1
|
Zhang J, Wang L, Lu Y, Zheng F, Ding X, Yao X, Bai J, Wang N, Yang G, Qiu T, Sun X. CISD2-mediated mitochondrial dysfunction and iron redistribution contributes to ferroptosis in arsenic-induced nonalcoholic steatohepatitis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117694. [PMID: 39808878 DOI: 10.1016/j.ecoenv.2025.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Arsenic in the environment, such as sodium arsenic (NaAsO2), is a frequently occurring hazard that has been linked to nonalcoholic steatohepatitis (NASH). Our prior research established the involvement of ferroptosis in arsenic-induced NASH, but the precise underlying mechanisms remain elusive. Here, we found that exposure to NaAsO2 had a suppressive effect on the expression of CDGSH iron-sulfur domain-containing protein 2 (CISD2) at the protein and gene levels, and overexpression of CISD2 inhibited NaAsO2-induced ferroptosis and NASH. Additionally, administration of NaAsO2 to hepatocytes triggered mitochondrial dysfunction, manifesting as the release of cytochrome c, impairment of the mitochondrial respiratory chain, and reduction in ATP synthesis. However, these adverse effects were alleviated through overexpression of CISD2. Intracellular iron redistribution was induced by overexpression of CISD2 and inhibited NaAsO2-induced ferroptosis. This inhibition was characterized by a reduction in cytoplasmic iron levels and an increase in mitochondrial iron levels. Our study demonstrated that NaAsO2 induced intracellular iron reorganization and mitochondrial dysfunction through CISD2 inhibition, leading to ferroptosis and NASH. This may provide a novel means of treatment of nonalcoholic fatty liver disease triggered by environmental factors.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Lu Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yang Lu
- Department of Radiology, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Fei Zheng
- Department of Gastrointestinal Cancer, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Xiaoqian Ding
- Department of Gastrointestinal Cancer, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Public Health Experimental Teaching Center, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Ningning Wang
- Department of Public Health Experimental Teaching Center, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
2
|
George CM, Zacher T, Endres K, Richards F, Bear Robe L, Harvey D, Best LG, Red Cloud R, Black Bear A, Skinner L, Cuny C, Rule A, Schwab KJ, Gittelsohn J, Glabonjat RA, Schilling K, O’Leary M, Thomas ED, Umans J, Zhu J, Moulton LH, Navas-Acien A. Effect of an Arsenic Mitigation Program on Arsenic Exposure in American Indian Communities: A Cluster Randomized Controlled Trial of the Community-Led Strong Heart Water Study Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37007. [PMID: 38534131 PMCID: PMC10967367 DOI: 10.1289/ehp12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS A 47% reduction in urinary arsenic [geometric mean ( GM ) = 13.2 to 7.0 μ g / g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM = 14.6 to 6.55 μ g / g creatinine) and 30% in the Intensive arm (GM = 11.2 to 7.82 μ g / g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.
