute to the blue sky defense? This study investigates the impact of the LCCP on air pollution by employing a multiperiod difference-in-differences (DID) model based on data from 276 Chinese cities. The results show the following: (1) Compared with nonpilot areas, the LCCP reduces PM2.5 levels in pilot areas by approximately 1.50% on average, which is achieved by "industrial restructuring", "government investment in science and technology (S&T)", and "green lifestyle". (2) The LCCP has heterogeneous effects on air quality across cities with different resource endowments and industrial attributes, showing a greater air quality improvement in nonresource-based cities (NREB cities) and old industrial base cities (OIB cities) than in other city types. (3) The positive impact of the LCCP on air improvement in the pilot areas is derived from "pollution control effects" rather than "pollution transfer effects". This study provides useful policy implications for the comprehensive green transition and exploration of synergistic governance for PCCR in China.
Collapse
Affiliation(s)
- Shuang Zhao
- Business School, Hohai University, No.8, Focheng West Road, Jiangning District, Nanjing, 211100, Jiangsu, China
| | - Anna Shi
- Business School, Hohai University, No.8, Focheng West Road, Jiangning District, Nanjing, 211100, Jiangsu, China
| | - Haiyan An
- School of Economics and Management, Baoji University of Arts and Sciences, No.1, Gaoxin Road, Baoji, 721013, Shanxi, China
| | - Haiyan Zhou
- Modern Business Research Center, Zhejiang Gongshang University, No.18, Xuezheng Road, Qiantang District, Zhejiang, 310018, Hangzhou, China
| | - Feng Hu
- Institute of International Business and Economics Innovation and Governance, Shanghai University of International Business and Economics, No.620, Gubei Road, Changning District, Shanghai, 201620, China.
| |
Collapse
|
42
|
Sangkham S, Islam MA, Sarndhong K, Vongruang P, Hasan MN, Tiwari A, Bhattacharya P. Effects of fine particulate matter (PM 2.5) and meteorological factors on the daily confirmed cases of COVID-19 in Bangkok during 2020-2021, Thailand. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2023; 8:100410. [PMID: 38620170 PMCID: PMC10286573 DOI: 10.1016/j.cscee.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 04/17/2024]
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus, known as COVID-19, has disrupted public health, businesses, and economies worldwide due to its widespread transmission. While previous research has suggested a possible link between environmental factors and increased COVID-19 cases, the evidence regarding this connection remains inconclusive. The purpose of this research is to determine whether or not there is a connection between the presence of fine particulate matter (PM2.5) and meteorological conditions and COVID-19 infection rates in Bangkok, Thailand. The study employs a statistical method called Generalized Additive Model (GAM) to find a positive and non-linear association between RH, AH, and R and the number of verified COVID-19 cases. The impacts of the seasons (especially summer) and rainfall on the trajectory of COVID-19 cases were also highlighted, with an adjusted R-square of 0.852 and a deviance explained of 85.60%, both of which were statistically significant (p < 0.05). The study results assist in preventing the future seasonal spread of COVID-19, and public health authorities may use these findings to make informed decisions and assess their policies.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Kritsada Sarndhong
- Department of Community Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Patipat Vongruang
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 10044, Stockholm, Sweden
| |
Collapse
|
43
|
Castelli C, Castellini M, Comincioli N, Parisi ML, Pontarollo N, Vergalli S. Ecosystem degradation and the spread of Covid-19. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:836. [PMID: 37308607 PMCID: PMC10260383 DOI: 10.1007/s10661-023-11403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
The linkages between the emergence of zoonotic diseases and ecosystem degradation have been widely acknowledged by the scientific community and policy makers. In this paper we investigate the relationship between human overexploitation of natural resources, represented by the Human Appropriation of Net Primary Production Index (HANPP) and the spread of Covid-19 cases during the first pandemic wave in 730 regions of 63 countries worldwide. Using a Bayesian estimation technique, we highlight the significant role of HANPP as a driver of Covid-19 diffusion, besides confirming the well-known impact of population size and the effects of other socio-economic variables. We believe that these findings could be relevant for policy makers in their effort towards a more sustainable intensive agriculture and responsible urbanisation.
