1
|
Wu J, Yan X, Zhao F, Ke Y, Wang H, Zhang W, Wang Q, Shi M, Chai L. Inhibition of jarosite heterogeneous crystallization on anglesite via in-situ formation of competitive substrate. J Environ Sci (China) 2025; 149:394-405. [PMID: 39181652 DOI: 10.1016/j.jes.2023.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 08/27/2024]
Abstract
Heterogeneous crystallization is a common occurrence during the formation of solid wastes. It leads to the encapsulation of valuable/hazardous metals within the primary phase, presenting significant challenges for waste treatment and metal recovery. Herein, we proposed a novel method involving the in-situ formation of a competitive substrate during the precipitation of jarosite waste, which is an essential process for removing iron in zinc hydrometallurgy. We observed that the in-situ-formed competitive substrate effectively inhibits the heterogeneous crystallization of jarosite on the surface of anglesite, a lead-rich phase present in the jarosite waste. As a result, the iron content on the anglesite surface decreases from 34.8% to 1.65%. The competitive substrate was identified as schwertmannite, characterized by its loose structure and large surface area. Furthermore, we have elucidated a novel mechanism underlying this inhibition of heterogeneous crystallization, which involves the local supersaturation of jarosite caused by the release of ferric and sulfate ions from the competitive substrate. The local supersaturation promotes the preferential heterogeneous crystallization of jarosite on the competitive substrate. Interestingly, during the formation of jarosite, the competitive substrate gradually vanished through a dissolution-recrystallization process following the Ostwald rule, where a metastable phase slowly transitions to a stable phase. This effectively precluded the introduction of impurities and reduced waste volume. The goal of this study is to provide fresh insights into the mechanism of heterogeneous crystallization control, and to offer practical crystallization strategies conducive to metal separation and recovery from solid waste in industries.
Collapse
Affiliation(s)
- Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| | - Meiqing Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
| |
Collapse
|
2
|
Wang Y, Wang K, Liang T, Wang T, Liu J, Chen X, Xu C, Cao W, Fan H. Milk vetch returning combined with lime materials alleviates soil cadmium contamination and improves rice quality in soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175770. [PMID: 39182782 DOI: 10.1016/j.scitotenv.2024.175770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Milk vetch (Astragalus sinicus L.) returning and lime materials is employed as an effective strategy for remediating cadmium (Cd)-contaminated paddy fields. However, the combined effects of them on alleviating Cd pollution and the underlying mechanisms remain poorly explored. Therefore, this study investigated the impact of these combined treatments on soil properties, iron oxides, iron plaque, mineral elements, and amino acids through a field experiment. The following treatments were employed: lime (LM), limestone (LS), milk vetch (MV), MV + LM (MVLM), and MV + LS (MVLS), and a control (CK) group with no materials. Results demonstrated that treatments significantly decreased soil available Cd by 19.40-32.55 %, 10.20-39.58 %, and 25.36-40.66 % at tillering, filling, and maturing stages compared to CK, respectively. Moreover, exchangeable Cd was transformed into more stable fractions. Compared with individual treatments, MVLM and MVLS treatments further decreased available Cd and exchangeable Cd. Overall, Cd in brown rice was reduced by 18.97-77.39 % compared with CK. And the Cd in iron plaque decreased by 14.12-31.14 %, 24.65-61.60 %, 2.6-38.28 % across three stages. Furthermore, soil pH, dissolved organic carbon, and cation exchange capacity increased, along with 0.22-62.09 % and 0.57-10.66 % increases in free and amorphous iron oxide contents at all stages, respectively. Compared with lime alone, the integration of MV returning facilitated increased formation of Fed, Feo and enhanced the antagonistic effect among grain Ca with Cd; Additionally, it increased AAs in brown rice, improving rice quality and potentially reducing Cd transport. Mantel tests and Partial least squares path modeling revealed a significant positive correlation between Cd in IP and rice Cd uptake and a significant negative correlation between available Cd, Fed and Feo. These findings provide valuable insights into the mechanisms involved in mitigating soil Cd bioavailability using integrated approaches with MV returning and lime materials.
Collapse
Affiliation(s)
- Yikun Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaofen Chen
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Changxu Xu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongli Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Luo B, Chen K, Wu J, Li P. Reactive transport of Cd 2+ in porous media in the presence of xanthate: Experimental and modeling study. WATER RESEARCH 2024; 266:122402. [PMID: 39255568 DOI: 10.1016/j.watres.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
In mining regions, flotation reagents can interact with heavy metals, thereby increasing the complexity of their migration. However, most current studies solely focus on the migration of heavy metals, neglecting the influence of flotation reagents in their models concerning mining area pollution. This study developed the reactive transport model, Multisurface Speciation Model (MSM), which integrated the reaction processes of the three main soil components (iron oxides, organic matter, clay minerals) and ethyl xanthate (EX), a typical flotation reagent, with cadmium (Cd²⁺) to investigate the effects of EX on the transport and retention of Cd²⁺ in natural porous media under varying pH conditions. The study revealed that EX formed new adsorption sites for Cd²⁺, enhancing its retention and inhibiting transport with increased EX loading (0 to 2.5 mmol·L-1), while higher pH levels (ranging from 4 to 8) further strengthened the retention capability of Cd²⁺. The MSM further predicted the solid-phase concentration distribution of Cd²⁺ among various components. With increasing EX-loaded concentrations, xanthate became the dominant adsorbing component, accounting for 48.93 % to 95.31 % of adsorption, and competitively interacted with other components. Xanthate retention was lower under acidic conditions compared to neutral and alkaline environments. Sensitivity analysis highlighted the concentrations of iron oxide adsorption sites (SurfaOH, SurfbOH) as critical parameters in the models, underscoring the need for precise determination of soil physicochemical indicators. This study stressed the crucial role of flotation reagents and pH conditions in controlling heavy metal mobility, offering important insights for environmental management in mining regions.
Collapse
Affiliation(s)
- Bowen Luo
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Kouping Chen
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
4
|
Liu J, Zhao J, Du J, Peng S, Tan S, Zhang W, Yan X, Wang H, Lin Z. Machine learning predicts heavy metal adsorption on iron (oxyhydr)oxides: A combined insight into the adsorption efficiency and binding configuration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175370. [PMID: 39117233 DOI: 10.1016/j.scitotenv.2024.175370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The adsorption of heavy metal on iron (oxyhydr)oxides is one of the most vital geochemical/chemical processes controlling the environmental fate of these contaminants in natural and engineered systems. Traditional experimental methods to investigate this process are often time-consuming and labor-intensive due to the complexity of influencing factors. Herein, a comprehensive database containing the adsorption data of 11 heavy metals on 7 iron (oxyhydr)oxides was constructed, and the machine learning models was successfully developed to predict the adsorption efficiency. The random forest (RF) models achieved high prediction performance (R2 > 0.9, RMSE < 0.1, and MAE < 0.07) and interpretability. Key factors influencing heavy metal adsorption efficiency were identified as mineral surface area, solution pH, metal concentration, and mineral concentration. Additionally, by integrating our previous binding configuration models, we elucidated the simultaneous effects of input features on adsorption efficiency and binding configuration through partial dependence analysis. Higher pH simultaneously enhanced adsorption efficiency and affinity for cations, whereas lower pH benefited that for oxyanions. While higher mineral surface area improved the metal adsorption efficiency, the adsorption affinity could be weakened. This work presents a data-driven approach for investigating metal adsorption behavior and elucidating the influencing mechanisms from macroscopic to microcosmic scale, thereby offering comprehensive guidance for predicting and managing the environmental behavior of heavy metals.
Collapse
Affiliation(s)
- Junqin Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jiang Zhao
- School of Mathmatics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Jiapan Du
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Suyi Peng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shan Tan
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China.
