1
|
Khayyam U, Rayan M, Hussain Adil I. Prevalence of Cardiovascular Disease (CAD) due to industrial air pollutants in the proximity of Islamabad Industrial Estate (IEI), Pakistan. PLoS One 2024; 19:e0300572. [PMID: 39018282 PMCID: PMC11253970 DOI: 10.1371/journal.pone.0300572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/29/2024] [Indexed: 07/19/2024] Open
Abstract
Contaminated air quality, in lieu of massive industrial pollution, is severely attributing to health anomalies in the proximity of industrial units. Cardiovascular Disease (CAD) is rising around industrial units in the planned capital city of Pakistan, Pakistan. To study self-reported CAD in the proximity of Industrial Estate Islamabad (IEI) by equating two distinct study groups as 'Band-I': the residence 0-650 meters and 'Band-II' 650-1300 meters radius around the perimeter of IEI. The perimeters were digitized using Google Earth and GIS. Field survey was conducted on deploying 388 (194 in each Band) close-ended (self-administered) questionnaires at the household level, after adjusting the potential confounding variables. The research calculated odds ratios (ORs) of the CAD at 95% CI. The study's findings of the multiple logistic regression for ORs confirmed a significant increase in CAD problems due to industrial affluents in Band-I than in Band-II which were less severe and less life-threatening. Study confirmed high incidences of high blood pressure and breathing issues (up to 67%), due to accumulation of unhealthy affluents thus leading to heart stroke (Band I = 56.20% and Band II = 60.30%). It is aided by smoking that has increased CAD in Band-I. Societal attributes of knowledge, beliefs, attitudes, and preferences fail to safeguard the local residents amid high concentration of harmful pollutants. As a counter measure the affected respondents engaged in highlighting the issue to the concerned public offices, yet there is a high need on part of the capital government to take mitigative measures to immediately halt the disastrous industrial air emissions to save precious lives.
Collapse
Affiliation(s)
- Umer Khayyam
- Department of Development Studies, School of Social Sciences and Humanities (SH), National University of Sciences and Technology (NUST), Islamabad (ICT), Pakistan
| | - Muhammad Rayan
- School of Spatial Planning, Chair of Landscape Ecology and Landscape Planning (LLP), Technical University Dortmund, Dortmund, Germany
| | - Iftikhar Hussain Adil
- Department of Economics, School of Social Sciences and Humanities (SH), National University of Sciences and Technology (NUST), Islamabad (ICT), Pakistan
| |
Collapse
|
2
|
Kim AR, Bang JH, Lee S, Sim CS, Kim Y, Lee J. Distribution of volatile organic compounds by distance from industrial complexes and potential health impact on the residents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38764232 DOI: 10.1080/09603123.2024.2339550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Volatile organic compounds (VOCs) are the air pollutants emitted from the petrochemical industry known to pose adverse health effects on workers. The database based on the third phase of The Environmental Health Study in the Korean National Industrial Complexes (EHSNIC) in Ulsan conducted from 2018 to 2021 was used. Subjects were divided into the exposed and control group according to the estimated pollution level and distances from the industrial complexes. Ambient benzene, ethylbenzene, and xylene were significantly higher in the exposed group compared to the controls, as well as their metabolites. Risk of chronic disease and atopic dermatitis was higher in the exposed group which was supported by higher serum inflammatory markers and high hazard index of the exposed region. These results can draw attention to people engaged with environmental plans and used as primary data when making policies to reduce pollutant levels around industrial complexes.
Collapse
Affiliation(s)
- A Ram Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jin-Hee Bang
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sunghee Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Chang Sun Sim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jiho Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| |
Collapse
|
3
|
Amiri L, Khalili Doroodzani A, Ostovar A, Dobaradaran S, Mohammadi A, Nabipour I, Raeisi A, Malekizadeh H, Farhadi A, Saeedi R, Afrashteh S, Nazmara S, Keshtkar M. Lactational Exposure of Human Infants to Metal (loid)s: A Comparison of Industrial and Urban Inhabitants in North of the Persian Gulf. Biol Trace Elem Res 2024; 202:1829-1842. [PMID: 37524879 DOI: 10.1007/s12011-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
In this study, postnatal metal (loid)s (MLs) exposure was compared between the petrochemical and gas area of Asaluyeh (PGA) and urban area of Kaki (UA) in Bushehr province, Iran. Two hundred human breast milk (BM) samples from the industrial and urban areas were analyzed for MLs using Inductivity Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Boron (B), copper (Cu), iron (Fe), and nickel (Ni) were found at the highest levels in both study areas. Adjusted multiple linear regression models revealed that the mean concentration of total MLs in BM samples collected from the PGA was statistically significantly greater than that of the UA (655.85 vs. 338.17 µg/L). Also, the mean concentrations of all detected MLs in BM samples collected from the PGA were statistically significantly higher than those collected from the UA. The hazard index (HI) of combined MLs in the PGA and UA illustrated non-cancer risk for infants. Lead (Pb) and chromium (Cr) in the PGA and Cr in the UA showed the risk of cancer. So it can be concluded that nursing infants from an industrial area are most at risk for MLs exposure during entire lactation course than those from an urban area.
Collapse
Affiliation(s)
- Leila Amiri
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Atefeh Khalili Doroodzani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, the Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Raeisi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasan Malekizadeh
- School of Medicine٫ Bushehr, University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Afrashteh
- Clinical Research Development Center, The Persian Gulf Martyrs Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Chen WH, Chang CF, Lai CH, Peng YP, Su YJ, Chen GF. Multivariate analysis of carcinogenic equivalence (CEQ) to characterize carcinogenic VOC emissions in a typical petrochemical industrial park in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 186:108548. [PMID: 38513555 DOI: 10.1016/j.envint.2024.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Large industrial emissions of volatile organic compounds (VOCs) from the petrochemical industry are a critical concern due to their potential carcinogenicity. VOC emissions vary in composition depending on the source and occur in mixtures containing compounds with varying degrees of toxicity. We proposed the use of carcinogenic equivalence (CEQ) and multivariate analysis to identify the major contributors to the carcinogenicity of VOC emissions. This method weights the carcinogenicity of each VOC by using a ratio of its cancer slope factor to that of benzene, providing a carcinogenic equivalence factor (CEF) for each VOC. We strategically selected a petrochemical industrial park in southern Taiwan that embodies the industry's comprehensive nature and serves as a representative example. The CEQs of different emission sources in three years were analyzed and assessed using principal component analysis (PCA) to characterize the major contributing sectors, vendors, sources, and species for the carcinogenicity of VOC emissions. Results showed that while the study site exhibited a 20.7 % (259.8 t) decrease in total VOC emissions in three years, the total CEQ emission only decreased by 4.5 % (15.9 t), highlighting a potential shift in the emitted VOC composition towards more carcinogenic compounds. By calculating CEQ followed by PCA, the important carcinogenic VOC emission sources and key compounds were identified. More importantly, the study compared three approaches: CEQ followed by PCA, PCA followed by CEQ, and PCA only. While the latter two methods prioritized sources based on emission quantities, potentially overlooking less abundant but highly carcinogenic compounds, the CEQ-first approach effectively identified vendors and sources with the most concerning cancer risks. This distinction underscores the importance of selecting the appropriate analysis method based on the desired focus. Our study highlighted how prioritizing CEQ within the analysis framework empowered the development of precise control measures that address the most carcinogenic VOC sources.