Collapse
Affiliation(s)
- Chiara Castelli
- The Vienna Institute for International Economic Studies, Vienna, Austria
| | - Marta Castellini
- Department of Economics and Management "Marco Fanno", University of Padua, Padua, Italy
- Fondazione Eni Enrico Mattei, Milan, Italy
| | - Nicola Comincioli
- Fondazione Eni Enrico Mattei, Milan, Italy
- Department of Economics and Management, University of Brescia, Brescia, Italy
| | - Maria Laura Parisi
- Department of Economics and Management, University of Brescia, Brescia, Italy
| | - Nicola Pontarollo
- Department of Economics and Management, University of Brescia, Brescia, Italy.
| | - Sergio Vergalli
- Fondazione Eni Enrico Mattei, Milan, Italy
- Department of Economics and Management, University of Brescia, Brescia, Italy
| |
Collapse
|
44
|
Alaniz AJ, Vergara PM, Carvajal JG, Carvajal MA. Unraveling the socio-environmental drivers during the early COVID-19 pandemic in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27969-0. [PMID: 37310602 DOI: 10.1007/s11356-023-27969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The effect of environmental and socioeconomic conditions on the global pandemic of COVID-19 had been widely studied, yet their influence during the early outbreak remains less explored. Unraveling these relationships represents a key knowledge to prevent potential outbreaks of similar pathogens in the future. This study aims to determine the influence of socioeconomic, infrastructure, air pollution, and weather variables on the relative risk of infection in the initial phase of the COVID-19 pandemic in China. A spatio-temporal Bayesian zero-inflated Poisson model is used to test for the effect of 13 socioeconomic, urban infrastructure, air pollution, and weather variables on the relative risk of COVID-19 disease in 122 cities of China. The results show that socioeconomic and urban infrastructure variables did not have a significant effect on the relative risk of COVID-19. Meanwhile, COVID-19 relative risk was negatively associated with temperature, wind speed, and carbon monoxide, while nitrous dioxide and the human modification index presented a positive effect. Pollution gases presented a marked variability during the study period, showing a decrease of CO. These findings suggest that controlling and monitoring urban emissions of pollutant gases is a key factor for the reduction of risk derived from COVID-19.
Collapse
Affiliation(s)
- Alberto J Alaniz
- Departamento de Ingeniería Geoespacial y Ambiental, Universidad de Santiago de Chile, Santiago, Chile.
- Centro de Formación Técnica del Medio ambiente, IDMA, Santiago, Chile.
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Departamento de Gestión Agraria, Facultad Tecnolִógica, Universidad de Santiago de Chile, Santiago, Chile.
| | - Pablo M Vergara
- Departamento de Gestión Agraria, Facultad Tecnolִógica, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge G Carvajal
- Departamento de Gestión Agraria, Facultad Tecnolִógica, Universidad de Santiago de Chile, Santiago, Chile
| | - Mario A Carvajal
- Departamento de Gestión Agraria, Facultad Tecnolִógica, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
45
|
Torres-Anguiano E, Sánchez-López I, Garduno-Robles A, Rivas-Carrillo JD, Rivera-León EA, Sánchez-Enríquez S, Ornelas-Hernández LF, Zazueta León-Quintero F, Salazar León-Quintero EN, Juárez-López GE, Sánchez-Zubieta FA, Ochoa-Bru M, Zepeda-Moreno A. SARS-CoV-2: Air pollution highly correlated to the increase in mortality. The case of Guadalajara, Jalisco, México. Infect Dis Model 2023; 8:445-457. [PMID: 37131453 PMCID: PMC10116164 DOI: 10.1016/j.idm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
Objectives To determine whether air pollution or changes in SARS-CoV-2 lineages lead to an increase in mortality. Methods Descriptive statistics were used to calculate rates of infection (2020-2021). RT-PCR was used to compare viral loads from October 2020 to February 2021. Next-generation sequencing (NGS) (n = 92) was used to examine and phylogenetically map SARS-CoV-2 lineages. A correlative "air pollution/temperature" index (I) was developed using regression analysis. PM2.5, PM10, O3, NO2, SO2, and CO concentrations were analyzed and compared to the mortality. Results The mortality rate during the last year was ∼32%. Relative SARS-CoV-2 viral loads increased in December 2020 and January 2021. NGS revealed that approximately 80% of SARS-CoV-2 linages were B.1.243 (33.7%), B1.1.222 (11.2%), B.1.1 (9%), B.1 (7%), B.1.1.159 (7%), and B.1.2 (7%). Two periods were analyzed, the prehigh- and high-mortality periods and no significant lineage differences or new lineages were found. Positive correlations of air pollution/temperature index values with mortality were found for IPM2.5 and IPM10. INO2. ISO2, and ICO but not for O3. Using ICO, we developed a model to predict mortality with an estimated variation of ∼±5 deaths per day. Conclusion The mortality rate in the MZG was highly correlated with air pollution indices and not with SARS-CoV-2 lineage.