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| |
Collapse
|
5
|
Deng X, Chen G, Zhang C, Gao X, Sun B, Shan B. Manganese-modified biochar for sediment remediation: Effect, microbial community response, and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125175. [PMID: 39442607 DOI: 10.1016/j.envpol.2024.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal sediment pollution has become an increasingly serious problem associated with industrial development, so extensive studies have been conducted concerning their removal. Biochar has recently shown good potential for in-situ remediation of heavy metal-contaminated sediments. The heavy metal adsorption capacity of inexpensive biochar can be improved by loading it with metal oxides. In this study, manganese-modified biochar (MBC) was prepared by KMnO4-modified waste-activated sludge biochar and applied to immobilize Pb and Cd in sediments. Its effects on the sediment microbial community were also investigated. The Results showed that manganese modification of the biochar made it more conducive to the adsorption of heavy metals, owing to its higher specific surface area and graphitization structure, more active sites and oxygen-containing groups, and the presence of Mn2O3 crystal structure on the surface. The maximum adsorption capacities of this material for Pb2+ and Cd2+ in solution were 176.9 mg/g and 44.0 mg/g, respectively. The application of MBC to the remediation of heavy metal-contaminated sediments transformed Pb and Cd in the sediments from exchangeable to residual state. The F4 content of Pb in the sediments increased from 40.52%-42.36% to 49.11%-51.14% after application of 1% MBC, and to 63.94%-64.49% after application of 5% MBC. Correspondingly, the F1 content of Pb in the sediments decreased from 29.09%-30.68% to 17.43%-17.69% after the application of 5% MBC. Furthermore, MBC efficiently enriched the microbial biodiversity and affected the microbial population structure within 60 days. The relative abundance of uncultured f Symbiobacteraceae and Fonticella communities significantly increased after incubation. The results may provide empirical support for the combination of metal oxides and biochar for the remediation of heavy metal-contaminated sediments.
Collapse
Affiliation(s)
- Xudong Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guomin Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China; Ecological Environment Bureau of Xiong'an New Area Management Committee of Hebei Province, Baoding, 071799, China
| | - Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xueping Gao
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
6
|
Pan S, Wu P, Sun L, Chen M, Li B, Wang T, Shang Z, Fang J, Zhu N, Dang Z. The interaction between organic acids and green rust-Co(II): Mineralogical changes of green rust and redistribution of Co(II). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125061. [PMID: 39374758 DOI: 10.1016/j.envpol.2024.125061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Green rust (GR), as a vital intermediate product during the formation of various iron oxides, exists with organic matters and metals contaminants in natural environments. Understanding the effects of these natural factors on the transformation process of GR into iron oxides and the environmental behaviors of heavy metals and organic matters during process are critical for environmental quality management, but the fundamental identification of the interaction mechanisms between them and GR is still challenging. In this study, the transformation mechanisms of Co-bearing green rust (GR-Co) synthesized by co-precipitation, and the redistribution behaviors of Co(II) in an environment containing oxalic acid (OA) and citric acid (CA) were clarified. The findings indicated that OA promoted the Fe(II) dissolution and the transformation of GR-Co to goethite, while CA decreased the Fe(II) dissolution and the proportion of non-extractable Co. Furthermore, in the presence of CA, the transformation products of GR-Co were ferrihydrite, magnetite, lepidocrocite and goethite instead of only lepidocrocite and goethite. Meanwhile, CA prohibited ferrihydrite from transforming into more highly crystalline iron minerals. The finding of this study improves the understanding of the interaction mechanisms between GR-Co and organic matter, and the environmental geochemical behaviors of Co and organic carbon during the transformation processes in nature.
Collapse
Affiliation(s)
- Siyi Pan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Meiqing Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Zhongbo Shang
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jiangmin Fang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| |
Collapse
|
7
|
Liu T, Wei R, Li J, Xie W, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Fe (hydr)oxides and organic colloids mediate colloid-bound chromium mobilization in Cr(VI) contaminated paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125045. [PMID: 39357552 DOI: 10.1016/j.envpol.2024.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The association of chromium (Cr) with colloidal particles transport in contaminated sites can affect hexavalent chromium (Cr(VI)) migration and transformation, which is an important mechanism for Cr pollutants in soil and groundwater systems. Here, we investigated colloid and particle-bound Cr migration and transformation effects on rice Cr accumulation during different rice growth stages and different redox conditions in Cr(VI) contaminated soil by pot experiment. Results showed that 13-29% of soil Cr was water dispersible colloid-bound (100-1000 nm) form during rice growth. Using transmission electron microscopy - energy dispersion spectroscopy and asymmetric flow field - flow separation, we identified colloid-bound organic matter (OM) and iron (Fe), most likely in the form of Fe (hydr)oxides - clay composites, as the primary Cr carrier. Specifically, colloid-bound Cr was mainly associated with 125-350 nm soil particle size. Under different redox conditions, colloid- and nanoparticle-bound Cr concentration decreased with increasing nanoparticles zero-valent iron (nZVI) dose. Soil reoxidation promoted the colloid- and nanoparticle-bound Cr release due to the weakly crystalline Fe-(hydr)oxides reprecipitation. Further quantitative analysis showed that colloid-bound Cr concentrations were positively correlated with colloid-bound Mn concentrations during the whole rice growth soils. Most important of all, Cr content in rice grain was positively correlated with colloid-bound Cr significantly. This study provides a quantitative and size-resolved understanding of particle-bound Cr in paddy soils, highlighting the importance of colloid-bound Cr and Fe interactions in Cr geochemical cycle of paddy soil.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weipeng Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengsheng Sun
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Wang H, Wu R, Zheng H, Gong Y, Yang Y, Zhu Y, Liu L, Cai M, Du S. Enhanced mobilization of soil heavy metals by the enantioselective herbicide R-napropamide compared to its S-isomer: Analyses of abiotic and biotic drivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135954. [PMID: 39353274 DOI: 10.1016/j.jhazmat.2024.135954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chiral herbicides applied to agricultural soils are typically mildly to moderately contaminated with heavy metals (HMs), necessitating a thorough investigation into their effects on soil HMs availability. This study evaluated the effect of the chiral herbicide napropamide (NAP) on HMs bioavailability in different soil types, including weakly alkaline clay in Northeast China, neutral sandy loam in Zhejiang, and weakly acidic clay loam in Sichuan, China. The results demonstrate significant differences in the availability of HMs (Cd, Pb, Zn, and Ni) in the soil following enantiomer treatments, with variation ranges of 4.57-45.67 %, 5.03-96.21 %, 2.92-52.30 %, and 10.57-29.79 %, respectively. Overall, R-NAP enhanced the bioavailability of HMs more effectively than S-NAP, specifically by significantly activating available iron 3.33-191.97 % and markedly affecting soil pH and cation exchange capacity. Additionally, R-NAP influenced biotic processes by enriching dominant microbial communities, such as Chitinophaga, Niabella, and Promicromonospora, and by constructing more stable microbial networks. Notably, bioavailable Fe plays a dual regulatory role, affecting both the abiotic and biotic processes affected by soil NAP. In summary, although R-NAP is commonly used in agriculture, it poses a greater risk of HMs contamination in crops, highlighting the need for careful application and management. This study provides a fundamental theoretical basis for the judicious use of chiral herbicides in agricultural soils with mild-to-moderate HMs contamination.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong Yang
- Zhejiang Zhongyi Testing Research Institute Co. Ltd., Ningbo 315040, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
9
|
Liu J, Duan Y, Chen H, Ye B, Zhang H, Tan W, Kappler A, Hou J. Extent of As(III) versus As(V) adsorption on iron (oxyhydr) oxides depends on the presence of vacancy cluster-like micropore sites: Insights into a seesaw effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176376. [PMID: 39304166 DOI: 10.1016/j.scitotenv.2024.176376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 μmol m-2) and magnetite (0.33 μmol m-2) is higher than for As(III) (0.61 μmol m-2 and 0.27 μmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 μmol m-2) and schwertmannite (28.41 μmol m-2) showed higher sorption than As(V) (1.53 μmol m-2 and 12.99 μmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixin Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Lu T, Wang L, Hu J, Wang W, Duan X, Qiu G. Enhanced reduction of Cd uptake by wheat plants using iron and manganese oxides combined with citrate in Cd-contaminated weakly alkaline arable soils. ENVIRONMENTAL RESEARCH 2024; 257:119392. [PMID: 38857857 DOI: 10.1016/j.envres.2024.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Li Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiwen Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
11
|
Qu H, Ding K, Ao M, Ye Z, Liu T, Hu Z, Cao Y, Morel JL, Baker AJM, Tang Y, Qiu R, Wang S. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. WATER RESEARCH 2024; 262:122051. [PMID: 39024668 DOI: 10.1016/j.watres.2024.122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.