Collapse
Affiliation(s)
- Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Master and Doctoral Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chin-Fa Chang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chin-Hsing Lai
- Department of Environmental Engineering and Science, Fooyin University, Kaohsiung 831, Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Jih Su
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 807, Taiwan; Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 807, Taiwan; Institute of Biopharmaceutical Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Guan-Fu Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Environmental Engineering and Science, Fooyin University, Kaohsiung 831, Taiwan.
| |
Collapse
|
5
|
Ducruet C, Polo Martin B, Sene MA, Lo Prete M, Sun L, Itoh H, Pigné Y. Ports and their influence on local air pollution and public health: A global analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170099. [PMID: 38224889 DOI: 10.1016/j.scitotenv.2024.170099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Despite the skyrocketing growth in recent decades of environmental studies on ports and shipping, their local health impacts remain largely under-researched. This article tackles this gap in research by statistically analyzing data on global shipping flows across nearly 5000 ports in 35 OECD countries between 2001 and 2018. The different traffic types, from containers to bulk and passengers, are analyzed jointly with data on natural conditions, air pollution, socio-economic indicators, and public health. The principal results show that port regions pollute more than non-port regions on average, while health impacts vary according to the size and specialization of the port region. Three types of port regions are clearly differentiated: industrial, intermediate, and metropolitan port regions.
Collapse
Affiliation(s)
- César Ducruet
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France.
| | - Bárbara Polo Martin
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France
| | - Mame Astou Sene
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France
| | - Mariantonia Lo Prete
- Laboratory Territoires, Villes, Environnement et Société (TVES ULR 4477), Université du Littoral Côte d'Opale (ULCO), France
| | - Ling Sun
- Fudan University & Shanghai Maritime University, China
| | | | - Yoann Pigné
- LITIS, University of Le Havre Normandie, France
| |
Collapse
|
6
|
Danforth CG, Portier C, Ensor KB, Hopkins L, Evans B, Quist AJL, McGraw KE, Craft E. Development and demonstration of a data visualization platform of short-term guidelines for ambient air levels of benzene during disaster response in Houston, Texas. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:533-546. [PMID: 37462252 DOI: 10.1002/ieam.4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Industrial disasters have caused hazardous air pollution and public health impacts. Response officials have developed limited exposure guidelines to direct them during the event; often, guidelines are outdated and may not represent relevant elevated-exposure periods. The 2019 Intercontinental Terminals Company (ITC) fire in Houston, Texas led to large-scale releases of benzene and presented a public health threat. This incident highlights the need for effective response and nimble, rapid public health communication. We developed a data-driven visualization tool to store, display, and interpret ambient benzene concentrations to assist health officials during environmental emergencies. Guidance values to interpret risk from acute exposure to benzene were updated using recent literature that also considers exposure periodicity. The visualization platform can process data from different sampling instruments and air monitors automatically, and displays information publicly in real time, along with the associated risk information and action recommendations. The protocol was validated by applying it retrospectively to the ITC event. The new guidance values are 6-30 times lower than those derived by the Texas regulatory agency. Fixed-site monitoring data, assessed using the protocol and revised thresholds, indicated that eight shelter-in-place and 17 air-quality alerts may have been considered. At least one of these shelter-in-place alerts corresponded to prolonged, elevated benzene concentrations (~1000 ppb). This new tool addresses essential gaps in the timely communication of air pollution measurements, provides context to understand potential health risks from exposure to benzene, and provides a clear protocol for local officials in responding to industrial air releases of benzene. Integr Environ Assess Manag 2024;20:533-546. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Kathy B Ensor
- George R. Brown School of Engineering, Rice University, Houston, Texas, USA
| | | | - Bryan Evans
- Kinder Institute for Urban Research, Rice University, Houston, Texas, USA
| | - Arbor J L Quist
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Katlyn E McGraw
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, New York, New York, USA
| | | |
Collapse
|
7
|
Lange CN, Freire BM, Monteiro LR, de Jesus TA, Dos Reis RA, Nakazato G, Kobayashi RKT, Batista BL. Multiple potentially toxic elements in urban gardens from a Brazilian industrialized city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:36. [PMID: 38227076 DOI: 10.1007/s10653-023-01808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
Urban agriculture should be promoted as long as the food produced is safe for consumption. Located in the metropolitan region of São Paulo-Brazil, Santo André has intense industrial activities and more recently an increasing stimulus to urban gardening. One of the potential risks associated to this activity is the presence of potentially toxic elements (PTEs). In this study, the concentration of PTEs (As, Ba, Cd, Co, Cu, Cr, Ni, Mo, Pb, Sb, Se, V and Zn) was evaluated by soil (n = 85) and soil amendments (n = 19) in urban gardens from this municipality. Only barium was above regulatory limits in agricultural soil ranging from 20 to 112 mg kg-1. Geochemical indexes (Igeo, Cf and Er) revealed moderate to severe pollution for As, Ba, Cr, Cu, Pb Se and Zn, especialy in Capuava petrochemical complex gardens. A multivariate statistical approach discriminated Capuava gardens from the others and correlated As, Cr and V as main factors of pollution. However, carcinogenic and non-carcinogenic risks were below the acceptable range for regulatory purposes of 10-6-10-4 for adults. Soil amendments were identified as a possible source of contamination for Ba, Zn and Pb which ranged from 37 to 4137 mg kg-1, 20 to 701 mg kg-1 and 0.7 to 73 mg kg-1, respectively. The results also indicated the presence of six pathogenic bacteria in these amendments. Besides that, the occurrence of antimicrobial resistance for Shigella, Enterobacter and Citrobacter isolates suggests that soil management practices improvement is necessary.
Collapse
Affiliation(s)
- Camila Neves Lange
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil.
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Lucilena Rebelo Monteiro
- Centro de Química e Meio Ambiente, Ipen/CNEN-SP - Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear, São Paulo, SP, Brazil
| | - Tatiane Araújo de Jesus
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Roberta Albino Dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia Cid PR 445 Km 380, Campus Universitário, Londrina, PR, 86055-990, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia Cid PR 445 Km 380, Campus Universitário, Londrina, PR, 86055-990, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida Dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| |
Collapse
|
8
|
Wang CW, Chen SC, Hung CH, Kuo CH. Arsenic exposure was associated with lung fibrotic changes in individuals living near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111498-111510. [PMID: 37814049 DOI: 10.1007/s11356-023-29952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Individuals residing near petrochemical complexes have been found to have increasing the risk of respiratory distress and diseases. On visit 1 in 2016, all participants underwent urinary arsenic measurement and low-dose computed tomography (LDCT). The same participants had LDCT performed at visit 2 in 2018. Our study revealed that individuals with lung fibrotic changes had significantly higher levels of urinary arsenic compared to the non-lung fibrotic changes group. Moreover, we found that participants with urinary arsenic levels in the highest sextile (> 209.7 μg/g creatinine) had a significantly increased risk of lung fibrotic changes in both visit 1 (OR = 1.87; 95% CI= 1.16-3.02; P = 0.010) and visit 2 (OR = 1.74; 95% CI = 1.06-2.84; P = 0.028) compared to those in the lowest sextile (≤ 41.4 μg/g creatinine). We also observed a significantly increasing trend across urinary arsenic sextile in both visits (Ptrend = 0.015 in visit 1 and Ptrend = 0.026 in visit 2). Furthermore, participants with urinary arsenic levels in the highest sextile had a significantly increased risk of lung fibrotic positive to positive (OR = 2.18; 95% CI: 1.24, 3.82; P = 0.007) compared to the lowest sextile (reference category: lung fibrotic negative to negative). Our findings provide support for the hypothesis that arsenic exposure is significantly associated with an increased risk of lung fibrotic changes. It is advisable to reduce the levels of arsenic exposure for those residing near such petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Kou X, Iglesias-Vázquez L, Nadal M, Basora J, Arija V. Urinary concentrations of heavy metals in pregnant women living near a petrochemical area according to the industrial activity. ENVIRONMENTAL RESEARCH 2023; 235:116677. [PMID: 37454794 DOI: 10.1016/j.envres.2023.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The progressive industrialization has resulted in an increase in heavy metal pollution in the environment, which has a dangerous impact on human health. Prenatal exposure to heavy metals, even at very low concentrations, may be especially harmful to pregnant women and their children. Different industrial activities can contribute to heavy metal pollution in a specific area. OBJECTIVE 1) To explore the concentrations of heavy metals in urine samples of pregnant women, and 2) to evaluate the potential effect of different industrial activities in Tarragona (Spain). METHODS Urinary levels of four heavy metals (nickel (Ni), cadmium (Cd), mercury (Hg), and lead (Pb)) from 368 pregnant women recruited in the ECLIPSES study were analyzed. Home addresses and all the industries potentially releasing heavy metals were geo-referenced. Buffer zones were established within a 1.5, 3, and 5 km radius at the center of each industry. Subsequently, the number of participants living in and out of each buffer zone was recorded. RESULTS Urinary levels of Ni and Cd, but not those of Hg and Pb, were obviously increased in pregnant women living near most of the industrial sites. After adjustment for potential co-variates, only Cd showed notable differences according to the industrial activity. Compared to women living outside the buffer, Cd levels were increased in those living within 1.5 and 3 km of chemical industries, within 5 km of energy industries, within 1.5, 3, and 5 km of mineral industries, and within 3 and 5 km of metal processing industries. CONCLUSION Among the analyzed heavy metals, Cd showed an increasing trend in urinary concentrations in women living near chemical, energy, mineral, and metal processing industries. This study highlights the need to develop legislative measures to minimize Cd exposure, especially by sensitive populations. Moreover, additive or synergistic effects of co-exposure to other air pollutants should not be disregarded.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Lucía Iglesias-Vázquez
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Martí Nadal
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 43201, Reus, Spain
| | - Josep Basora
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain; Jordi Gol University Institute for Primary Care Research (IDIAP Jordi Gol), 43202, Tarragona, Spain; CIBERobn (Center for Biomedical Research in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain; Collaborative Research Group on Lifestyles, Nutrition, and Smoking (CENIT), Tarragona-Reus Research Support Unit, IDIAP Jordi Gol, 43003, Tarragona, Spain.