Collapse
Affiliation(s)
- Elizabeth Torres-Anguiano
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Itzel Sánchez-López
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
| | - Jorge David Rivas-Carrillo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar Alfonso Rivera-León
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sergio Sánchez-Enríquez
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | | | - Fernando Zazueta León-Quintero
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | | | - Guillermo Enrique Juárez-López
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Fernando Antonio Sánchez-Zubieta
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Servicio de Hemato-Oncología Pediátrica, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Jalisco, Mexico
| | - Mariana Ochoa-Bru
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
46
|
Sanchez‐Vargas A, Mendez‐Astudillo J, López‐Vidal Y, López‐Carr D, Estrada F. Assessing the Effect of the U.S. Vaccination Program on the Coronavirus Positivity Rate With a Multivariate Framework. GEOHEALTH 2023; 7:e2022GH000771. [PMID: 37287700 PMCID: PMC10243209 DOI: 10.1029/2022gh000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
The factors influencing the incidence of COVID-19, including the impact of the vaccination programs, have been studied in the literature. Most studies focus on one or two factors, without considering their interactions, which is not enough to assess a vaccination program in a statistically robust manner. We examine the impact of the U.S. vaccination program on the SARS-CoV-2 positivity rate while simultaneously considering a large number of factors involved in the spread of the virus and the feedbacks among them. We consider the effects of the following sets of factors: socioeconomic factors, public policy factors, environmental factors, and non-observable factors. A time series Error Correction Model (ECM) was used to estimate the impact of the vaccination program at the national level on the positivity rate. Additionally, state-level ECMs with panel data were combined with machine learning techniques to assess the impact of the program and identify relevant factors to build the best-fitting models. We find that the vaccination program reduced the virus positivity rate. However, the program was partially undermined by a feedback loop in which increased vaccination led to increased mobility. Although some external factors reduced the positivity rate, the emergence of new variants increased the positivity rate. The positivity rate was associated with several forces acting simultaneously in opposite directions such as the number of vaccine doses administered and mobility. The existence of complex interactions, between the factors studied, implies that there is a need to combine different public policies to strengthen the impact of the vaccination program.