Collapse
Affiliation(s)
- Haojie Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ming Ao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zekai Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Taicong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zunhe Hu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jean-Louis Morel
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Alan J M Baker
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; School of BioSciences, The University of Melbourne, Parkville VIC3010, Australia
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Geng K, Wang C, Wu X, Wei C, Huang H. The effect of calcium on the removal of Cd 2+ in the formation of biogenic secondary iron minerals. Sci Rep 2024; 14:21499. [PMID: 39277706 PMCID: PMC11401867 DOI: 10.1038/s41598-024-72764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Cadmium is a toxic heavy metal found in acid mine drainage. It hinders plant and animal growth and accumulates in human organs. In this study, through shake flask experiments, an iron-rich, sulphate-rich environment was simulated, and Acidithiobacillus ferrooxidans was used to mediate the formation of secondary high-iron minerals to explore the effect of calcium ions on the removal of Cd2+ from that environment. Four treatment systems were used: "Blank", "Ca2+-30 mg/L", "Fe/K = 3,Ca2+-30 mg/L", and "Fe/K = 3". The results showed that Cd2+ with an initial concentration of 20 mg/L was effectively removed in each treatment system. The removal efficiencies of Cd2+ in each treatment were 23.46%, 18.42%, 52.88%, and 45.76% respectively. The quantity and type of minerals determined the removal efficiency of Cd2+. The Fe/K = 3 treatment system can significantly increase the amount of mineral formation and improve the removal efficiency of Cd2+. In the Ca2+-30 mg/L, Fe/K = 3 treatment system, the biological oxidation ability was the strongest, and the removal effect of Cd2+ was the best under the combined action of K+ and Ca2+. Co-precipitation was the main way to remove Cd2+ during the formation of biogenic secondary iron minerals, and the removal amount was 5.64 to 14.83 times that of adsorption. Biogenetic secondary iron minerals showed high values in repairing heavy metal pollution. This study provides a theoretical basis for treating heavy metals in acid mine drainage.
Collapse
Affiliation(s)
- Kanghui Geng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, 541004, China
| | - Chong Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, 541004, China
| | - Xianhui Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, 541004, China
| | - Caichun Wei
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Haitao Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
13
|
Cuaxinque-Flores G, Talavera-Mendoza O, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Miranda V, Rosas-Guerrero V, Martínez-Romero E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135005. [PMID: 38996684 DOI: 10.1016/j.jhazmat.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda, San Juan Bautista s/n, CP 40323 Taxco el Viejo, Guerrero, Mexico.
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Giovanni Hernández-Flores
- CONAHCyT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco de Alarcón 40323, Mexico
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Víctor Rosas-Guerrero
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Tecpan de Galeana 40900, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
14
|
Xue C, Wang C, Jiang F, Yang Y, Yin H, Yi X, Dang Z. The effect of goethite aging on Cd adsorption: Constraints of mineral condensation and surface site density. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134992. [PMID: 38959834 DOI: 10.1016/j.jhazmat.2024.134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Iron (hydr)oxides, as natural geosorbents, play a crucial role in retaining toxic heavy metals, and their aging process greatly influences heavy metals distributions and migration in soil systems. However, limited attention has been given to the interaction between heavy metals and crystalline-aged goethite. In this study, we investigated the sorption behavior and sorption mechanism of cadmium (Cd) with freshly synthesized or aged goethite. We quantified the total Cd sorption load, as well as the proportion of Cd with different sorption strengths on minerals. It has been found that in different aged goethite samples, approximately 71.3-84.7 % of Cd is strongly bound (bidentate inner-sphere complexes) and 16.0 % to 26.4 % of Cd is weakly bound (electrostatic adsorption and partially through monodentate inner-sphere complexes) by goethite. This observation is consistent with the distribution characteristics of Cd species fitted by the charge distribution and multisite surface complexation model. Additionally, the total Cd load and strongly bound Cd content on goethite aged at pH 7.5 decreased with extended aging time. Upon combining the mineral characterization analysis and surface hydroxyl density calculation, we found that the morphology transformation and the deterioration in sorption ability on goethite results from a condensation process through a surface hydroxyl oxolation reaction on the {110} facet between adjacent goethite crystals during the aging process at pH 7.5. This condensation process causes goethite to lose many hydroxyl sites, which is the dominant reason for the decrease in inner-sphere complexed Cd. The amount of weakly bound Cd decreases slightly with aging, because the decrease in inner-sphere complexed Cd is not conducive to balancing the positively charged mineral surface, resulting in a slight reduction in the amount of Cd adsorbed through electrostatic attractions.
Collapse
Affiliation(s)
- Chao Xue
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Chaoping Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yuebei Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
15
|
Scherger LE, Luengo CV, Lafont D, Lexow C, Avena MJ. Fractionation and leaching of Cd, Cu, Fe, Pb, and Zn from smelter residues of an old environmental liability in Argentina. CHEMOSPHERE 2024; 364:143019. [PMID: 39103100 DOI: 10.1016/j.chemosphere.2024.143019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
An integrated chemical and mineralogical characterization approach was applied to smelter wastes collected from 50-year-old dump sites in Argentina. Characterization included pseudo-total element concentrations, acid generation/neutralization potential, sequential extractions, pH-dependent leaching kinetics, and mineralogical analysis of all residues. These analyses provided detailed information on the reactivity of the minerals in the waste material and associated metal release. Cadmium and Zn were the elements of greatest environmental concern due to their high mobility. On average, the release of Zn and Cd in pH-dependent leaching essays reached 17.6% (up to 5.24 mg g-1) and 52.7% (up to 0.02 mg g-1) of the pseudo-total content, respectively. Moreover, Cd and Zn were also the metals that showed the higher proportions of labile fractions associated to the adsorbed and exchangeable fraction (60-92% for Cd and 19-38% for Zn). Since Cd and Zn concentrations in the residue are not high enough to form their own minerals, a large proportion of these elements would be weakly adsorbed on Fe oxyhydroxides. In contrast, the low release of Cu, Pb and Fe would be associated with these elements being incorporated into the crystalline structure of insoluble or very poorly soluble minerals. Lead is incorporated into plumbojarosite and anglesite. Copper was mainly in association with Fe oxyhydroxides and may also have been incorporated into the plumbojarosite structure. The latter could act as a sink especially for Pb under the acidic conditions of the smelter residue. Despite the elevated concentrations of Pb observed in the residue, it showed a very low mobility (≈0.1%), indicating that it is mostly stabilized. Nevertheless, the smelter residue is a continuous source of metals requiring remediation.
Collapse
Affiliation(s)
- Leonardo E Scherger
- Dpto. de Geología, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Carina V Luengo
- INQUISUR, Dpto. de Química, Universidad Nacional Del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Daniela Lafont
- Dpto. de Geología, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Claudio Lexow
- Dpto. de Geología, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Marcelo J Avena
- INQUISUR, Dpto. de Química, Universidad Nacional Del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Ding W, Bao S, Zhang Y, Chen B, Wang Z. Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4172. [PMID: 39274562 PMCID: PMC11396405 DOI: 10.3390/ma17174172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shenxu Bao
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yimin Zhang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Chen
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhanhao Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Tian Y, Wei L, Yu T, Shen H, Zhao W, Chu X. Adsorption of Cr(VI) and Cr(III) on layered pipe scales and the effects of disinfectants in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134745. [PMID: 38820751 DOI: 10.1016/j.jhazmat.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Pipe scales in drinking water distribution systems (DWDS) potentially adsorb chromium (Cr). Meanwhile, the fate of Cr in pipe scales and water could be influenced by the disinfectants used in DWDS since they might influence the valence state of Cr. Therefore, the adsorption of Cr (Cr(VI) and Cr(III)) on pipe scales, the transformation between different valence states, and the effects of disinfectants present in DWDS are important research topics for improving tap water quality but have not yet been sufficiently investigated. This study investigated the properties of layered pipe scales and conducted adsorption kinetic experiments in single and binary Cr(VI) and Cr(III) systems, as well as experiments related to the oxidation and adsorption of Cr(III) under the influence of decaying disinfectants. According to the results, pipe scales exhibited distinct layered structures with varying mechanisms for the adsorption of Cr(VI) and Cr(III). Cr(VI) was adsorbed through surface complexation on the surface and porous core layers, while redox reactions predominantly occurred on the shell-like layer. Furthermore, Cr(III) was adsorbed via surface precipitation on the three-layer pipe scales. Importantly, disinfectants promoted the transformation of Cr(III) to the less readily released Cr(VI) in pipe scales, reducing the Cr exposure risk from the pipe scale phase. Pipe scales also decreased the Cr(VI) concentration in water (almost 0 mg/L), enhancing the safety of DWDS. This study provides theoretical guidance on the safe operation of DWDS.