| |
Collapse
|
10
|
Hernández-Fernández J, Puello-Polo E, Marquez E. Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent. Molecules 2023; 28:4948. [PMID: 37446610 DOI: 10.3390/molecules28134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Currently, polypropylene (PP) is highlighted using sorbitol-based clarifying agents since these agents are high quality, low cost, and work as a barrier against moisture, which makes PP ideal for packaging food, beverages, and medical products, among others. The use of analytical methods capable of recovering these additives in wastewater streams and then reusing them in the PP clarification stage represents an innovative methodology that makes a substantial contribution to the circular economy of the PP production industry. In this study, a method of extraction and recovery of the Millad NX 8000 was developed. The additive was recovered using GC-MS and extracted with an activated carbon column plus glass fiber, using an injection molded sample, obtaining a recovery rate greater than 96%. TGA, DSC, and FTIR were used to evaluate the recovered additive's glass transitions and purity. The thermal degradation of the recovered additive was found to be between 340 and 420 °C, with a melting temperature of 246 °C, adopting the same behavior as the pure additive. In FTIR, the characteristic absorption peak of Millad NX 8000 was observed at 1073 cm-1, which indicates the purity of the extracted compound. Therefore, this work develops a new additive recovery methodology with high purity to regulate the crystallization behavior and of PP.
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo Km 1, Vía Turbaco, Cartagena 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Esneyder Puello-Polo
- Group de Investigación en Oxi/Hidrotratamiento Catalítico y Nuevos Materiales, Programa de Química-Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Edgar Marquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| |
Collapse
|
11
|
Caumo S, Yera AB, Alves C, Rienda IC, Kováts N, Hubai K, de Castro Vasconcellos P. Assessing the chemical composition, potential toxicity and cancer risk of airborne fine particulate matter (PM 2.5) near a petrochemical industrial area. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104170. [PMID: 37295738 DOI: 10.1016/j.etap.2023.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In the vicinity of a petrochemical industrial region in São Paulo, Brazil, PM2.5-bound organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, oxy-PAHs, hopanes, and inorganic species were evaluated. Oxidative potential (OP), burden (OB), and Alivibrio fischeri bioluminescence inhibition (AFBIA) assays were conducted to determine the potential health effects of exposure to these compounds. The PM2.5 mean concentration was 32.0±18.2µgm-3, and benzo (a)pyrene was found to exceed recommended levels by at least four times. Secondary sources and vehicular emissions were indicated by nitro-PAHs, oxy-PAHs, and inorganic species. The OP and OB results revealed that secondary compounds favored antioxidant depletion. The AFBIA results showed that 64% of the samples were toxic. These findings emphasize the need to reduce the exposure risk and take measures to protect human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Casotti Rienda
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nora Kováts
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Katalin Hubai
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | | |
Collapse
|
12
|
Wang CW, Chen SC, Wu DW, Lin HH, Chen HC, Hung CH, Kuo CH. Arsenic exposure associated with lung interstitial changes in non-smoking individuals living near a petrochemical complex: A repeated cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121844. [PMID: 37230174 DOI: 10.1016/j.envpol.2023.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Arsenic exposure is associated with airway inflammation and decreased lung function tests. Whether arsenic exposure associated with lung interstitial changes remains unknown. We conducted this population-based study in southern Taiwan during 2016 and 2018. Our study recruited individuals aged over 20 years, residing in the vicinity of a petrochemical complex and with no history of cigarette smoking. In both the 2016 and 2018 cross-sectional studies, we conducted chest low-dose computed tomography (LDCT) scans, as well as urinary arsenic and blood biochemistry analyses. Lung interstitial changes included lung fibrotic changes that were defined as the presence of curvilinear or linear densities, fine lines, or plate opacity in specific lobes; additionally, other interstitial changes were defined as the presence of ground-glass opacity (GGO) or bronchiectasis on the LDCT images. In both cross-sectional studies conducted in 2016 and 2018, participants with lung fibrotic changes exhibited a statistically significant increase in the mean urinary arsenic concentrations compared to those without fibrotic changes (geometric mean = 100.1 vs. 82.8 μg/g creatinine, p < 0.001 for cross-sectional study 2016, and geometric mean = 105.6 vs. 71.0 μg/g creatinine, p < 0.001 for cross-sectional study 2018). After controlling for age, gender, body mass index, platelet counts, hypertension, aspartate aminotransferase, cholesterol, HbA1c, and educational levels, we observed a significant positive association between a unit increase in log urinary arsenic concentrations and the risk of lung fibrotic changes in both cross-sectional study 2016 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.04-1.90, p = 0.028) and cross-sectional study 2018 (OR = 3.03, 95% CI = 1.38-6.63, p = 0.006). Our study did not find a significant association between arsenic exposure and bronchiectasis or GGO. It is imperative for the government to take significant measures to reduce arsenic exposure levels among individuals living near petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Wang CW, Chen SC, Hung CH, Kuo CH. Urinary copper levels are associated with bronchiectasis in non-smokers living near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27502-3. [PMID: 37217814 DOI: 10.1007/s11356-023-27502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
The incidence of respiratory diseases has been associated with copper in particulate matter; however, the relationship between urinary copper levels and interstitial lung changes remains unclear. Therefore, we conducted a population-based study in southern Taiwan between 2016 and 2018, excluding individuals with a history of lung carcinoma, pneumonia, and cigarette smoking. Low-dose computed tomography (LDCT) was performed to detect lung interstitial changes, including the presence of ground-glass opacity or bronchiectasis in LDCT images. We categorized urinary copper levels into quartiles (Q1: ≤10.3; Q2: >10.4 and ≤14.2; Q3: >14.3 and ≤18.9; and Q4: >19.0 μg/L) and analyzed the risk of interstitial lung changes using multiple logistic regression analysis. The urinary copper levels were significantly positively correlated with age, body mass index, serum white blood cell count, aspartate aminotransferase, alanine aminotransferase, creatinine, triglycerides, fasting glucose, and glycated hemoglobin and significantly negatively correlated with platelet count and high-density lipoprotein cholesterol. The study found that the highest quartile of urinary copper levels (Q4) was significantly associated with an increased risk of bronchiectasis compared to the lowest quartile (Q1) of urinary copper levels, with an odds ratio (OR) of 3.49 and a 95% confidence interval (CI) of 1.12-10.88. However, the association between urinary copper levels and interstitial lung disease needs further investigation in future studies.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Astrahan P, Lupu A, Leibovici E, Ninio S. BTEX and PAH contributions to Lake Kinneret water: a seasonal-based study of volatile and semi-volatile anthropogenic pollutants in freshwater sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61145-61159. [PMID: 37046165 DOI: 10.1007/s11356-023-26724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Benzene , toluene, ethylbenzene, and xylenes (BTEX) BTEX molecules are toxic components, ubiquitous in the environment, often found in concentrations- a few orders of magnitude higher than the well-studied PAHs levels. This fact is demonstrated in either crude oil, fuels, water, and air samples. BTEX studies focus mainly on the airborne levels of these molecules, while their waterborne presence is understudied. In this study, BTEX levels were assessed at Lake Kinneret, Israel. As a result, 0-1.5 ppb of BTEX was recorded in five stations (2021-2022). Elevated BTEX levels (3-10 ppb) were recorded at the northern rivers nourishing this lake, implying the existence of remote polluting sources. Transect air samplings of BTEX conducted at the lake next to the bathing season of 2021 revealed airborne BTEX levels between 0.8 and 10 µg/m3, peaking up close to the bathing season, yet inconsistent with the BTEX water level trend. Lake water samples collected next to Tiberias city outfalls following the "Carmel" rainstorm showed elevated concentrations of BTEX up to 35 ppb and PAHs up to 0.47 ppb with an urban isotopic signal. The remote station's PAHs levels were less than one order of magnitude, with a distinct rural isotopic signal. Additionally, a human-specific microbial marker revealed increased sewer contributions at some of the urbansites. The results of this study show that a wide area dispersion of low atmospheric BTEX levels exists in the lake's perimeter. The dispersion rate is most likely influenced by season-based factors, e.g., motors and biomass fires. The unstudied waterborne BTEX levels in this lake are influenced by rivers, city runoff, and other yet unknown factors that may contribute to the sedimentation of these components. This process may result in a chronic pollution state. Despite the BTEX's medium-low solubility and high volatility, its under-evaluated waterborne transportation may lead to high toxic levels following bioaccumulation.
