1
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Mahmoud MAA, Zhang Y. Enhancing Odor Analysis with Gas Chromatography-Olfactometry (GC-O): Recent Breakthroughs and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9523-9554. [PMID: 38640191 DOI: 10.1021/acs.jafc.3c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Gas chromatography-olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.
Collapse
Affiliation(s)
- Mohamed A A Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| |
Collapse
|
3
|
Wang J, Janson C, Gislason T, Gunnbjörnsdottir M, Jogi R, Orru H, Norbäck D. Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121103. [PMID: 36690293 DOI: 10.1016/j.envpol.2023.121103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Associations between measured specific VOC reported to be associated with dampness and microbial growth in dwellings and asthma, lung function were investigated in 159 adults (one adult/home) from three North European cities (Reykjavik, Uppsala and Tartu). Spirometry was performed and forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC were measured. Among 159 participants, 58% were females, 24.5% atopics, 25.8% current smokers and 41% reported dampness or mold at home. Dimethyl disulphide (p = 0.004), ethyl isobutyrate (p = 0.021) and ethyl 2-methylbutyrate (p = 0.035) were associated with asthma. Isobutanol (p = 0.043), 3-methyl-1-butanol (p = 0.020), 2-hexanone (p = 0.033), 1-octen-3-ol (p = 0.027), 2-methyl-1-butanol (p = 0.022) and 2-ethyl-1-hexanol (p = 0.045) were associated with lower FEV1. Isobutanol (p = 0.004), 3-methyl-1-butanol (p = 0.001), 2-heptanone (p = 0.047) and 2-methyl-1-butanol (p = 0.002) were associated with lower FEV1/FVC. The association between dimethyl disulphide and asthma was more pronounced in females (p for interaction 0.099). The association between 1-butanol and lower FEV1 was more pronounced in males (p for interaction 0.046). The associations between 3-octanone (p for interaction 0.064), 2-ethyl-1-hexanol (p for interaction 0.049) and lower FEV1, and between 2-heptanone (p for interaction 0.021), 3-octanone (p for interaction 0.008) and lower FEV1/FVC were stronger in homes with dampness/mold. Factor analysis identified one VOC factor related to asthma and two VOC factors related to lower lung function. Increased air concentrations of 2-heptanone, ethyl 2-methylbutyrate and ethyl isobutyrate were related to prescence of certain mold species (Aspergillus sp., Cladosporum sp. and Penicillium sp.) or building dampness. Some VOC were associated with type of dwelling, building age and pet keeping. In conclusion, some VOC reported to be associated with dampness and microbial growth can be associated with asthma and lower lung function in adults. Associations between these VOC and respiratory illness can be stronger in homes with dampness/mold. There can be gender differences in respiratory health effects when exposed to indoor VOC.
Collapse
Affiliation(s)
- Juan Wang
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | - Christer Janson
- Department of Medical Sciences, Respiratory-, Allergy- and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Maria Gunnbjörnsdottir
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rain Jogi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hans Orru
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia; Occupational and Environmental Medicine, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dan Norbäck
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Penezić A, Wang X, Perrier S, George C, Frka S. Interfacial photochemistry of marine diatom lipids: Abiotic production of volatile organic compounds and new particle formation. CHEMOSPHERE 2023; 313:137510. [PMID: 36495976 DOI: 10.1016/j.chemosphere.2022.137510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The global importance of abiotic oceanic production of volatile organic compounds (VOCs) still presents a source of high uncertainties related to secondary organic aerosol (SOA) formation. A better understanding of the photochemistry occurring at the ocean-atmosphere interface is particularly important in that regard, as it covers >70% of the Earth's surface. In this work, we focused on the photochemical VOCs production at the air-water interface containing organic material from authentic culture of marine diatom Chaetoceros pseudocurvisetus. Abiotic VOCs production upon irradiation of material originating from total phytoplankton culture as well as the fraction containing only dissolved material was monitored by means of PTR-ToF-MS. Furthermore, isolated dissolved lipid fraction was investigated after its deposition at the air-water interface. All samples acted as a source of VOCs, producing saturated oxygenated compounds such as aldehydes and ketones, as well as unsaturated and functionalized compounds. Additionally, a significant increase in surfactant activity following irradiation experiments observed for all samples implied biogenic material photo-transformation at the air-water interface. The highest VOCs flux normalized per gram of carbon originated from lipid material, and the produced VOCs were introduced into an atmospheric simulation chamber, where particle formation was observed after its gas-phase ozonolysis. This work clearly demonstrates abiotic production of VOCs from phytoplankton derived organic material upon irradiation, facilitated by its presence at the air/water interface, with significant potential for affecting the global climate as a precursor of particle formation.