Collapse
Affiliation(s)
- Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Lianyi Wei
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Tiantian Yu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Hailiang Shen
- Computational Hydraulics International, 147 Wyndham St. N., Ste. 202, Guelph, Ontario, Canada
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
18
|
Lourenço R, Cesar R, Koifman G, Teixeira M, Santos D, Polivanov H, Alexandre K, Carneiro M, da Silva LID, Pereira MMSC, Castilhos Z. Land disposal of dredged sediments from an urbanized tropical lagoon: toxicity to soil fauna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:590-607. [PMID: 38733499 DOI: 10.1007/s10646-024-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.
Collapse
Affiliation(s)
- Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cesar
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Matheus Teixeira
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Domynique Santos
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Katia Alexandre
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Manuel Carneiro
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lilian Irene Dias da Silva
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Johnston SG, Aaso T, Maher DT, Burton ED, Call M, Birch M, Schmidt J, Ferguson A. Extreme iron cycling in a coastal lake-lagoon system driven by interactions between climate and entrance management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173345. [PMID: 38782265 DOI: 10.1016/j.scitotenv.2024.173345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Intermittently closed and open coastal lakes and lagoons (ICOLLs) are ecologically important and hydrologically sensitive estuarine systems. We explore how extreme drought and ICOLL entrance management intersect to influence the geochemical cycling of iron. Opening the ICOLL entrance just prior to an extreme drought in 2019 led to prolonged extremely low water levels, thereby exposing intertidal/subtidal sulfidic sediments and causing oxidation of sedimentary pyrite. Subsequent reflooding of exposed sediments for ∼4 months led to extremely elevated Fe2+(aq) (>10 mM) in intertidal hyporheic porewaters, consistent with Fe2+(aq) release via pyrite oxidation and via reductive dissolution of newly-formed Fe(III) phases. Re-opening the ICOLL entrance caused a rapid fall in water levels (∼1.5 m over 7 d), driving the development of effluent groundwater gradients in the intertidal zone, thereby transporting Fe2+-rich porewater into surface sediments and surface waters. This was accompanied by co-mobilisation of some trace metals and nutrients. On contact with oxic, circumneutral-pH estuarine water, the abundant Fe2+(aq) oxidised, forming a spatially extensive accumulation of poorly crystalline Fe(III) oxyhydroxide floc (up to 25 % Fe dry weight) in shallow intertidal zone benthic sediments throughout the ICOLL. Modelling estimates ∼4050 × 103 kg of poorly-crystalline Fe was translocated into surficial sediments. The newly formed Fe(III)-oxyhydroxides serve as a metastable sink encouraging enrichment of both phosphate and various trace metal(loid)s in near-surface sediments, which may have consequences for future cycling of nutrients, metals and ICOLL ecological function. The additional Fe also may enhance ICOLL sensitivity to similar future drought events by encouraging pyrite formation in shallow (<5 cm) benthic sediments. This system-wide translocation of Fe from deeper sediments into surficial benthic sediments represents a form of geochemical hysteresis with an uncertain recovery trajectory. This study demonstrates how climate extremes can interact with anthropogenic management to amplify ICOLL hydrological oscillations and influence biogeochemistry in complex ways.
Collapse
Affiliation(s)
- Scott G Johnston
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Thor Aaso
- Soil Conservation Service, 13 Short Street, Port Macquarie, NSW, Australia
| | - Damien T Maher
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mitchell Call
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mathew Birch
- Soil Conservation Service, 13 Short Street, Port Macquarie, NSW, Australia
| | - John Schmidt
- Science Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Angus Ferguson
- Science Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| |
Collapse
|
20
|
Zheng Y, Pan Y, Wang Z, Jiang F, Wang Y, Yi X, Dang Z. Temporal and spatial evolution of different heavy metal fractions and correlation with environmental factors after prolonged acid mine drainage irrigation: A column experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173136. [PMID: 38734110 DOI: 10.1016/j.scitotenv.2024.173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Acid mine drainage (AMD) has global significance due to its low pH and elevated heavy metal content, which have received widespread attention. After AMD irrigation in mining areas, heavy metals are distributed among soil layers, but the influencing factors and mechanisms remain unclear. AMD contamination of surrounding soil is primarily attributed to surface runoff and irrigation and causes significant environmental degradation. A laboratory soil column experiment was conducted to investigate the temporal and spatial distribution of the heavy metals Cd and Cu, as well as the impact of key environmental factors on the migration and transformation of these heavy metals following long-term soil pollution by AMD. After AMD addition, the soil exhibited a significant increase in acidity, accompanied by notable alterations in various environmental parameters, including soil pH, Eh, Fe(II) content, and iron oxide content. Over time, Cd and Cu in the soil mainly existed in the exchangeable and carbonate-bound fractions. In spatial terms, exchangeable Cu increased with increasing depth. Pearson correlation analysis indicated significant negative correlations between pH and Cu, Cd, and Eh in pore water, as well as negative correlations between pH and the exchangeable fraction of Cd (F1), carbonate-bound fraction of Cd (F2), and exchangeable fraction of Cu (F1) in the solid phase. Additionally, a positive correlation was observed between pH and the residual fraction of Cu (F5). Furthermore, the soil total Cd content exhibited a positive correlation with pyrophosphate-Fe (Fep) and dithionite-Fe (Fed), while CdF1, CdF2, total Cu, and CuF1 displayed positive correlations with Fep. Our findings indicate that the presence of AMD in soil leads to alterations in the chemical fractions of Cd and Cu, resulting in enhanced bioavailability. These results offer valuable insights for developing effective remediation strategies for soils near mining sites.
Collapse
Affiliation(s)
- Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaozhong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Li B, Mao R, Chen Z, Zhang Y, Song J, Li N, Tang B, Feng J, Guan M. The competition of heavy metals between hyporheic sediments and microplastics of driving factors in the Beiluo River Basin. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134538. [PMID: 38761759 DOI: 10.1016/j.jhazmat.2024.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Both sediments and microplastics (MPs) are medias of heavy metals (HMs) in river ecosystems. This study investigated HMs (Mn, Cr, V, As, Cu, Co, Cd, Pb, and Ni) concentration and driving factors for competitive enrichment between hyporheic sediments versus MPs. The medias basic characteristics indicated that the sediments were mostly sand and rich in Fe2O3; three polymer types were identified, with blue, fragment, less than 500 µm being the main types of MPs. The results have shown that the average content of extracted HMs in MPs was much higher than that of the same metals accumulated in sediments. HMs in sediments and MPs reached heavily polluted at some points, among which As and Cd were ecological risks. Electrostatic adsorption and surface complexation, and biofilm-mediated and organic matter complexation were the interaction mechanism of HMs with sediments and MPs. Further, the driving factors affecting the distribution of HMs in the two carriers were analyzed by multivariate statistical analysis. The results demonstrated that carrier characteristics, hydrochemical factors, and the inherent metal load of MPs were the main causes of the high HMs content. These findings improved our understanding of HMs fate and environmental risks across multiple medias.