Collapse
Affiliation(s)
- Peleg Astrahan
- Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, Tiberias, Israel.
| | - Achsa Lupu
- Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, Tiberias, Israel
| | - Edit Leibovici
- Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, Tiberias, Israel
| | - Shira Ninio
- Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, Tiberias, Israel
| |
Collapse
|
15
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
16
|
Hernández-Fernández J, Ortega-Toro R, López-Martinez J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023; 28:molecules28052003. [PMID: 36903250 PMCID: PMC10004459 DOI: 10.3390/molecules28052003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The various chemicals in industrial wastewater can be beneficial for improving its circularity. If extraction methods are used to capture valuable components from the wastewater and then recirculate them throughout the process, the potential of the wastewater can be fully exploited. In this study, wastewater produced after the polypropylene deodorization process was evaluated. These waters remove the remains of the additives used to create the resin. With this recovery, contamination of the water bodies is avoided, and the polymer production process becomes more circular. The phenolic component was recovered by solid-phase extraction and HPLC, with a recovery rate of over 95%. FTIR and DSC were used to evaluate the purity of the extracted compound. After the phenolic compound was applied to the resin and its thermal stability was analyzed via TGA, the compound's efficacy was finally determined. The results showed that the recovered additive improves the thermal qualities of the material.
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 30300, Colombia
- Correspondence:
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
| | - Juan López-Martinez
- Institute of Materials Technology (ITM), Universitat Politecnica de Valencia (UPV), Plaza Ferrandiz and Carbonell s/n, 03801 Alcoy, Spain
| |
Collapse
|
17
|
Kayyal-Tarabeia I, Blank M, Zick A, Agay-Shay K. Residence near industrial complex and cancer incidence: A registry-based cohort of 1,022,637 participants with a follow-up of 21 years, Israel. ENVIRONMENTAL RESEARCH 2023; 216:114471. [PMID: 36208787 DOI: 10.1016/j.envres.2022.114471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Industrial complex (IC) residence is associated with higher cancer incidence in adults and children. However, the effect on young adults and the residence duration are not well described. Since the beginning of the 20th century, the Haifa bay area (HBA) has a major IC area with petrochemical industry complex and many other industries. The objectives of the current study were to estimate the association between IC residence and cancer incidence and to evaluate the effect of the residence duration. METHODS This study is a registry-based cohort (N = 1,022,637) with a follow-up of 21 years. Cox regression models were used to evaluate the associations (hazards ratios (HR) and its 95% confidence intervals (CIs)) between HBA residence and incidence of all cancer sites (n = 62,049) and for site-specific cancer types including: lung cancer (n = 5398), bladder cancer (n = 3790), breast cancer (n = 11,310), prostate cancer (n = 6389) skin cancer (n = 4651), pancreatic cancer (n = 2144) and colorectal cancer (n = 8675). We evaluated the effect of the duration of exposure as categories of 7 years for those with 15 years of follow-up. RESULTS IC residence was associated with higher risk for all cancer sites (HR:1.09, 95% CI: 1.06-1.12), for site-specific cancer incidence including: lung cancer (HR:1.14, 95% CI: 1.04-1.23), bladder cancer (HR:1.11, 95% CI: 1.01-1.23), breast cancer (HR:1.04, 95% CI: 0.98-1.10), prostate cancer (HR:1.07, 95% CI: 0.99-1.16), skin cancer (HR:1.22, 95% CI: 1.12-1.33) and colorectal cancer (HR:1.10, 95%CI: 1.03-1.17). Similar risk was also observed among young adults (HR: 1.10, 95% CI: 1.00-1.20). In the analyses for the duration of exposure, IC residence was associated with higher risk for all cancer site for the longest residence duration (15-21 years: HR: 1.08, 95% CI: 1.04-1.13). CONCLUSIONS Harmful associations were found between IC residence and incidence of all cancer sites and site-specific cancers types. Our findings add to the limited evidence of associations between IC residence and cancer in young adults.
Collapse
Affiliation(s)
- Inass Kayyal-Tarabeia
- The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar Ilan University, Israel.
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem, Jerusalem, Israel.
| | - Keren Agay-Shay
- The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
18
|
Hassan MA, Mehmood T, Lodhi E, Bilal M, Dar AA, Liu J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13540. [PMID: 36294120 PMCID: PMC9603700 DOI: 10.3390/ijerph192013540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Air is a diverse mixture of gaseous and suspended solid particles. Several new substances are being added to the air daily, polluting it and causing human health effects. Particulate matter (PM) is the primary health concern among these air toxins. The World Health Organization (WHO) addressed the fact that particulate pollution affects human health more severely than other air pollutants. The spread of air pollution and viruses, two of our millennium's most serious concerns, have been linked closely. Coronavirus disease 2019 (COVID-19) can spread through the air, and PM could act as a host to spread the virus beyond those in close contact. Studies on COVID-19 cover diverse environmental segments and become complicated with time. As PM pollution is related to everyday life, an essential awareness regarding PM-impacted COVID-19 among the masses is required, which can help researchers understand the various features of ambient particulate pollution, particularly in the era of COVID-19. Given this, the present work provides an overview of the recent developments in COVID-19 research linked to ambient particulate studies. This review summarizes the effect of the lockdown on the characteristics of ambient particulate matter pollution, the transmission mechanism of COVID-19, and the combined health repercussions of PM pollution. In addition to a comprehensive evaluation of the implementation of the lockdown, its rationales-based on topographic and socioeconomic dynamics-are also discussed in detail. The current review is expected to encourage and motivate academics to concentrate on improving air quality management and COVID-19 control.