Collapse
Affiliation(s)
- Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Francine Richards
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | | | - Lyle G. Best
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, Pine Ridge, South Dakota, USA
| | | | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kellogg J. Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Gittelsohn
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ronald Alexander Glabonjat
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathrin Schilling
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason Umans
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Jianhui Zhu
- Biomarker, Biochemistry, and Biorepository Core, Medstar Health, Washington, District of Columbia, USA
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Jhuang JR, Lee CH, Chiang CJ, Chen CJ, Lee WC. Reduced burden of Arsenic-Related cancers after water mitigation in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 185:108542. [PMID: 38461779 DOI: 10.1016/j.envint.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Epidemiological evidence has demonstrated an association between arsenic in drinking water and increased cancer incidence. This population-based study investigates the impact of a tap water supply system installation in Blackfoot disease-endemic regions of Taiwan on cancer incidence. METHODS By using the Taiwan Cancer Registry dataset, we enrolled patients aged 40-84 diagnosed with arsenic-related cancers, including hepatocellular carcinoma, small and squamous cell lung cancer, Bowen's disease, basal and squamous cell skin cancer, urothelial bladder cancer, and upper tract urothelial carcinoma between 1995 and 2019. Random-effects age-period-cohort models were used to estimate the cancer incidence data, and a stabilized kriging method was employed to interpolate incidence rates to more precise spatiotemporal units. RESULTS The results showed that the age-standardized incidence rates of all six types of studied cancers were consistently higher in Blackfoot disease-endemic areas than those in other areas from 1995 to 2019. However, the gap in incidence rates between Blackfoot disease-endemic areas and the remaining regions began to narrow approximately after the 1960 birth cohort when the tap water supply system installation commenced. For small and squamous cell lung cancer, Bowen's disease, and urothelial bladder cancer, the excess incidence rates sharply declined to null for those born after the year of arsenic mitigation. For upper tract urothelial carcinoma, the excess incidence rates decreased more gradually for those born after the year of arsenic mitigation. For hepatocellular carcinoma and basal and squamous cell skin cancer, the excess incidence rates remained constant. Spatiotemporal clusters of high incidence rates were identified in the core townships of Blackfoot disease-endemic areas. These clusters began to dissipate mainly after the 1960 birth cohort. CONCLUSION Arsenic mitigation from drinking water in Taiwan is associated with a reduced burden of small and squamous cell lung cancers, Bowen's disease, urothelial bladder cancer, and upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Jing-Rong Jhuang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan; Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Erickson ML, Brown CJ, Tomaszewski EJ, Ayotte JD, Böhlke JK, Kent DB, Qi S. Prioritizing water availability study settings to address geogenic contaminants and related societal factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:303. [PMID: 38400911 PMCID: PMC10894127 DOI: 10.1007/s10661-024-12362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
Water availability for human and ecological uses depends on both water quantity and water quality. The U.S. Geological Survey (USGS) is developing strategies for prioritizing regional-scale and watershed basin-scale studies of water availability across the nation. Previous USGS ranking processes for basin-scale studies incorporated primarily water quantity factors but are now considering additional water quality factors. This study presents a ranking based on the potential impacts of geogenic constituents on water quality and consideration of societal factors related to water quality. High-concentration geogenic constituents, including trace elements and radionuclides, are among the most prevalent contaminants limiting water availability in the USA and globally. Geogenic constituents commonly occur in groundwater because of subsurface water-rock interactions, and their distributions are controlled by complex geochemical processes. Geogenic constituent mobility can also be affected by human activities (e.g., mining, energy production, irrigation, and pumping). Societal factors and relations to drinking water sources and water quality information are often overlooked when evaluating research priorities. Sociodemographic characteristics, data gaps resulting from historical data-collection disparities, and infrastructure condition/age are examples of factors to consider regarding environmental justice. This paper presents approaches for ranking and prioritizing potential basin-scale study areas across the contiguous USA by considering a suite of conventional physical and geochemical variables related to geogenic constituents, with and without considering variables related to societal factors. Simultaneous consideration of societal and conventional factors could provide decision makers with more diverse, interdisciplinary tools to increase equity and reduce bias in prioritizing focused research areas and future water availability studies.
Collapse
Affiliation(s)
- Melinda L Erickson
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN, 55112, USA.