Collapse
Affiliation(s)
- Bingjie Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ruichen Mao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zeyu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuting Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an 710127, China.
| | - Nan Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Bin Tang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiayuan Feng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mingchang Guan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
22
|
Lian W, Yu G, Ma J, Xiong J, Niu C, Zhang R, Xie H, Weng L. Quantitative Insights into Phosphate-Enhanced Lead Immobilization on Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11748-11759. [PMID: 38912726 PMCID: PMC11223472 DOI: 10.1021/acs.est.4c03927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.
Collapse
Affiliation(s)
- Wanli Lian
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Agro-Environmental Protection Institute,
Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Guanghui Yu
- Institute
of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jie Ma
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Agro-Environmental Protection Institute,
Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Juan Xiong
- Key
Laboratory of Arable Land Conservation (Middle and Lower Reaches of
Yangtze River), Ministry of Agriculture and Rural Affairs of the People’s
Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Niu
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Agro-Environmental Protection Institute,
Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ran Zhang
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Agro-Environmental Protection Institute,
Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Haijiao Xie
- Hangzhou
Yanqu Information Technology Co., Ltd, Hangzhou 310003, China
| | - Liping Weng
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Agro-Environmental Protection Institute,
Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Department
of Soil Quality, Wageningen University, P.O. Box 47, 6700AA Wageningen, The Netherlands
| |
Collapse
|
23
|
Li S, Pang J, Han W, Chang T, Luo L, Li X, Liu J, Cheng H. Insights into sunlight-driven transformation of tetracycline by iron (hydr)oxides: The dominating role of self-generated hydrogen peroxide. WATER RESEARCH 2024; 258:121800. [PMID: 38796909 DOI: 10.1016/j.watres.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.
Collapse
Affiliation(s)
- Shiwen Li
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Jianming Pang
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Wei Han
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Ting Chang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Lingen Luo
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Xian Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jue Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Du Y, Li L, Yuan Y, Yin Y, Dai G, Ren Y, Li S, Lin P. Adsorption Behavior of Co 2+, Ni 2+, Sr 2+, Cs +, and I - by Corrosion Products α-FeOOH from Typical Metal Tanks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2706. [PMID: 38893970 PMCID: PMC11173444 DOI: 10.3390/ma17112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Throughout the nuclear power production process, the disposal of radioactive waste has consistently raised concerns about environmental safety. When the metal tanks used for waste disposal are corroded, radionuclides seep into the groundwater environment and eventually into the biosphere, causing significant damage to the environment. Hence, investigating the adsorption behavior of radionuclides on the corrosion products of metal tanks used for waste disposal is an essential component of safety and evaluation protocols at disposal sites. In order to understand the adsorption behavior of important radionuclides 60Co, 59Ni, 90Sr, 135Cs and 129I on α-FeOOH, the influences of different pH values, contact time, temperature and ion concentration on the adsorption rate were studied. The adsorption mechanism was also discussed. It was revealed that the adsorption of key nuclides onto α-FeOOH is significantly influenced by both pH and temperature. This change in surface charge corresponds to alterations in the morphology of nuclide ions within the system, subsequently impacting the adsorption efficiency. Sodium ions (Na+) and chlorate ions (ClO3-) compete for coordination with nuclide ions, thereby exerting an additional influence on the adsorption process. The XPS analysis results demonstrate the formation of an internal coordination bond (Ni-O bond) between Ni2+ and iron oxide, which is adsorbed onto α-FeOOH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Lin
- China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China; (Y.D.); (L.L.); (Y.Y.); (Y.Y.); (G.D.); (Y.R.); (S.L.)
| |
Collapse
|
25
|
Mng'ong'o ME, Mabagala FS. Arsenic and cadmium availability and its removal in paddy farming areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121190. [PMID: 38763118 DOI: 10.1016/j.jenvman.2024.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grain is a global concern threatening food security and safety to the growing population. As and Cd are toxic non-essential elements poisonous to animal and human at higher levels. Its accumulation in agro-ecosystems pose a public health risk to consumers of agro-ecosystem products. Due to their hazards, As and Cd sources should be cleared, avoiding entering plants and the human body. As and Cd removal in soils and grains in agro-ecosystems has been conducted by various materials (natural and synthesized), however, there are little documentation on their contribution on As and Cd removal or reduction in rice grains. This identified knowledge gap necessitate a systematically review to understand efficiency and mechanisms of As and Cd availability reduction and removal in paddy farming areas through utilization of various synthetic and modified materials. To achieve this, published peer reviewed articles between 2010 and 2024 were collected from various database i.e., Science Direct, Web of Science, Google Scholar, and Research Gate and analyzed its content in respect to As and Cd reduction and removal. Furthermore, collected data were re-analyzed to determine standardized mean differences (SMD) with 95% confidence intervals (CI). Based on 96 studies with 228 observations involving Fe, Ca, Si, and Se-based materials were identified, it was found that application of Fe, Ca, Si, and Se-based materials potentially reduced As and Cd in rice grains among various study sites and across studies. Among the studied materials, Fe-based materials observed to be more efficient compared to other utilized materials. However, there little or no information on performance of materials when used in combination and how they can improve crop productivity and soil health, thus requiring further studies. Thus, this study confirm Fe, Ca, Si, and Se modified materials have significant potential to reduce As and Cd availability in paddy farming areas and rice grains, thus necessary effort must be made to ensure materials access and availability for farmers utilization in paddy fields to reduce As and Cd accumulation.
Collapse
Affiliation(s)
- Marco E Mng'ong'o
- Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | | |
Collapse
|
26
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
27
|
Chu X, Liu J, He N, Li J, Li T, Tian Y, Zhao P. Cu fate driven by colloidal polystyrene microplastics with pipe scale destabilization in drinking water distribution systems. WATER RESEARCH 2024; 256:121613. [PMID: 38663210 DOI: 10.1016/j.watres.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) and Cu have been detected in drinking water distribution systems (DWDSs). Investigating MP effects on Cu adsorption by pipe scales and concomitant variations of pipe scales was critical for improving the water quality, which remained unclear to date. Therefore, polystyrene microplastics (PSMPs) were adopted for the model MPs to determine their effects on Cu fate and pipe scale stabilization, containing batch adsorption, metal speciation extraction, and Cu release experiments. Findings demonstrated that complexation and electrostatic interactions were involved in Cu adsorption on pipe scales. PSMPs contributed to Cu adsorption via increasing negative charges of pipe scales and providing additional adsorption sites for Cu, which included the carrying and component effects of free and adsorbed PSMPs, respectively. The decreased iron and manganese oxides fraction (45.57 % to 29.91 %) and increased organic fraction (48.51 % to 63.58 %) of Cu in pipe scales when PSMPs were coexisting illustrated that PSMPs had a greater affinity for Cu than pipe scales and thus influenced its mobility. Additionally, the release of Cu could be facilitated by the coexisted PSMPs, with the destabilization of pipe scales. This study was the first to exhibit that Cu fate and pipe scale stabilization were impacted by MPs, providing new insight into MP hazards in DWDSs.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan He
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Tuo P, Zhang Z, Du P, Hu L, Li R, Ren J. Changes in coal waste DOM chemodiversity and Fe/Al oxides during weathering drive the fraction conversion of heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172063. [PMID: 38552975 DOI: 10.1016/j.scitotenv.2024.172063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The long-term accumulation of coal waste on the surface during natural weathering leads to the inevitable migration of heavy metals contained in the coal waste, which increases the likelihood of environmental contamination and health risks. Dissolved organic matter (DOM) and Fe/Al oxides play crucial roles in the transformation and bioavailability of heavy metals. Thus, we analyzed the Fe/Al oxide content and DOM molecular composition in coal waste with different degrees of weathering and explored the influence of DOM chemical diversity and Fe/Al oxides on the potential mobility of heavy metals. Results showed that weathering-driven decrease in Fe oxides (Fed, FeO, and Fep decreased from 82.4, 37.5, and 3.6 mg∙L-1 to 41.3, 24.7, and 2.3 mg∙L-1, respectively) led to decreases in the reducible fractions of V and Cr. The potential environmental risks of more toxic metals of Cd and As, also increased as a result of the residual fractions decreased to 32.6 % and 41.3 %, respectively. Weathering caused an increase in oxygen-to‑carbon ratio, double-bond equivalent, modified aromaticity index, nominal oxidation state of carbon, and molecular diversity and a decrease in (m/z)w and (H/C)w, suggesting that the DOM of highly weathered coal waste possessed high unsaturation, aromatic structures, hydrophilicity, and strong oxidative characteristics. Additionally, although VMF and CrMF showed significant negative correlations with O/C ratio, polyphenolic, carbohydrates, and condensed aromatics, pH remained a key environmental factor determining the potential environmental risks of V and Cr by changing the residual fractions. The mobilities of Cd and As were significantly negatively correlated with those of Fe/Al oxides, particularly Fed, FeO, Fep, and Alp. Our findings contribute to the understanding of the impact of weathering on the geochemical cycling of different coal waste components, providing priority options for environmental risk prevention and control in coal mining areas.