Collapse
Affiliation(s)
- Muhammad Azher Hassan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou 570228, China
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany
| | - Ehtisham Lodhi
- The SKL for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Shim SR, Kim HJ, Hong M, Kwon SK, Kim JH, Lee SJ, Lee SW, Han HW. Effects of meteorological factors and air pollutants on the incidence of COVID-19 in South Korea. ENVIRONMENTAL RESEARCH 2022; 212:113392. [PMID: 35525295 PMCID: PMC9068245 DOI: 10.1016/j.envres.2022.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Air pollution and meteorological factors can exacerbate susceptibility to respiratory viral infections. To establish appropriate prevention and intervention strategies, it is important to determine whether these factors affect the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, this study examined the effects of sunshine, temperature, wind, and air pollutants including sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), particulate matter ≤2.5 μm (PM2.5), and particulate matter ≤10 μm (PM10) on the age-standardized incidence ratio of coronavirus disease (COVID-19) in South Korea between January 2020 and April 2020. Propensity score weighting was used to randomly select observations into groups according to whether the case was cluster-related, to reduce selection bias. Multivariable logistic regression analyses were used to identify factors associated with COVID-19 incidence. Age 60 years or over (odds ratio [OR], 1.29; 95% CI, 1.24-1.35), exposure to ambient air pollutants, especially SO2 (OR, 5.19; 95% CI, 1.13-23.9) and CO (OR, 1.17; 95% CI, 1.07-1.27), and non-cluster infection (OR, 1.28; 95% CI, 1.24-1.32) were associated with SARS-CoV-2 infection. To manage and control COVID-19 effectively, further studies are warranted to confirm these findings and to develop appropriate guidelines to minimize SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Sung Ryul Shim
- Department of Health and Medical Informatics, Kyungnam University College of Health Sciences, Changwon, Republic of Korea; Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Hye Jun Kim
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Myunghee Hong
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Sun Kyu Kwon
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Ju Hee Kim
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Sang Jun Lee
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Hyun Wook Han
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea; Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, Republic of Korea; Healthcare Big-Data Center, Bundang CHA Hospital, Seongnam, Republic of Korea
| |
Collapse
|
20
|
Lin XY, Liu YX, Zhang YJ, Shen HM, Guo Y. Polycyclic aromatic hydrocarbon exposure and DNA oxidative damage of workers in workshops of a petrochemical group. CHEMOSPHERE 2022; 303:135076. [PMID: 35649444 DOI: 10.1016/j.chemosphere.2022.135076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The petrochemical industry has promoted the development of economy, while polycyclic aromatic hydrocarbons (PAHs) produced by the industry become the threat for environment and humans. Data on human occupational exposure in petrochemical industry are limited. In the present study, urinary hydroxylated PAH metabolites (OH-PAHs) and a biomarker of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were measured in 546 workers of a petrochemical group in Northeast China, to investigate PAH exposure and related potential health risk. The concentrations of ∑9OH-PAH in all workers were 0.25-175 μg/g Cre with a median value of 4.41 μg/g Cre. Metabolites of naphthalene were the predominant compounds. The levels of PAH metabolites were significantly different for workers with different jobs, which were the highest for recycling workers (13.7 μg/g Cre) and the lowest for agency managers (5.12 μg/g Cre). Besides, higher levels of OH-PAHs were usually found in males and older workers. There was a dose-response relationship between levels of 8-OHdG and ∑9OH-PAHs (p < 0.01). No difference was observed in concentrations of 8-OHdG for workers of different gender or ages, work history as well as noise. Furthermore, workers simultaneously exposed to other potential pollutants and higher levels of ∑9OH-PAH had significantly higher levels of 8-OHdG compared with those in the corresponding subgroups. Our results suggested that exposure to PAHs or co-exposure to PAHs and potential toxics in the petrochemical plant may cause DNA damage. We call for more researches on the associations among noise, chemical pollution and oxidative stress to workers in the real working environment.
Collapse
Affiliation(s)
- Xiao-Ya Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Huang CC, Pan SC, Chin WS, Chen YC, Wu CD, Hsu CY, Lin P, Chen PC, Guo YL. Living proximity to petrochemical industries and the risk of attention-deficit/hyperactivity disorder in children. ENVIRONMENTAL RESEARCH 2022; 212:113128. [PMID: 35337833 DOI: 10.1016/j.envres.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Evidence regarding the negative neurodevelopmental effects of compound exposure to petrochemicals remains limited. We aimed to evaluate the association between exposure to petrochemical facilities and generated emissions during early life and the risk of attention-deficit/hyperactivity disorder (ADHD) development in children. We conducted a population-based birth cohort study using the 2004 to 2014 Taiwanese Birth Certificate Database and verified diagnoses of ADHD using the National Health Insurance Database. The level of petrochemical exposure in each participant's residential township was evaluated using the following 3 measurements: distance to the nearest petrochemical industrial plant (PIP), petrochemical exposure probability (accounting for monthly prevailing wind measurements), and monthly benzene concentrations estimated using kriging-based land-use regression models. We applied Cox proportional hazard models to evaluate the association. During the study period, 48,854 out of 1,863,963 children were diagnosed as having ADHD. The results revealed that residents of townships in close proximity to PIPs (hazard ratio [HR] = 1.20, 95% confidence interval [CI]: 1.16-1.23, <3 vs. ≥10 km), highly affected by petrochemical-containing prevailing winds (HR = 1.12, 95% CI: 1.08-1.16, ≥40% vs. <10%), and with high benzene concentrations (HR = 1.26, 95% CI: 1.23-1.29, ≥0.75 vs. <0.55 ppb) were consistently associated with the increased risk of ADHD development in children. The findings of the sensitivity analysis remained robust, particularly for the 2004 to 2009 birth cohort and for models accounting for a longer duration of postnatal exposure. This work provided clear evidence that living near petrochemical plants increases the risk of ADHD development in children. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan.
| |
Collapse
|
22
|
Veber T, Dahal U, Lang K, Orru K, Orru H. Industrial Air Pollution Leads to Adverse Birth Outcomes: A Systematized Review of Different Exposure Metrics and Health Effects in Newborns. Public Health Rev 2022; 43:1604775. [PMID: 36035982 PMCID: PMC9400407 DOI: 10.3389/phrs.2022.1604775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To review the evidence of associations between adverse birth outcomes (ABO) and industrial air pollution.Methods: Searches were conducted in PubMed, and Scopus databases, and additional articles were found from snowball search techniques. The included studies feature a study population of mothers with live-born babies exposed to industrial air pollutants, and they examine the effects of industrial pollutants on adverse birth outcomes—namely, low birth weight, term low birth weight, preterm birth, and small for gestational age.Results: Altogether, 45 studies were included in this review. Exposure to PM2.5, PAHs, benzene, cadmium, and mixtures of industrial air pollutants and living near an industrial area affect birth outcomes.Conclusion: This study concludes that industrial air pollution is an important risk factor for ABO, especially low birth weight and preterm birth. The strongest evidence is associations between ABO and air pollution from power plants and petrochemical industries. Understanding of specific chemicals that are critical to birth outcomes is still vague. However, the evidence is strongest for more specific air pollutants from the industry, such as PAH, benzene, BTEX, and cadmium.