Collapse
Affiliation(s)
- Abra Penezić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Xinke Wang
- Université Lyon, Université Claude Bernard Lyon 1 CNRS, IRCELYON, Villeurbanne, France; Now at Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Sebastien Perrier
- Université Lyon, Université Claude Bernard Lyon 1 CNRS, IRCELYON, Villeurbanne, France
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1 CNRS, IRCELYON, Villeurbanne, France
| | - Sanja Frka
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
6
|
Kalalian C, Depoorter A, Abis L, Perrier S, George C. Indoor heterogeneous photochemistry of molds and their contribution to HONO formation. INDOOR AIR 2022; 32:e12971. [PMID: 34866244 DOI: 10.1111/ina.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
To better understand the impact of molds on indoor air quality, we studied the photochemistry of microbial films made by Aspergillus niger species, a common indoor mold. Specifically, we investigated their implication in the conversion of adsorbed nitrate anions into gaseous nitrous acid (HONO) and nitrogen oxides (NOx ), as well as the related VOC emissions under different indoor conditions, using a high-resolution proton transfer reaction-time of flight-mass spectrometer (PTR-TOF-MS) and a long path absorption photometer (LOPAP). The different mold preparations were characterized by the means of direct injection into an Orbitrap high-resolution mass spectrometer with a heated electrospray ionization (ESI-Orbitrap-MS). The formation of a wide range of VOCs, having emission profiles sensitive to the types of films (either doped by potassium nitrate or not), cultivation time, UV-light irradiation, potassium nitrate concentration and relative humidity was observed. The formation of nitrous acid from these films was also determined and found to be dependent on light and relative humidity. Finally, the reaction paths for the NOx and HONO production are proposed. This work helps to better understand the implication of microbial surfaces as a new indoor source for HONO emission.
Collapse
Affiliation(s)
- Carmen Kalalian
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Antoine Depoorter
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Letizia Abis
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Sébastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Univ. Lyon, Villeurbanne, France
| |
Collapse
|
7
|
Kramer A, Wichelhaus TA, Kempf V, Hogardt M, Zacharowski K. Building-related illness (BRI) in all family members caused by mold infestation after dampness damage of the building. GMS HYGIENE AND INFECTION CONTROL 2021; 16:Doc32. [PMID: 34956824 PMCID: PMC8662741 DOI: 10.3205/dgkh000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction: In 2010, dampness damage in a single-family house caused a massive mold infestation. In the further course, the 5 family members developed severe health problems. This report investigates the extent and cause of the water damage. In addition, the various visible fungal infestations were analyzed in a specialized laboratory. Results: Due to building construction errors, starting from the basement, an increased moisture penetration of the residential building was detected. Within 2 years, massive mold infestation occurred. In 2016, the following species were detected: Cladosporium sphaerospermum, Chaetomium globosum, Penicillium chrysogenum, Scopularis brevicaulis, Acremonium furculum, A. charticola and A. sclerotigenum, Trichomonascus apis Aspergillus versicolor and Debaryomyces hansenii. Additionally, different black molds were macroscopically detected. The severity of the disease process varied, probably due to the different daily exposure of the family members, and possibly influenced by age. The children presented acute episodes with nocturnal cough, associated with sleep disturbances and respiratory infections with severe rhinitis. In addition, general fatigue was noticeable. The course of the disease was complicated by recurrent nightly nosebleeds. The mother developed a much more severe course as chronic fatigue syndrome. Additionally, the following continuous complaints occurred: sore throat and headache, nocturnal irritable cough, chronic rhinitis, difficulty concentrating, increasing forgetfulness and word-finding disorders, cognitive impairment with reduced short-term memory, extremely dry eyes with red sclerae, morning stiffness, dyspnea, disturbed temperature regulation (chills), increased feeling of thirst, and menstrual disorders. The father's building-related illness (BRI) was comparatively mild due to much lower exposure, with nocturnal irritable cough, rhinitis, and marked fatigue. In 2018, after moving out of the house, the father was symptom-free after 2 weeks, the three children after 6 months, but the mother only after 18 months. Discussion: The symptoms are consistent with reports from the literature, according to which fatigue, sleep disturbances, lack of concentration and headache as well as recurrent infections of the upper respiratory tract are caused by microbial volatile organic compounds (MVOCs) released by molds. The association with recurrent nosebleeds in childhood has not been described in this form before. Conclusion: Since in all family members complete remission of symptoms occurred after cessation of the 6-year exposure, there is no doubt that the BRI was caused by the massive mold infestation.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany,*To whom correspondence should be addressed: Axel Kramer, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17485 Greifswald, Germany, E-mail:
| | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt/Main, Germany,University Center of Competence for Infection Control of the State of Hesse, Frankfurt/Main, Germany