| | - Craig J Brown
- U.S. Geological Survey, 101 Pitkin Street, East Hartford, CT, 06108, USA
| | | | - Joseph D Ayotte
- U.S. Geological Survey, 331 Commerce Way, Pembroke, NH, 03275, USA
| | - John K Böhlke
- U.S. Geological Survey, 12201 Sunrise Valley Dr, Reston, VA, 20192, USA
| | - Douglas B Kent
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA, 94025, USA
| | - Sharon Qi
- U.S. Geological Survey, 601 SW 2nd Ave. Suite 1950, Portland, OR, 97204, USA
| |
Collapse
|
5
|
Jegen D, Maxson J, Fischer K, Bernard M, Foss R, Hidaka B, Passmore R, Sosso J, Stacey SK, Thacher TD. Arsenic Exposure in Well Water From the Perspective of Patients and Providers. J Prim Care Community Health 2024; 15:21501319241247984. [PMID: 38682480 PMCID: PMC11060032 DOI: 10.1177/21501319241247984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Arsenic is a well-known toxin which may contaminate household water. It is harmful when ingested over prolonged periods of time. As a result, public health experts recommend that water should be screened and treated to prevent arsenic ingestion. In the United States, the responsibility of testing and treatment of private wells falls on homeowners. Despite recommendations for routine screening, this is rarely done. OBJECTIVES To assess the prevalence of well water use in a Midwestern patient population, how patients and clinicians perceive the risks of arsenic in well water, and whether additional resources on well water testing are desired. These findings will be used to influence tools for clinicians regarding symptom and examination findings of chronic arsenic exposure and potentiate the distribution of informational resources on well water testing. METHODS Surveys were sent via email to all actively practicing primary care clinicians at the Mayo Clinic in the United States Midwest, and all active adult patients at the Mayo Clinic in the same region. Our team analyzed survey data to determine whether both patients and clinicians are aware of the health effects of chronic arsenic toxicity from well water, the need for routine well water testing and whether each group wants more information on the associated risks. RESULTS Both patients and primary care clinicians worry about arsenic exposure. Patients with well water are concerned about their water safety yet feel uninformed about testing options. Clinicians do not know how prevalent well water use is among their patients, feel uninformed about the chronic risks of arsenic exposure and the physical examination associated with it. Both groups unanimously want more information on testing options. CONCLUSIONS Our findings show a significant reliance on well water use in the American Midwest, and unanimous support for the need for further well water testing information and resources for patients and their clinicians.
Collapse
Affiliation(s)
| | | | | | | | - Randy Foss
- Mayo Clinic Health System, Lake City, MN, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zacher T, Endres K, Richards F, Robe LB, Powers M, Yracheta J, Harvey D, Best LG, Red Cloud R, Black Bear A, Ristau S, Aurand D, Skinner L, Cuny C, Gross M, Thomas E, Rule A, Schwab KJ, O'Leary M, Moulton LH, Navas-Acien A, George CM. Evaluation of a water arsenic filter in a participatory intervention to reduce arsenic exposure in American Indian communities: The Strong Heart Water Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160217. [PMID: 36410482 PMCID: PMC10373100 DOI: 10.1016/j.scitotenv.2022.160217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Many rural populations, including American Indian communities, that use private wells from groundwater for their source of drinking and cooking water are disproportionately exposed to elevated levels of arsenic. However, programs aimed at reducing arsenic in American Indian communities are limited. The Strong Heart Water Study (SHWS) is a randomized controlled trial aimed at reducing arsenic exposure among private well users in American Indian Northern Great Plains communities. The community-led SHWS program installed point-of-use (POU) arsenic filters in the kitchen sink of households, and health promoters delivered arsenic health communication programs. In this study we evaluated the efficacy of these POU arsenic filters in removing arsenic during the two-year installation period. Participants were randomized into two arms. In the first arm households received a POU arsenic filter, and 3 calls promoting filter use (SHWS mobile health (mHealth) & filter arm). The second arm received the same filter and phone calls, and 3 in-person home visits and 3 Facebook messages (SHWS intensive arm) for program delivery. Temporal variability in water arsenic concentrations from the main kitchen faucet was also evaluated. A total of 283 water samples were collected from 50 households with private wells from groundwater (139 filter and 144 kitchen faucet samples). Ninety-three percent of households followed after baseline had filter faucet water arsenic concentrations below the arsenic maximum contaminant level of 10 μg/L at the final visit during our 2 year study period with no difference between study arms (98 % in the intensive arm vs. 94 % in the mHealth & filter arm). No significant temporal variation in kitchen arsenic concentration was observed over the study period (intraclass correlation coefficient = 0.99). This study demonstrates that POU arsenic filters installed for the community participatory SHWS program were effective in reducing water arsenic concentration in study households in both arms, even with delivery of the POU arsenic filter and mHealth program only. Furthermore, we observed limited temporal variability of water arsenic concentrations from kitchen faucet samples collected over time from private wells in our study setting.