Collapse
Affiliation(s)
- Triin Veber
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Usha Dahal
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
- Institute of Social Science, University of Tartu, Tartu, Estonia
| | - Katrin Lang
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Kati Orru
- Institute of Social Science, University of Tartu, Tartu, Estonia
| | - Hans Orru
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
- Section of Sustainable Health, Umeå University, Umeå, Sweden
- *Correspondence: Hans Orru,
| |
Collapse
|
23
|
Liu Y, Tian Z, He X, Wang X, Wei H. Short-term effects of indoor and outdoor air pollution on the lung cancer morbidity in Henan Province, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2711-2731. [PMID: 34403047 DOI: 10.1007/s10653-021-01072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Lung cancer is one of the most common cancer types and a major cause of death. The relationship between lung cancer morbidity and exposure to air pollutants is of particular concern. However, the relationship and difference in lung cancer morbidity between indoor and outdoor air pollution effects remain unclear. In this paper, the aim was to comprehensively investigate the spatial relationships between the lung cancer morbidity and indoor-outdoor air pollution in Henan based on the standard deviation ellipse, spatial autocorrelation analysis and GeoDetector. The results indicated that (1) the spatial distribution of lung cancer morbidity was related to the geomorphology, while high-morbidity areas were concentrated in the plains and basins of Central, Eastern and Southern Henan. (2) Among the selected outdoor air pollutants, PM2.5, NO2, SO2, O3 and CO were significantly correlated with the lung cancer morbidity. The degree of indoor air pollution was measured by the use of heating energy, and the proportions of coal-heating households, households with coal/biomass stoves and households with heated kangs were highly decisive in regard to the lung cancer morbidity. (3) The interaction between two factors was more notable than a single factor in explaining the lung cancer morbidity. Moreover, the interaction type was mainly nonlinear enhancement, and the proportion of households with coal/biomass stoves imposed the strongest interaction effect on the other factors.
Collapse
Affiliation(s)
- Yan Liu
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450000, China
- Joint Laboratory of Ecological Meteorology, Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhihui Tian
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450000, China
- Joint Laboratory of Ecological Meteorology, Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaohui He
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450000, China
- Joint Laboratory of Ecological Meteorology, Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaolei Wang
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450000, China
- Joint Laboratory of Ecological Meteorology, Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Haitao Wei
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450000, China.
- Joint Laboratory of Ecological Meteorology, Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
24
|
Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan. TOXICS 2022; 10:toxics10070364. [PMID: 35878268 PMCID: PMC9317645 DOI: 10.3390/toxics10070364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Most of the country’s oil and gas fields are situated in West Kazakhstan, mainly on the Caspian Sea coast, causing significant damage to the local environment and contributing to an imbalance in the trace element composition of the human body. The study is aimed to evaluate the relationship between the concentration of essential trace elements in scalp hair of the western Kazakhstan adult population and the remoteness of their residence from oil and gas fields. The concentration of essential trace elements (Co, Cu, Fe, I, Mn, Se, Zn) in the hair of 850 individuals aged 18−60 years was determined by inductively coupled plasma mass spectrometry. In residents of settlements located at a distance of >110 km from oil and gas fields, the concentration of Cu and I in hair was significantly higher than in those closer to 110 km (p < 0.001). The content of Cu and I were associated with the distance to oil and gas fields (0.072 (95% CI: 0.050; 0.094)) and (0.121 (95% CI: 0.058; 0.185)), respectively. We detected a significant imbalance in the distribution of some essential trace elements in residents’ scalp hair from the Caspian region of western Kazakhstan, living near oil and gas fields. The concentrations of Cu and I were significantly interrelated with the distance to oil and gas fields. The level of copper in the hair of both inhabitants of the area most remote from oil and gas facilities and the entire population of western Kazakhstan as a whole remains significantly low. The data obtained provide evidence of the possible impact of pollutants generated by the oil and gas facilities on a shortage of essential trace elements and associated subsequent health risks.
Collapse
|
25
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|
26
|
Chin WS, Pan SC, Huang CC, Chen YC, Hsu CY, Lin P, Chen PC, Guo YL. Proximity to petrochemical industrial parks and risk of chronic glomerulonephritis. ENVIRONMENTAL RESEARCH 2022; 208:112700. [PMID: 35016869 DOI: 10.1016/j.envres.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This study determined whether individuals residing near petrochemical industrial parks (PIPs) have a higher risk of chronic glomerulonephritis (CGN). We performed population-based 1:4 case-control study by using Taiwan's National Health Insurance Research Database from 2000 to 2016. The subjects were aged 20-65 years, residing in western Taiwan, and did not have a history of any renal or urinary system disease in 2000. The case cohort included those who had at least three outpatient visits or one hospitalization between 2001 and 2016 with codes for CGN as per International Classification of Diseases (ICD)-Ninth and Tenth Revisions. Controls were randomly sampled age-, sex-, and urbanization-matched individuals without renal and urinary system diseases. Petrochemical exposure was evaluated by the distance to the nearest PIP of the residential township, and petrochemical exposure probability was examined considering the monthly prevailing wind direction. Conditional logistic regression was used to determine the association between petrochemical exposure and CGN risk. A total of 320,935 subjects were included in the final analysis (64,187 cases and 256,748 controls). After adjustment for potential confounders, living in townships within a 3-km radius of PIPs was associated with a higher risk of CGN (adjusted odds ratio [aOR] = 1.32, 95% confidence interval [CI] = 1.28-1.37). Compared with townships more than 20 km away from PIPs, those within 10 km of PIPs were associated with significantly increased risks of CGN in a dose-dependent manner. When prevailing wind was considered, townships with high exposure probability were associated with a significantly increased risk of CGN. We found that those residing near PIPs or with high petrochemical exposure probability had a higher risk of CGN. These findings highlight the need for monitoring environmental nephrotoxic substances and the renal health of residents living near PIPs.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan.
| |
Collapse
|
27
|
Panchal S, Jaryal R, Urana R, Bishnoi MB, Singh N. Optimization of Physicochemical Conditions for the Phenanthrene Degrading Consortium NS-PAH-2015-PNP-5. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suryakant Panchal
- Department of Bio and Nano Technology, Lab No. 202 Microbial Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Rajneesh Jaryal
- Department of Bio and Nano Technology, Lab No. 202 Microbial Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ruchi Urana
- Department of Bio and Nano Technology, Lab No. 202 Microbial Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Manju Bala Bishnoi
- Department of Bio and Nano Technology, Lab No. 202 Microbial Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Namita Singh
- Department of Bio and Nano Technology, Lab No. 202 Microbial Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
28
|
Castner J, Huntington-Moskos L, May A. Generating Data Visualizations of Longitudinal Cohort Ambient Air Pollution Exposure: Report-Back Intervention Development in Participatory Action Research. Comput Inform Nurs 2022; 40:44-52. [PMID: 34412083 PMCID: PMC8742747 DOI: 10.1097/cin.0000000000000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A civic engagement and data science design was used to develop a report-back intervention to address stakeholder concerns related to air emissions surrounding a coke oven factory near Buffalo, NY. This factory had historically emitted high levels of benzene pollution and ceased operation in October 2018 because of violations of the US Clean Air Act and US Resource Conservation and Recovery Act. Using publicly available air pollution and weather data, descriptive time series and wind-rose data visualizations were developed using open-source software as part of a two-page report-back brief. Data from two air toxics monitoring sites in this direction suggest that industrial sources were likely the major contributor to the benzene in the air at these locations prior to May 2018, after which traffic emissions became the likely major contributor. Wind-rose visualizations demonstrated that the wind typically blew toward the northeast, which was qualitatively consistent with locations of stakeholder concerns. With the factory closed, collective efforts subsequently shifted to address traffic emission air pollution sources, factory site cleanup, and ground and water pollution mitigation. Because this intervention utilized open-source software and publicly available data, it can serve as a blueprint for future data-driven nursing interventions and community-led environmental justice efforts.