| | - Volkhard Kempf
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt/Main, Germany,University Center of Competence for Infection Control of the State of Hesse, Frankfurt/Main, Germany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt/Main, Germany,University Center of Competence for Infection Control of the State of Hesse, Frankfurt/Main, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
8
|
Haines SR, Hall EC, Marciniak K, Misztal PK, Goldstein AH, Adams RI, Dannemiller KC. Microbial growth and volatile organic compound (VOC) emissions from carpet and drywall under elevated relative humidity conditions. MICROBIOME 2021; 9:209. [PMID: 34666813 PMCID: PMC8524935 DOI: 10.1186/s40168-021-01158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Microbes can grow in indoor environments if moisture is available, and we need an improved understanding of how this growth contributes to emissions of microbial volatile organic compounds (mVOCs). The goal of this study was to measure how moisture levels, building material type, collection site, and microbial species composition impact microbial growth and emissions of mVOCs. We subjected two common building materials, drywall, and carpet, to treatments with varying moisture availability and measured microbial communities and mVOC emissions. RESULTS Fungal growth occurred in samples at >75% equilibrium relative humidity (ERH) for carpet with dust and >85% ERH for inoculated painted drywall. In addition to incubated relative humidity level, dust sample collection site (adonis p=0.001) and material type (drywall, carpet, adonis p=0.001) drove fungal and bacterial species composition. Increased relative humidity was associated with decreased microbial species diversity in samples of carpet with dust (adonis p= 0.005). Abundant volatile organic compounds (VOCs) that accounted for >1% emissions were likely released from building materials and the dust itself. However, certain mVOCs were associated with microbial growth from carpet with dust such as C10H16H+ (monoterpenes) and C2H6SH+ (dimethyl sulfide and ethanethiol). CO2 production from samples of carpet with dust at 95% ERH averaged 5.92 mg hr-1 kg-1, while the average for carpet without dust at 95% ERH was 2.55 mg hr-1 kg-1. CONCLUSION Microbial growth and mVOC emissions occur at lower relative humidity in carpet and floor dust compared to drywall, which has important implications for human exposure. Even under elevated relative humidity conditions, the VOC emissions profile is dominated by non-microbial VOCs, although potential mVOCs may dominate odor production. Video Abstract.
Collapse
Affiliation(s)
- Sarah R. Haines
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario M5S 1A4 Canada
| | - Emma C. Hall
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | | | - Pawel K. Misztal
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 USA
| | - Rachel I. Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH 43210 USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, Ohio State University, Columbus, OH 43210 USA
- Department of Civil, Environmental & Geodetic Engineering, Environmental Health Sciences, Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Pathak A, Kothari R, Vinoba M, Habibi N, Tyagi VV. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111789. [PMID: 33370668 DOI: 10.1016/j.jenvman.2020.111789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Petroleum refining operations such as hydroprocessing and fluid catalytic cracking (FCC) generate huge quantities of spent catalysts containing toxic and valuable metals (Ni, V, Mo, Co, W, Al, etc.), the management of which is a serious environmental issue. Besides environmental concerns, the different metals present in the spent catalysts are also a valuable commodity to modern industries. Therefore, these spent catalysts also provide an opportunity to use it as a source of value to the refiners. In recent years, a biotechnological based leaching process 'bioleaching' has emerged as a promising eco-friendly technique for the extraction of metals from these refinery spent catalysts. Among various bioleaching agents such as archean, bacterial, or fungi, the process mediated by the fungi (Aspergillus niger, Penicillium simplicissimum, and many others) is gaining attention owing to the high metal extraction ability of the various fungal produced metabolites (organic acids) under moderately acidic conditions. Furthermore, the ability of these fungi to withstand wide process conditions (pH, spent catalyst concentration, substrate types, etc.), high metal toxicity and use of low-cost organic substrate make them an ideal candidate for bioleaching. In this review article, we shed light on the role and mechanisms of fungi involved in extracting different metals from spent hydroprocessing and FCC catalysts. Key process parameters that affect the efficiency of fungal based bioleaching are discussed. The techno-economic challenges associated with the process are elaborated, and the needed future research directions to promote its commercial applications are highlighted. Based on our analysis, it can be argued that the fungi bioleaching has potential, however, some challenges (slower kinetics, and health and safety) should be addressed before the process can be scaled up for the commercial application.
Collapse
Affiliation(s)
- Ashish Pathak
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, (J&K), India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Mari Vinoba
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - Nazima Habibi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Kakryal, Katra, J&K, 182320, India; Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, 80200, Saudi Arabia
| |
Collapse
|