Collapse
Affiliation(s)
- Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Martha Powers
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Indian Health Services, Rockville, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, USA
| | | | - Steve Ristau
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Dean Aurand
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Marie Gross
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Elizabeth Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, NY, New York, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Anderson DM, Bear AB, Zacher T, Endres K, Saxton R, Richards F, Robe LB, Harvey D, Best LG, Cloud RR, Thomas ED, Gittelsohn J, O’Leary M, Navas-Acien A, George CM. Implementing a Community-Led Arsenic Mitigation Intervention for Private Well Users in American Indian Communities: A Qualitative Evaluation of the Strong Heart Water Study Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2681. [PMID: 36768048 PMCID: PMC9915175 DOI: 10.3390/ijerph20032681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Arsenic is a naturally occurring toxicant in groundwater, which increases cancer and cardiovascular disease risk. American Indian populations are disproportionately exposed to arsenic in drinking water. The Strong Heart Water Study (SHWS), through a community-centered approach for intervention development and implementation, delivered an arsenic mitigation program for private well users in American Indian communities. The SHWS program comprised community-led water arsenic testing, point-of-use arsenic filter installation, and a mobile health program to promote sustained filter use and maintenance (i.e., changing the filter cartridge). Half of enrolled households received additional in-person behavior change communication and videos. Our objectives for this study were to assess successes, barriers, and facilitators in the implementation, use, and maintenance of the program among implementers and recipients. We conducted 45 semi-structured interviews with implementers and SHWS program recipients. We analyzed barriers and facilitators using the Consolidated Framework for Implementation Research and the Risks, Attitudes, Norms, Abilities, and Self-regulation model. At the implementer level, facilitators included building rapport and trust between implementers and participating households. Barriers included the remoteness of households, coordinating with community plumbers for arsenic filter installation, and difficulty securing a local supplier for replacement filter cartridges. At the recipient level, facilitators included knowledge of the arsenic health risks, perceived effectiveness of the filter, and visual cues to promote habit formation. Barriers included attitudes towards water taste and temperature and inability to procure or install replacement filter cartridges. This study offers insights into the successes and challenges of implementing an arsenic mitigation program tailored to American Indian households, which can inform future programs in partnership with these and potentially similar affected communities. Our study suggests that building credibility and trust between implementers and participants is important for the success of arsenic mitigation programs.
Collapse
Affiliation(s)
- Darcy M. Anderson
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Annabelle Black Bear
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ronald Saxton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Francine Richards
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Lisa Bear Robe
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Indian Health Service, Rockville, MD 20857, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, Pine Ridge, SD 57770, USA
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joel Gittelsohn
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Arienzo MM, Saftner D, Bacon SN, Robtoy E, Neveux I, Schlauch K, Carbone M, Grzymski J. Naturally occurring metals in unregulated domestic wells in Nevada, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158277. [PMID: 36029812 PMCID: PMC9588670 DOI: 10.1016/j.scitotenv.2022.158277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 05/26/2023]
Abstract
The dominant source of drinking water in rural Nevada, United States, is privately-owned domestic wells. Because the water from these wells is unregulated with respect to government guidelines, it is the owner's responsibility to test their groundwater for heavy metals and other contaminants. Arsenic, lead, cadmium, and uranium have been previously measured at concentrations above Environmental Protection Agency (EPA) guidelines in Nevada groundwater. This is a public health concern because elevated levels of these metals are known to have negative health effects. We recruited individuals through a population health study, the Healthy Nevada Project, to submit drinking water samples from domestic wells for testing. Water samples were returned from 174 households with private wells. We found 22 % had arsenic concentrations exceeding the EPA maximum contaminant level (MCL) of 10 μg/L. Additionally, federal, state, or health-based guidelines were exceeded for 8 % of the households for uranium and iron, 6 % for lithium and manganese, 4 % for molybdenum, and 1 % for lead. The maximum observed concentrations of arsenic, uranium, and lead were ∼80, ∼5, and ∼1.5 times the EPA guideline values, respectively. 41 % of households had a treatment system and submitted both pre- and post-treatment water samples from their well. The household treatments were shown to reduce metal concentrations, but concentrations above guideline values were still observed. Many treatment systems cannot reduce the concentration below guideline values because of water chemistry, treatment failure, or improper treatment techniques. These results show the pressing need for continued education and outreach on regular testing of domestic well waters, proper treatment types, and health effects of metal contamination. These findings are potentially applicable to other arid areas where groundwater contamination of naturally occurring heavy metals occurs.