Collapse
Affiliation(s)
- Pinpeng Tuo
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zongpeng Zhang
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Lijuan Hu
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Renyou Li
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
29
|
Gong H, Cao Y, Zeng W, Sun C, Wang Y, Su J, Ren H, Wang P, Zhou L, Kai G, Qian J. Manganese dioxide decorated kiwi peel powder for efficient removal of lead from aqueous solutions, blood and Traditional Chinese Medicine extracts. ENVIRONMENTAL RESEARCH 2024; 249:118360. [PMID: 38325779 DOI: 10.1016/j.envres.2024.118360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
For human health and environment safety, it is of great significance to develop novel materials with high effectiveness for removal of lead from not only aqueous solutions but also human body and traditional Chinese medicines. Here, functional kiwi peel composite, manganese dioxide decorated kiwi peel powder (MKPP), is proposed for the removal of Pb2+ effectively. The adsorption of Pb2+ in aqueous solution is a highly selective and endothermic process and kinetically follows a pseudo-second-order model, which can reach equilibrium with the capacity of 192.7 mg/g within 10 min. Comprehensive factors of hydration energy, charge-to-radius ratio and softness of Pb2+ make a stronger affinity between MKPP and Pb2+. The possible adsorption mechanism involves covalent bond, electrostatic force and chelation, etc. MKPP can be efficiently regenerated and reused with high adsorption efficiency after five cycles. Besides, MKPP can remove over 97% of Pb2+ from real water samples. MKPP can also alleviate lead poisoning to a certain extent and make the Pb level of TCM extract meet the safety standard. This work highlights that MKPP is a promising adsorbent for the removal of Pb2+ and provides an efficient strategy for reusing kiwi peel as well as dealing with the problem of Pb pollution.
Collapse
Affiliation(s)
- Hangxin Gong
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Yiyao Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China.
| | - Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Chen Sun
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Jiajia Su
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Hong Ren
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China.
| | - Peng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China.
| | - Lei Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
30
|
Wang R, Liu X, Li K, Li X, Fang D, Xiang W, Cao A, Long T, Wei S. Migration of l-Selenomethionine in the Water-Soil Interface Dominated by Iron Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9520-9528. [PMID: 38656146 DOI: 10.1021/acs.langmuir.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Organic selenium (Se) accounts for up to 10-80% of total Se in soils, and l-selenomethionine (SeMet) is a typical organic Se species. However, the migration of SeMet in soils remains elusive. This study investigated the solid-liquid distribution, adsorption, desorption by phosphate, and self-oxidization of SeMet in solution under the influence of ferrihydrite, goethite, and hematite through batch experiments. Iron oxides could adsorb a much larger amount of SeMet than inorganic Se. At the initial Se element concentrations of 0-200 mg/L, the solid/liquid partition coefficient of SeMet was constant, which was 0.41, 0.43, and 0.50 on ferrihydrite, goethite, and hematite, respectively. In addition, the adsorption process of SeMet on the three iron oxides could be well described by the linear driving force model. Accordingly, the intraparticle diffusion coefficient of SeMet in ferrihydrite, goethite, and hematite was 1.4 × 103, 7.9 × 104, and 1.2 × 105 nm2/min, respectively. The adsorption of SeMet on the three iron oxides was slightly influenced by the pH and the coexisting ions, such as Cl-, NO3-, SO42-, and H2PO4-. The desorption ratio of SeMet on the three iron oxides by phosphate was lower than 2.5%. SeMet would aggregate the nanoparticles of iron oxides, resulting in a synergistic effect on the adsorption of phosphate. The oxidization ratio of SeMet was 23.9% in the solution, while it decreased to 17.1-17.5% in iron oxide suspensions. For this oxidization process, the three iron oxides exhibited varying effects to decelerate SeMet oxidation, as represented by the equivalent reaction. The findings of this study reveal the migration of SeMet in the water-soil interface under the influence of iron oxides, which can improve the understanding of Se cycling in the environment as well as provide some guidance for the better utilization of Se in soils and environmental remediation of Se pollution.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering, Dazhou Key Laboratory of Advanced Technology for Fiber Materials, Key Laboratory of Low-cost Rural Environmental Treatment Technology in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou 635000, China
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xin Liu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Kun Li
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xinyu Li
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Dun Fang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Wenjun Xiang
- School of Chemistry and Chemical Engineering, Dazhou Key Laboratory of Advanced Technology for Fiber Materials, Key Laboratory of Low-cost Rural Environmental Treatment Technology in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou 635000, China
| | - Aijia Cao
- School of Chemistry and Chemical Engineering, Dazhou Key Laboratory of Advanced Technology for Fiber Materials, Key Laboratory of Low-cost Rural Environmental Treatment Technology in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou 635000, China
| | - Ting Long
- School of Chemistry and Chemical Engineering, Dazhou Key Laboratory of Advanced Technology for Fiber Materials, Key Laboratory of Low-cost Rural Environmental Treatment Technology in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou 635000, China
| | - Shiyong Wei
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
31
|
Li X, He A, Cao Y, Yun J, Bao H, Yan X, Zhang X, Dong J, Kelly FJ, Mudway I. Exposure risks of lead and other metals to humans: A consideration of specific size fraction and methodology. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133549. [PMID: 38447362 DOI: 10.1016/j.jhazmat.2024.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Particle size is a critical influencing factor in assessing human exposure risk as fine particles are generally more hazardous than larger coarse particles. However, how particle composition influences human health risk is only poorly understood as different studies have different utilised different definitions and as a consequence there is no consensus. Here, with a new methodology taking insights of each size fraction load (%GSFload), metal bioaccessibility, we classify which specific particle size can reliably estimate the human exposure risk of lead and other metals. We then validate these by correlating the metals in each size fraction with those in human blood, hair, crop grain and different anthropogenic sources. Although increasing health risks are linked to metal concentration these increase as particle size decrease, the adjusted-risk for each size fraction differs when %GSFload is introduced to the risk assessment program. When using a single size fraction (250-50 µm, 50-5 µm, 5-1 µm, and < 1 µm) for comparison, the risk may be either over- or under-estimated. However, by considering bulk and adjusting the risk, it would be possible to obtain results that are closer to the real scenarios, which have been validated through human responses and evidence from crops. Fine particle size fractions (< 5 µm) bearing the mineral crystalline or aggregates (CaCO3, Fe3O4, Fe2O3, CaHPO4, Pb5(PO4)3Cl) alter the accumulation, chemical speciation, and fate of metals in soil/dust/sediment from the different sources. Loaded lead in the size fraction of < 50 µm has a significantly higher positive association with the risk-receptor biomarkers (BLLs, Hair Pb, Corn Pb, and Crop Pb) than other size fractions (bulk and 50-250 µm). Thus, we conclude that the < 50 µm fraction would be likely to be recommended as a reliable fraction to include in a risk assessment program. This methodology acts as a valuable instrument for future research undertakings, highlighting the importance of choosing suitable size fractions and attaining improved accuracy in risk assessment results that can be effectively compared.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yuhan Cao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Hongxiang Bao
- Frontier Medical Service Training Brigade, Army Medical University, Hutubi 831200, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
32
|
Liu L, Yang Z, Yang W, Jiang W, Liao Q, Si M, Zhao F. Ferrihydrite transformation impacted by coprecipitation of lignin: Inhibition or facilitation? J Environ Sci (China) 2024; 139:23-33. [PMID: 38105051 DOI: 10.1016/j.jes.2023.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.