Collapse
Affiliation(s)
- Jessica Castner
- Author Affiliations: Castner Incorporated, Grand Island, NY (Dr Castner); University of Louisville School of Nursing, KY (Dr Huntington-Moskos); and Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus (Dr May)
| | | | | |
Collapse
|
29
|
Rusiecki JA, Denic-Roberts H, Thomas DL, Collen J, Barrett J, Christenbury K, Engel LS. Incidence of chronic respiratory conditions among oil spill responders: Five years of follow-up in the Deepwater Horizon Oil Spill Coast Guard Cohort study. ENVIRONMENTAL RESEARCH 2022; 203:111824. [PMID: 34364859 PMCID: PMC8616774 DOI: 10.1016/j.envres.2021.111824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Over ten years after the Deepwater Horizon (DWH) oil spill, our understanding of long term respiratory health risks associated with oil spill response exposures is limited. We conducted a prospective analysis in a cohort of U.S. Coast Guard personnel with universal military healthcare. METHODS For all active duty cohort members (N = 45,193) in the DWH Oil Spill Coast Guard Cohort Study we obtained medical encounter data from October 01, 2007 to September 30, 2015 (i.e., ~2.5 years pre-spill; ~5.5 years post-spill). We used Cox Proportional Hazards regressions to calculate adjusted hazard ratios (aHR), comparing risks for incident respiratory conditions/symptoms (2010-2015) for: responders vs. non-responders; responders reporting crude oil exposure, any inhalation of crude oil vapors, and being in the vicinity of burning crude oil versus responders without those exposures. We also evaluated self-reported crude oil and oil dispersant exposures, combined. Within-responder comparisons were adjusted for age, sex, and smoking. RESULTS While elevated aHRs for responder/non-responder comparisons were generally weak, within-responder comparisons showed stronger risks with exposure to crude oil. Notably, for responders reporting exposure to crude oil via inhalation, there were elevated risks for allsinusitis (aHR = 1.48; 95%CI, 1.06-2.06), unspecified chronic sinusitis (aHR = 1.55; 95%CI, 1.08-2.22), chronic obstructive pulmonary disease (COPD) and other allied conditions (aHR = 1.43; 95%CI, 1.00-2.06), and dyspnea and respiratory abnormalities (aHR = 1.29; 95%CI, 1.00-1.67); there was a suggestion of elevated risk for diseases classified as asthma and reactive airway diseases (aHR = 1.18; 95%CI, 0.98-1.41), including the specific condition, asthma (aHR = 1.35; 95%CI, 0.80-2.27), the symptom, shortness of breath (aHR = 1.50; 95%CI, 0.89-2.54), and the overall classification of chronic respiratory conditions (aHR = 1.18; 95%CI, 0.98-1.43). Exposure to both crude oil and dispersant was positively associated with elevated risk for shortness of breath (HR = 2.24; 95%CI, 1.09-4.64). CONCLUSIONS Among active duty Coast Guard personnel, oil spill clean-up exposures were associated with moderately increased risk for longer term respiratory conditions.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, MD, USA
| | - Dana L Thomas
- United States Coast Guard Headquarters, Directorate of Health, Safety, and Work Life, Washington, D.C., USA
| | - Jacob Collen
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John Barrett
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kate Christenbury
- Social & Scientific Systems, a DLH Corporation Holding Company, Durham, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Chen CHS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, Chan CC. Lipidomics of children and adolescents exposed to multiple industrial pollutants. ENVIRONMENTAL RESEARCH 2021; 201:111448. [PMID: 34119529 DOI: 10.1016/j.envres.2021.111448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There are limited studies on the lipidomics of children and adolescents exposed to multiple industrial pollutants. OBJECTIVES In this study, we aimed to investigate lipid profile perturbations in 99 children and adolescents (aged 9-15) who lived in a polluted area surrounding the largest petrochemical complex in Taiwan. Previous studies have reported increased risks of acute and chronic diseases including liver dysfunctions and chronic kidney disease (CKD) in residents living in this area. METHODS We measured urinary concentrations of 11 metals and metalloids and polycyclic aromatic hydrocarbons (PAHs) metabolite 1-hydroxypyrene (1-OHP) as exposure biomarkers, and urinary oxidative stress biomarkers and serum acylcarnitines as early health effect biomarkers. The association between individual exposure biomarkers and early health effect biomarkers were analyzed using linear regression, while association of combined exposure biomarkers with four oxidative stress biomarkers and acylcarnitines were analyzed using weighted quantile sum (WQS) regression. Lipid profiles were analyzed using an untargeted liquid chromatography mass spectrometry-based technique. "Meet-in-the-middle" approach was applied to identify potential lipid features that linked multiple industrial pollutants exposure with early health effects. RESULTS We identified 15 potential lipid features that linked elevated multiple industrial pollutants exposure with three increased oxidative stress biomarkers and eight deregulated serum acylcarnitines, including one lysophosphatidylcholines (LPCs), four phosphatidylcholines (PCs), and two sphingomyelins (SMs) that were up-regulated in high exposure group compared to low exposure group, and two LPCs, four PCs, and two phosphatidylinositols (PIs) down-regulated in high exposure group compared to low exposure group. CONCLUSION Our findings could provide information for understanding the health effects, including early indicators and biological mechanism identification, of children and adolescents exposed to multiple industrial pollutants during critical stages of development.
Collapse
Affiliation(s)
- Chi-Hsin S Chen
- Master of Public Health Program, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University. No. 33, Linsen S. Road, Taipei, 10055, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan. No.101, Sec. 2, Zhongcheng Rd., Shilin Dist., Taipei City, 11153, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan.
| |
Collapse
|
31
|
Rovira J, Nadal M, Schuhmacher M, Domingo JL. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147550. [PMID: 33991912 DOI: 10.1016/j.scitotenv.2021.147550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Chemical industries and oil refineries are known emission sources of environmental contaminants, such as metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), among others. Based on the toxicological potential of these pollutants, harmful health effects can be expected for the population living near these facilities. One of the largest chemical/petrochemical complexes in Europe is located in Tarragona County (Catalonia, Spain). In the last two decades, a number of investigations aimed at assessing the environmental impact of air pollutants potentially emitted by this industrial complex have been carried out. The present paper is a review of the available scientific information on the levels of air pollutants related with the activities of this chemical/petrochemical complex. Although there are currently some data on the environmental burdens of metals/metalloids, PAHs, VOCs and PCDD/Fs, there is an evident lack of specific biological monitoring studies on human health. Taking into account the amount of chemicals released to air and their toxicity, it is essential to perform an in-depth analysis of the current health status of the population living in Tarragona County.
Collapse
Affiliation(s)
- Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
32
|
González N, Esplugas R, Marquès M, Domingo JL. Concentrations of arsenic and vanadium in environmental and biological samples collected in the neighborhood of petrochemical industries: A review of the scientific literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145149. [PMID: 33540162 DOI: 10.1016/j.scitotenv.2021.145149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Petrochemical facilities, including oil refineries, are emission sources of a wide range of environmental pollutants such as trace elements, volatile organic compounds, and polycyclic aromatic hydrocarbons, among others. Populations living near this kind of facilities may be potentially exposed to contaminants, which are, in turn, associated with a wide range of adverse effects. In our laboratory, we have shown that the environmental concentrations of trace elements near the petrochemical complex of Tarragona County (Spain), which is among the largest complexes in the European Union, should not be a relevant pollution source for these elements, with the exception of arsenic (As) and vanadium (V). Moreover, the International Agency for Research on Cancer (IARC) classified As and V as Group 1 and Group 2B, respectively. Based on it, the present paper was aimed at reviewing the available scientific information on the occurrence of As and V in the vicinity of petrochemical complexes worldwide, considering environmental matrices (air, dust, sediments, soil, and water), as well as biological samples (blood, hair, and urine). In general, levels of As and V in environmental matrices showed higher fluctuation throughout the world and was highly dependent on the samples zone while levels of both elements in urinary samples from subjects living near a petrochemical area were higher than those of population living further.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| |
Collapse
|
33
|
Vicens P, Heredia L, Bustamante E, Pérez Y, Domingo JL, Torrente M. Does living close to a petrochemical complex increase the adverse psychological effects of the COVID-19 lockdown? PLoS One 2021; 16:e0249058. [PMID: 33730077 PMCID: PMC7968890 DOI: 10.1371/journal.pone.0249058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
The petrochemical industry has made the economic development of many local communities possible, increasing employment opportunities and generating a complex network of closely-related secondary industries. However, it is known that petrochemical industries emit air pollutants, which have been related to different negative effects on mental health. In addition, many people around the world are being exposed to highly stressful situations deriving from the COVID-19 pandemic and the lockdowns adopted by national and regional governments. The present study aims to analyse the possible differential effects on various psychological outcomes (stress, anxiety, depression and emotional regulation strategies) stemming from the COVID-19 pandemic and consequent lockdown experienced by individuals living near an important petrochemical complex and subjects living in other areas, nonexposed to the characteristic environmental pollutants emitted by these kinds of complex. The sample consisted of 1607 subjects who answered an ad hoc questionnaire on lockdown conditions, the Perceived Stress Scale (PSS), the Hospital Anxiety and Depression Scale (HADS), the Barratt Impulsivity Scale (BIS) and the Emotional Regulation Questionnaire (ERQ). The results indicate that people living closer to petrochemical complexes reported greater risk perception [K = 73.42, p < 0.001, with a medium size effect (η2 = 0.061)]. However, no significant relationship between psychological variables and proximity to the focus was detected when comparing people living near to or far away from a chemical/petrochemical complex. Regarding the adverse psychological effects of the first lockdown due to COVID-19 on the general population in Catalonia, we can conclude that the conditions included in this survey were mainly related to changes in the participants' impulsivity levels, with different total impulsivity scores being obtained if they had minors in their care (p<0.001), if they had lost their jobs, if they were working (p<0.001), if they were not telecommuting (p<0.001), if they went out to work (p<0.001) or if they established routines (p = 0.009). However, we can also be fairly certain that the economic effects are going to be worse than those initially detected in this study. More research will be necessary to corroborate our results.