Collapse
Affiliation(s)
- Monica M Arienzo
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA.
| | - Daniel Saftner
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Steven N Bacon
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Erika Robtoy
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Iva Neveux
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
| | - Karen Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
| | | | - Joseph Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA; Renown Health, Reno, NV, USA
| |
Collapse
|
9
|
Sadeghi H, Mohammadpour A, Samaei MR, Azhdarpoor A, Hadipoor M, Mehrazmay H, Mousavi Khaneghah A. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 212:113147. [PMID: 35341750 DOI: 10.1016/j.envres.2022.113147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Among the contaminants found in groundwater, arsenic poses a great threat to human health and the ecosystem. Therefore, it is vital to eliminate arsenic from water sources. This study utilizes one of the most efficient and emerging decontamination techniques known as the sono-electrocoagulation method. In recent years, sono-electrocoagulation has attracted many scientists due to its unique features, such as being cost-effective, rapid process, and high efficiency. The required groundwater samples were artificially synthesized in the laboratory, where the anode and cathode were determined to be Fe, Ti/PbO2, and Al, respectively. During the experiment, the impact of pH (5,6,7,8), various initial concentrations (100, 200, 300,400, 500, 600 μg/l), exposure times of 5,10,15,20,25 min, electrode distances of 1.5,2,2.5,3,3.5 cm and different current intensities of 5,10,15,20,25 mA/cm2 were examined. The ambient temperature of the laboratory was kept at 30 and 40 °C. Furthermore, this study showed that the system containing Ti/PbO2 as the anode and Al as the cathode electrodes removed arsenic contamination more effectively in the base environment. The performance of arsenic removal was directly related to current intensity, pH, and time. Nevertheless, time elapse played a negative factor due to the corrosion of the electrodes' surface and the dissolution of floating materials in the solution. With the surge of arsenic concentration from 100 to 300 mg/L, the arsenic removal efficiency increased from 61.9 to 98.5 percent, where the maximum removal efficiency due to the rise of the current intensity was 84.16 percent. The sono-electrocoagulation method reduced the risk of carcinogenic and non-carcinogenicity from 5.15E-03 to 7.73E-05 and 26.71 to 0.40. Accordingly, it was found that a combination of ultrasonic and electrocoagulation processes is a promising approach for arsenic removal.