Collapse
Affiliation(s)
- Lin Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Wen Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China.
| |
Collapse
|
33
|
Zeng W, Lu Y, Zhou J, Zhang J, Duan Y, Dong C, Wu W. Simultaneous removal of Cd(II) and As(V) by ferrihydrite-biochar composite: Enhanced effects of As(V) on Cd(II) adsorption. J Environ Sci (China) 2024; 139:267-280. [PMID: 38105054 DOI: 10.1016/j.jes.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 12/19/2023]
Abstract
The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.
Collapse
Affiliation(s)
- Wenjun Zeng
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jie Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yuanxiao Duan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Changxun Dong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China.
| |
Collapse
|
34
|
Wu B, Wan Q, Li X, Lin S, Jiang Y, Yang X, Li J, Lin Q, Morel JL, Qiu R. Heavy metal migration dynamics and solid-liquid distribution strategy in abandoned tailing soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133794. [PMID: 38368686 DOI: 10.1016/j.jhazmat.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The tailings soil originating from an abandoned sulfur-iron mine in Sichuan Province, China, exhibits elevated concentrations of heavy metals (HMs) and possesses limited soil conservation capacity. Variability soil particle size fractions (PSFs) contributes to an increased risk of HMs ion migration. Existing research on HMs behavior has focused on the bulk soil scale, resulting in a dearth of comprehensive information concerning different particle sizes and colloid scales. We collected soil samples from upstream source (XWA), migration path (XWB), and downstream farmland (XWC) of an abandoned tailing and categorized into sand, silt, clay, colloid and dissolved, respectively. The investigation primarily aimed to elucidate the solid-liquid distribution trade-off strategies of soil HMs along migration pathway. Results show that PSFs composition predominantly influences HMs solid-liquid distribution. In the mining area, large particles serve as the principal component for HMs enrichment. However, along the migration pathway, the proportion of highly mobile fine particles increases, shifting HMs from solid to liquid phase. Furthermore, inorganic elements such as Mg, Al, and Fe influence on HMs distribution within PSFs through various reactions, whereas organic matter and glomalin-related soil protein (GRSP) also exert regulatory roles. Increasing the proportion of large particles can reduce the risk of HMs migration.
Collapse
Affiliation(s)
- Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanqi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Si T, Yuan R, Qi Y, Zhang Y, Wang Y, Bian R, Liu X, Zhang X, Joseph S, Li L, Pan G. Enhancing soil redox dynamics: Comparative effects of Fe-modified biochar (N-Fe and S-Fe) on Fe oxide transformation and Cd immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123636. [PMID: 38401634 DOI: 10.1016/j.envpol.2024.123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Biochar and modified biochar have gained wide attention for Cd-contaminated soil remediation. This study investigates the effects of rape straw biochar (RSB), sulfur-iron modified biochar (S-FeBC), and nitrogen-iron modified biochar (N-FeBC) on soil Fe oxide transformation and Cd immobilization. The mediated electrochemical analysis results showed that Fe modification effectively enhanced the electron exchange capacity (EEC) of biochar. After 40 days of anaerobic incubation, compared to the treatment without biochar (CK), the concentrations of CaCl2-extractable Cd in N-FeBC, S-FeBC, and RSB treatments decreased by 79%, 53%, and 23%, respectively. Compared with S-FeBC, N-FeBC significantly decreased the soil Eh and increased soil pH within the first 15 days, which could be attributed to its higher EEC and alkalinity. There is a negative correlation between the concentration of CaCl2-extractable Cd and soil pH (p < 0.01). The sequential extraction results showed that both N-FeBC and S-FeBC promoted Cd transfer from acid-soluble to Fe/Mn oxides bound fraction (Fe/Mn-Cd). N-FeBC significantly increased the concentration of amorphous Fe oxides (amFeox) from 4.0 g kg-1 in day 1 to 4.6 g kg-1 in day 15 by promoting the NO3--reducing Fe(II) oxidation process, while S-FeBC significantly increased amFeox from 4.0 g kg-1 in day 15 to 4.8 g kg-1 in day 40 by promoting the Fe(II) recrystallization. There is a positive correlation between the concentration of amFeox and Fe/Mn-Cd (p < 0.01). The scanning electron microscopy analysis showed that Cd was bound to the amFeox coating on the surface of Fe-modified biochar. By acting as an electron shuttle, the active surface of Fe-modified biochar may serve as a hotspot for Fe transformation, which promotes amFeox formation and Cd immobilization. This study highlights the potential of Fe-modified biochar for the remediation of Cd-contaminated soils and provides valuable insights into the development of effective remediation approaches for Cd-contaminated soils.
Collapse
Affiliation(s)
- Tianren Si
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rui Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yanjie Qi
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yuhao Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaoyu Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
36
|
Liu J, Zhao J, Du J, Peng S, Wu J, Zhang W, Yan X, Lin Z. Predicting the binding configuration and release potential of heavy metals on iron (oxyhydr)oxides: A machine learning study on EXAFS. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133797. [PMID: 38377906 DOI: 10.1016/j.jhazmat.2024.133797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Heavy metals raise a global concern and can be easily retained by ubiquitous iron (oxyhydr)oxides in natural and engineered systems. The complex interaction between iron (oxyhydr)oxides and heavy metals results in various mineral-metal binding configurations, such as outer-sphere complexes and edge-sharing inner-sphere complexes, which determine the accumulation and release of heavy metals in the environment. However, traditional experimental approaches are time-consuming and inadequate to elucidate the complex binding relationships and configurations between iron (oxyhydr)oxides and heavy metals. Herein, a workflow that integrates the binding configuration data of 11 heavy metals on 7 iron (oxyhydr)oxides and then trains machine learning models to predict unknown binding configurations was proposed. The well-trained multi-grained cascade forest models exhibited high accuracy (> 90%) and predictive performance (R2 ∼ 0.75). The underlying effects of mineral properties, metal ion species, and environmental conditions on mineral-metal binding configurations were fully interpreted with data mining. Moreover, the metal release rate was further successfully predicted based on mineral-metal binding configurations. This work provides a method to accurately and quickly predict the binding configuration of heavy metals on iron (oxyhydr)oxides, which would provide guidance for estimating the potential release behavior of heavy metals and remediating heavy metal pollution in natural and engineered environments.
Collapse
Affiliation(s)
- Junqin Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jiang Zhao
- School of Mathmatics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Jiapan Du
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Suyi Peng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| |
Collapse
|
37
|
Bai B, Kong S, Root RA, Liu R, Wei X, Cai D, Chen Y, Chen J, Yi Z, Chorover J. Release mechanism and interactions of cadmium and arsenic co-contaminated ferrihydrite by simulated in-vitro digestion assays. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133633. [PMID: 38335617 PMCID: PMC10913812 DOI: 10.1016/j.jhazmat.2024.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) and arsenic (As) co-contamination is widespread and threatens human health, therefore it is important to investigate the bioavailability of Cd and As co-exposure. Currently, the interactions of Cd and As by in vitro assays are unknown. In this work, we studied the concurrent Cd-As release behaviors and interactions with in vitro simulated gastric bio-fluid assays. The studies demonstrated that As bioaccessibility (2.04 to 0.18 ± 0.03%) decreased with Cd addition compared to the As(V) single system, while Cd bioaccessibility (11.02 to 39.08 ± 1.91%) increased with As addition compared to the Cd single system. Release of Cd and As is coupled to proton-promoted and reductive dissolution of ferrihydrite. The As(V) is released and reduced to As(Ⅲ) by pepsin. Pepsin formed soluble complexes with Cd and As. X-ray photoelectron spectroscopy showed that Cd and As formed Fe-As-Cd ternary complexes on ferrihydrite surfaces. The coordination intensity of As-O-Cd is lower than that of As-O-Fe, resulting in more Cd release from Fe-As-Cd ternary complexes. Our study deepens the understanding of health risks from Cd and As interactions during environmental co-exposure of multiple metal(loid)s.