Collapse
Affiliation(s)
- Paloma Vicens
- Department of Psychology, CRAMC (Research Center for Behavior Assessment), Universitat Rovira i Virgili, Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, TECNATOX, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Luis Heredia
- Department of Psychology, CRAMC (Research Center for Behavior Assessment), Universitat Rovira i Virgili, Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, TECNATOX, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Edgar Bustamante
- Department of Geography, GRATET, Universitat Rovira i Virgili, Vila-seca, Spain
| | - Yolanda Pérez
- Department of Geography, GRATET, Universitat Rovira i Virgili, Vila-seca, Spain
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health, TECNATOX, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Margarita Torrente
- Department of Psychology, CRAMC (Research Center for Behavior Assessment), Universitat Rovira i Virgili, Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, TECNATOX, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
- * E-mail:
| |
Collapse
|
34
|
Huang CC, Pan SC, Chin WS, Chen YC, Hsu CY, Lin P, Guo YL. Maternal proximity to petrochemical industrial parks and risk of premature rupture of membranes. ENVIRONMENTAL RESEARCH 2021; 194:110688. [PMID: 33385393 DOI: 10.1016/j.envres.2020.110688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Living near petrochemical industries has been reported to increase the risks of adverse birth outcomes, such as low birth weight and preterm delivery. However, evidence regarding the role of petrochemical exposure in pregnancy complications remains limited. This study evaluated the association between maternal proximity to petrochemical industrial parks (PIPs) during pregnancy and the occurrence of premature rupture of membranes (PROM). METHODS We performed a population-based 1:3 case-control study by using the 2004-2014 Taiwanese Birth Certificate Database. Birth records reported as stillbirth or bearing congenital anomalies were excluded. Cases were newborns reported to have PROM, whereas controls were randomly sampled from those without any pregnancy complications by matching birth year and urbanization index of the residential township. The proximity to PIPs was evaluated by calculating the distance to the nearest PIP of the maternal residential township during pregnancy. Furthermore, petrochemical exposure opportunity, accounting for monthly prevailing wind direction, was quantified during the entire gestational period. We applied conditional logistic regression models to evaluate the associations. RESULTS In total, 29371 PROM cases were reported during the study period, with a corresponding 88113 healthy controls sampled. The results revealed that living within a 3-km radius of PIPs during pregnancy would increase the risk of PROM (odds ratio [OR] = 1.76, 95% CI: 1.66-1.87). Furthermore, compared with the lowest exposed group, those with high petrochemical exposure opportunity had a significantly increased risk of PROM occurrence (OR = 1.69-1.75). The adverse effects remained robust in the subgroup analysis for both term- and preterm-PROM. CONCLUSIONS The results of the present work provide evidence that living near PIPs during pregnancy would increase the risk of PROM, and additional studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Lin YC, Lai CY, Chu CP. Air pollution diffusion simulation and seasonal spatial risk analysis for industrial areas. ENVIRONMENTAL RESEARCH 2021; 194:110693. [PMID: 33387541 DOI: 10.1016/j.envres.2020.110693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The petrochemical industry produces many air pollutants during production, such as airborne particulate matters (PM10 and PM2.5), sulfur oxides, nitrogen oxides, volatile organic compounds, carbon oxides, etc. Petrochemical industrial accidents are more likely to cause major air pollution hazards in a short period. Therefore this study simulated diffusion and performed air pollution spatial risk analysis for potential air pollutants generated by the petrochemical industry using meteorological observation data from 2017 to 2019. The study targets were No. 6 Naphtha Cracker Complex Petrochemical Industrial Park (6NCC) of Formosa Petrochemical Corporation and Taichung Thermal Power Plant (TTPP) in central Taiwan. We used the industrial source complex model short term (ISCST3) air simulation model developed by the US Environmental Protection Agency to simulate pollutant diffusion under different weather conditions and seasons. Air pollution spatial risk was investigated for neighboring hospitals and schools for pollutant emission and diffusion to provide feedback to petrochemical related industry's risk management. Emission areas (6NCC and TTPP) were all in the southwest since the main air pollution accumulation and diffusion is to the northeast during monsoon season (October through March). Air pollution April through September each year is more evenly distributed, with pollutant concentrations low in all directions, approximately half the concentration in winter. Simulated air pollutant concentrations often overlapped with high risk population clusters (schools and hospitals). 6NCC posed little impact on nearby schools throughout the year; whereas TTPP posed relatively low risks to nearby schools and hospitals in summer, with slightly higher risk for Shenren Elementary School in Shengang township, Changhua County in winter. Overall 6NCC posed higher risk for Mailiao and Taixi townships in Yunlin County; whereas the TTPP posed higher risk on Longjing District of Taichung City, Shengang and Xianxi townships in Changhua County, particularly during winter. The results of this study will help the petrochemical industry and public health authority to wider manage air pollution risks.
Collapse
Affiliation(s)
- Yuan-Chien Lin
- Research Center for Hazard Mitigation and Prevention, National Central University, Taoyuan, 32001, Taiwan; Department of Civil Engineering, National Central University, Taoyuan, 32001, Taiwan.
| | - Chun-Yeh Lai
- Department of Civil Engineering, National Central University, Taoyuan, 32001, Taiwan.
| | - Chun-Ping Chu
- Research Center for Hazard Mitigation and Prevention, National Central University, Taoyuan, 32001, Taiwan; Department of Civil Engineering, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
36
|
Domingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. ENVIRONMENTAL RESEARCH 2020; 187:109650. [PMID: 32416357 PMCID: PMC7211639 DOI: 10.1016/j.envres.2020.109650] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/13/2023]
Abstract
Particulate matter, sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) are among the outdoor air pollutants that are major factors in diseases, causing especially adverse respiratory effects in humans. On the other hand, the role of respiratory viruses in the pathogenesis of severe respiratory infections is an issue of great importance. The present literature review was aimed at assessing the potential effects of air pollutants on the transmission and severity of respiratory viral infections. We have reviewed the scientific literature regarding the association of outdoor air pollution and respiratory viruses on respiratory diseases. Evidence supports a clear association between air concentrations of some pollutants and human respiratory viruses interacting to adversely affect the respiratory system. Given the undoubted importance and topicality of the subject, we have paid special attention to the association between air pollutants and the transmission and severity of the effects caused by the coronavirus named SARS-CoV-2, which causes the COVID-19. Although to date, and by obvious reasons, the number of studies on this issue are still scarce, most results indicate that chronic exposure to air pollutants delays/complicates recovery of patients of COVID-19 and leads to more severe and lethal forms of this disease. This deserves immediate and in-depth experimental investigations.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain; Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avd. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| |
Collapse
|