Collapse
Affiliation(s)
- Halime Sadeghi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Hadipoor
- Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran
| | - Hamid Mehrazmay
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Highly efficient As(III) removal through simultaneous oxidation and adsorption by N-CQDs modified MIL-53(Fe). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Spaur M, Lombard MA, Ayotte JD, Harvey DE, Bostick BC, Chillrud SN, Navas-Acien A, Nigra AE. Associations between private well water and community water supply arsenic concentrations in the conterminous United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147555. [PMID: 33991916 PMCID: PMC8192485 DOI: 10.1016/j.scitotenv.2021.147555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 05/12/2023]
Abstract
Geogenic arsenic contamination typically occurs in groundwater as opposed to surface water supplies. Groundwater is a major source for many community water systems (CWSs) in the United States (US). Although the US Environmental Protection Agency sets the maximum contaminant level (MCL enforceable since 2006: 10 μg/L) for arsenic in CWSs, private wells are not federally regulated. We evaluated county-level associations between modeled values of the probability of private well arsenic exceeding 10 μg/L and CWS arsenic concentrations for 2231 counties in the conterminous US, using time invariant private well arsenic estimates and CWS arsenic estimates for two time periods. Nationwide, county-level CWS arsenic concentrations increased by 8.4 μg/L per 100% increase in the probability of private well arsenic exceeding 10 μg/L for 2006-2008 (the initial compliance monitoring period after MCL implementation), and by 7.3 μg/L for 2009-2011 (the second monitoring period following MCL implementation) (1.1 μg/L mean decline over time). Regional differences in this temporal decline suggest that interventions to implement the MCL were more pronounced in regions served primarily by groundwater. The strong association between private well and CWS arsenic in Rural, American Indian, and Semi Urban, Hispanic counties suggests that future research and regulatory support are needed to reduce water arsenic exposures in these vulnerable subpopulations. This comparison of arsenic exposure values from major private and public drinking water sources nationwide is critical to future assessments of drinking water arsenic exposure and health outcomes.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Melissa A Lombard
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | - David E Harvey
- U.S. Public Health Service, Commissioned Corps, Rockville, MD, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
12
|
Monteiro De Oliveira EC, Caixeta ES, Santos VSV, Pereira BB. Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:119-135. [PMID: 33709865 DOI: 10.1080/10937404.2021.1898504] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic (As) occurs naturally in geologic conditions, but groundwater contamination might also be found due to the consequences of mining, agricultural and industrial processes. Human exposure to As after drinking contaminated water is commonly associated with acute toxicity outcomes and chronic effects ranging from skin lesions to cancer. Integrated actions from environmental and health authorities are needed to reduce exposure, monitoring outcomes, and promotion of actions to offer sustainable As-safe water alternatives. Considering recent research trends, the present review summarizes and discusses current issues associated with the process and effects of contamination and decontamination in an environmental health perspective. Recent findings reinforce the harmful effects of the consumption of As-contaminated water and broaden the scope of related diseases including intestinal maladies, type 2 diabetes, cancers of bladder, kidneys, lung, and liver. Among the main strategies to diminish or remove As from water, the following are highlighted (1) ion exchange system and membrane filtration (micro, ultra, and nanofiltration) as physicochemical treatment systems; (2) use of cyanobacteria and algae in bioremediation programs and (3) application of nanotechnology for water treatment.
Collapse
Affiliation(s)
| | - Evelyn Siqueira Caixeta
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | - Vanessa Santana Vieira Santos
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
13
|
Li Y, Bi Y, Mi W, Xie S, Ji L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124337. [PMID: 33144018 DOI: 10.1016/j.jhazmat.2020.124337] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Groundwater pollution is becoming a more serious issue because of various anthropogenic activities. A large proportion of the population living in the urbanized and industrialized world is exposed daily to hazardous materials. However, despite the knowledge that protecting groundwater is necessary, little is known about the role of land-use change for human health risks. In this study, we analyzed the temporal and spatial variation of groundwater fluoride (F) and arsenic (As) during 2010-2018 in Shanxi Province of Northern China. Distribution areas of high F and As increased from 2010 to 2018 and spread over time. We assessed human health risk by calculating carcinogenic risk and non-carcinogenic risk. The results showed that F exposure, frequency of high concentration, and risk from 2016 to 2018 were higher than that in 2010-2015, and similar results were obtained for As exposure. Further, land-use change caused by anthropogenic activities increased F and As pollution in groundwater and placed humans at a higher health risk. Our study sheds light on anthropogenic activities that could increase human health risks caused by groundwater F and As via changing land-use. The study provides supports and suggestions for policy-makers to reduce groundwater pollution and prevent adverse health risks to residents.
Collapse
Affiliation(s)
- Yuan Li
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Taiyuan Monitoring Station of National Urban Water Quality Monitoring Network, Taiyuan, Shanxi 030009, China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Li Ji
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|