Collapse
Affiliation(s)
- A. Sanchez‐Vargas
- Institute of Economic ResearchNational Autonomous University of MexicoMexico CityMexico
| | - J. Mendez‐Astudillo
- Institute of Economic ResearchNational Autonomous University of MexicoMexico CityMexico
| | - Y. López‐Vidal
- Programa de Inmunología Molecular MicrobianaDepartamento de Microbiología y ParasitologíaFaculty of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - D. López‐Carr
- Department of GeographyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - F. Estrada
- Instituto de Ciencias de la Atmósfera y Cambio ClimáticoNational Autonomous University of MexicoMexico CityMexico
- Institute for Environmental StudiesVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Programa de Investigación en Cambio ClimáticoNational Autonomous University of MexicoMexico CityMexico
| |
Collapse
|
47
|
Arpaci I, Kilicarslan S, Aslan O, Ozturk I. Air pollution in marmara region before and during the COVID-19 outbreak. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:764. [PMID: 37249655 DOI: 10.1007/s10661-023-11377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The lockdowns and curfews during the COVID-19 pandemic have halted economic and transportation activities across the world. This study aims to investigate air pollution levels in the Marmara region, particularly in Istanbul, before and during the COVID-19 pandemic. The study used real data provided by the General Directorate of Meteorology and applied three machine learning algorithms (ANN, RBFreg, and SMOreg) to analyze air pollution data. In addition, a one-sample t-test was performed to compare air pollution levels before and during the COVID-19 pandemic in the Marmara region and Istanbul. The results of the study showed a significant reduction in the particulate matter (PM) value, which indicates the degree of air pollution, in both the Marmara region and Istanbul during the COVID-19 pandemic. The one-sample t-test results showed that the reduction in air pollution levels was statistically significant in both areas (t = 11.45, p < .001 for the Marmara region, and t = 3.188, p < .001 for Istanbul). These findings have important practical implications for decision-makers planning for a more sustainable environment. Overall, the study provides valuable insights into the impact of the COVID-19 pandemic on air pollution levels in the Marmara region, particularly in Istanbul. The application of machine learning algorithms and statistical analysis provides a rigorous approach to the investigation of this important issue by comparing before and during the COVID-19 outbreak.
Collapse
Affiliation(s)
- Ibrahim Arpaci
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandirma Onyedi Eylul University, Balikesir, Türkiye
| | - Serhat Kilicarslan
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandirma Onyedi Eylul University, Balikesir, Türkiye.
| | - Omer Aslan
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandirma Onyedi Eylul University, Balikesir, Türkiye
| | - Ibrahim Ozturk
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye
| |
Collapse
|
48
|
Ghobakhloo S, Khoshakhlagh AH, Mostafaii GR, Chuang KJ, Gruszecka-Kosowska A, Hosseinnia P. Critical air pollutant assessments and health effects attributed to PM 2.5 during and after COVID-19 lockdowns in Iran: application of AirQ + models. Front Public Health 2023; 11:1120694. [PMID: 37304093 PMCID: PMC10249069 DOI: 10.3389/fpubh.2023.1120694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives The aim of this study was to evaluate changes in air quality index (AQI) values before, during, and after lockdown, as well as to evaluate the number of hospitalizations due to respiratory and cardiovascular diseases attributed to atmospheric PM2.5 pollution in Semnan, Iran in the period from 2019 to 2021 during the COVID-19 pandemic. Methods Daily air quality records were obtained from the global air quality index project and the US Environmental Protection Administration (EPA). In this research, the AirQ+ model was used to quantify health consequences attributed to particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5). Results The results of this study showed positive correlations between air pollution levels and reductions in pollutant levels during and after the lockdown. PM2.5 was the critical pollutant for most days of the year, as its AQI was the highest among the four investigated pollutants on most days. Mortality rates from chronic obstructive pulmonary disease (COPD) attributed to PM2.5 in 2019-2021 were 25.18% in 2019, 22.55% in 2020, and 22.12% in 2021. Mortality rates and hospital admissions due to cardiovascular and respiratory diseases decreased during the lockdown. The results showed a significant decrease in the percentage of days with unhealthy air quality in short-term lockdowns in Semnan, Iran with moderate air pollution. Natural mortality (due to all-natural causes) and other mortalities related to COPD, ischemic heart disease (IHD), lung cancer (LC), and stroke attributed to PM2.5 in 2019-2021 decreased. Conclusion Our results support the general finding that anthropogenic activities cause significant health threats, which were paradoxically revealed during a global health crisis/challenge.
Collapse
Affiliation(s)
- Safiye Ghobakhloo
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Reza Mostafaii
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Agnieszka Gruszecka-Kosowska
- Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Pariya Hosseinnia
- Department of Public Health, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
49
|
Gilardi L, Marconcini M, Metz-Marconcini A, Esch T, Erbertseder T. Long-term exposure and health risk assessment from air pollution: impact of regional scale mobility. Int J Health Geogr 2023; 22:11. [PMID: 37208713 PMCID: PMC10196305 DOI: 10.1186/s12942-023-00333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The negative effect of air pollution on human health is widely reported in recent literature. It typically involves urbanized areas where the population is concentrated and where most primary air pollutants are produced. A comprehensive health risk assessment is therefore of strategic importance for health authorities. METHODS In this study we propose a methodology to perform an indirect and retrospective health risk assessment of all-cause mortality associated with long-term exposure to particulate matter less than 2.5 microns (PM2.5), nitrogen dioxide (NO2) and ozone (O3) in a typical Monday to Friday working week. A combination of satellite-based settlement data, model-based air pollution data, land use, demographics and regional scale mobility, allowed to examine the effect of population mobility and pollutants daily variations on the health risk. A Health Risk Increase (HRI) metric was derived on the basis of three components: hazard, exposure and vulnerability, utilizing the relative risk values from the World Health Organization. An additional metric, the Health Burden (HB) was formulated, which accounts for the total number of people exposed to a certain risk level. RESULTS The effect of regional mobility patterns on the HRI metric was assessed, resulting in an increased HRI associated with all three stressors when considering a dynamic population compared to a static one. The effect of diurnal variation of pollutants was only observed for NO2 and O3. For both, the HRI metric resulted in significantly higher values during night. Concerning the HB parameter, we identified the commuting flows of the population as the main driver in the resulting metric. CONCLUSIONS This indirect exposure assessment methodology provides tools to support policy makers and health authorities in planning intervention and mitigation measures. The study was carried out in Lombardy, Italy, one of the most polluted regions in Europe, but the incorporation of satellite data makes our approach valuable for studying global health.
Collapse
Affiliation(s)
- Lorenza Gilardi
- German Remote Sensing Data Center, Department Atmosphere (DFD-ATM), German Aerospace Center (DLR), Münchener Str. 20, 82234, Weßling, Germany.
| | - Mattia Marconcini
- German Remote Sensing Data Center, Department Land Surface Dynamics (DFD-LAX), German Aerospace Center (DLR), Münchener Str. 20, 82234, Weßling, Germany
| | - Annekatrin Metz-Marconcini
- German Remote Sensing Data Center, Department Land Surface Dynamics (DFD-LAX), German Aerospace Center (DLR), Münchener Str. 20, 82234, Weßling, Germany
| | - Thomas Esch
- German Remote Sensing Data Center, Department Land Surface Dynamics (DFD-LAX), German Aerospace Center (DLR), Münchener Str. 20, 82234, Weßling, Germany
| | - Thilo Erbertseder
- German Remote Sensing Data Center, Department Atmosphere (DFD-ATM), German Aerospace Center (DLR), Münchener Str. 20, 82234, Weßling, Germany
| |
Collapse
|
50
|
Halder B, Ahmadianfar I, Heddam S, Mussa ZH, Goliatt L, Tan ML, Sa'adi Z, Al-Khafaji Z, Al-Ansari N, Jawad AH, Yaseen ZM. Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine. Sci Rep 2023; 13:7968. [PMID: 37198391 DOI: 10.1038/s41598-023-34774-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Climatic condition is triggering human health emergencies and earth's surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth's health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human's health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50-60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.
Collapse
Affiliation(s)
- Bijay Halder
- Department of Remote Sensing and GIS, Vidyasagar University, Midnapore, 721102, India
- New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, 64001, Iraq
| | - Iman Ahmadianfar
- Department of Civil Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Salim Heddam
- Agronomy Department, Faculty of Science, University, 20 Août 1955 Skikda, Route El Hadaik, BP 26, Skikda, Algeria
| | | | - Leonardo Goliatt
- Computational Modeling Program, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mou Leong Tan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, Penang, Malaysia
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zulfaqar Sa'adi
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia (UTM), 81310, Sekudai, Johor, Malaysia
| | - Zainab Al-Khafaji
- Department of Building and Construction Technologies Engineering, AL-Mustaqbal University College, Hillah, 51001, Iraq
| | - Nadhir Al-Ansari
- Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|