Collapse
Affiliation(s)
- Bing Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Shuqiong Kong
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Robert A. Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| | - Ruiqi Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Xiaguo Wei
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Dawei Cai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiyi Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Jie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Zhihao Yi
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
38
|
Chen L, Ma J, Xiang S, Jiang L, Wang Y, Li Z, Liu X, Duan S, Luo Y, Xiao Y. Promotion of rice seedlings growth and enhancement of cadmium immobilization under cadmium stress with two types of organic fertilizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123619. [PMID: 38401632 DOI: 10.1016/j.envpol.2024.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cadmium (Cd)-contaminated soil poses a severe threat to crop production and human health, while also resulting in a waste of land resources. In this study, two types of organic fertilizer (ZCK: Low-content available iron; Z2: High-content available iron) were applied to Cd-contaminated soil for rice cultivation, and the effects of the fertilizer on rice growth and Cd passivation were investigated in conjunction with soil microbial analysis. Results showed that Z2 could alter the composition, structure, and diversity of microbial communities, as well as enhance the complexity and stability of the microbial network. Both 2% and 5% Z2 significantly increased the fresh weight and dry weight of rice plants while suppressing Cd absorption. The 2% Z2 exhibited the best Cd passivation effect. Gene predictions suggested that Z2 may promote plant growth by regulating microbial production of organic acids that dissolve phosphorus and potassium. Furthermore, it is suggested that Z2 may facilitate the absorption and immobilization of soil cadmium through the regulation of microbial cadmium efflux and uptake systems, as well as via the secretion of extracellular polysaccharides. In summary, Z2 can promote rice growth, suppress Cd absorption by rice, and passivate soil Cd by regulating soil microbial communities.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Lihong Jiang
- College of Resources, Hunan Agricultural University, China
| | - Ying Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Zhihuan Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Xianjing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Shuyang Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Yuan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, China.
| |
Collapse
|
39
|
Bharat AP, Singh AK, Mahato MK. Heavy metal geochemistry and toxicity assessment of water environment from Ib valley coalfield, India: Implications to contaminant source apportionment and human health risks. CHEMOSPHERE 2024; 352:141452. [PMID: 38354867 DOI: 10.1016/j.chemosphere.2024.141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The present study aims to investigate the hydrogeochemical evolution of heavy metals and assesses impacts of mining activities on the groundwater resources and potential human health risks in the coal mining areas of Ib valley coalfield. In this perspective, a total of one hundred and two mine water and groundwater samples were collected from different locations. The water samples were analysed for some selected heavy metals i.e. Mn, Cu, Pb, Zn, Ni, Co, As, Se, Al, Sr, Ba, Cd, Cr, V and Fe using ICP-MS. In addition, pH and SO42- concentration were also measured following APHA procedure. The water pH in the Ib valley coalfields ranged from 3.26 to 8.18 for mine water and 5.23 to 8.52 for groundwater, indicating acidic to alkaline nature of water. Mn in mine water and Zn in groundwater environment were observed as the most dominant metals. The water hazard index (WHI) reflects that around 80% of mine water are non-toxic (WHI<5), 5% slightly toxic (510) and 15% extremely toxic (WHI>15). Relatively high pH and low concentration of dissolved metals and SO42- in groundwater as compared to mine water indicate lesser impact of mining activities. The calculated drinking water quality index (DWQI) suggests that Mn, Al, Ni and Fe in mine water and Mn, Fe, Ni and Pb in groundwater were the major objectionable metals which caused the water quality deterioration for drinking uses. Further, the non-carcinogenic health risk assessment for adult male, female and child populations identifies Co, Mn, Ni as the key elements making the water hazardous for human health. Comparatively higher ratio of ingestion rate and body weight in child population might be causing higher health risks in child population as compared to adult male and adult female population.
Collapse
Affiliation(s)
- Abhishek Pandey Bharat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India.
| | - Abhay Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India
| | - Mukesh Kumar Mahato
- Department of Environmental Studies, Lakshmibai College, University of Delhi, India
| |
Collapse
|
40
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Inverse vulcanization induced oxygen modified porous polysulfides for efficient sorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16940-16957. [PMID: 38326685 DOI: 10.1007/s11356-024-32323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
41
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Zhao R, Wu X, Zhu G, Zhang X, Liu F, Mu W. Revealing the release and migration mechanism of heavy metals in typical carbonate tailings, East China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132978. [PMID: 37984137 DOI: 10.1016/j.jhazmat.2023.132978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Refining the occurrence characteristics of tailings hazardous materials at source is of great importance for pollution management and ecological reclamation. However, the release and transport of heavy metals (HMs) from tailings under rainfall drenching in simulated real-world environments is less well portrayed, particularly highlighting the inherent neutralisation in tailings wastes under superimposed dynamic conditions. In this study, dynamic leaching columns simulating actual conditions were used to observe the release and transport of HMs from tailings under acid rainfall infiltration at spatial and temporal scales. The release rate of trace elements (e.g., As, Cr, Ni, Pb, Cd) is high. Neutralisation in the presence of carbonate rocks in the gangue reduces HMs release intensity from tailings with high heavy metal content, along with the precipitation of iron oxides and chromium-bearing minerals, etc. In addition, the vertical differentiation of HMs is more relevant to physical processes. In the absence of carbonate rocks in gangue, the lowest pH value is reached within 1.2 h after acid rain infiltrates the tailings. At the same time, Cu, Zn and Cd are released significantly from the minerals at the superficial level. The release of As(III) is mainly concentrated in the early and late stages of water-rock contact.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiong Wu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Ge Zhu
- Department of Hydrogeology and Environmental Geology, China Geological Survey, Beijing 100011, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wenping Mu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
43
|
Liu M, Wang X, Tang S, Zhou J, Liu L, Ma Q, Wu L, Xu M. Remobilization of Cd caused by iron oxide phase transformation and Mn 2+ competition after stabilization by nano zero valent iron. CHEMOSPHERE 2024; 350:141091. [PMID: 38171399 DOI: 10.1016/j.chemosphere.2023.141091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.
Collapse
Affiliation(s)
- Mengjiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiya Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longfei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Sekudewicz I, Syczewski M, Rohovec J, Matoušková Š, Kowalewska U, Blukis R, Geibert W, Stimac I, Gąsiorowski M. Geochemical behavior of heavy metals and radionuclides in a pit lake affected by acid mine drainage (AMD) in the Muskau Arch (Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168245. [PMID: 37918728 DOI: 10.1016/j.scitotenv.2023.168245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Pit lakes in the 'anthropogenic lake district' in the Muskau Arch (western Poland; central Europe) are strongly affected by acid mine drainage (AMD). The studied acidic pit lake, ŁK-61 (pH <3), is also exposed to floods due to its location in the flood hazard area, which may significantly influence the geochemical behavior of elements. The elemental compositions of water and lake sediment samples were measured with ICP-OES and ICP-MS. The sediment profile was also examined for 137Cs and 210Po activity concentrations using gamma and alpha spectrometry, respectively. Grain size distribution, mineralogical composition, diatoms, and organic matter content in the collected core were also determined. The key factors responsible for the distribution of selected heavy metals (e.g., Cu, Ni, Pb, Zn) and radioisotopes (137Cs and 210Po) in the bottom sediments of Lake ŁK-61 are their coprecipitation/precipitation with Fe and Al secondary minerals and their sorption onto authigenic and allogenic phases. These processes are likely driven by the lake tributary, which is an important source of dissolved elements. The data also showed that the physiochemical parameters of Lake ŁK-61 water changed during an episodic depositional event, i.e., the flood of the Nysa Łużycka River in the summer of 2010. The flood caused an increase in the water pH, as interpreted from the subfossil diatom studies. The down-core profiles of the studied heavy metal and radionuclide (HMRs) contents were probably affected by this depositional event, which prevented a detailed age determination of the collected lake sediments with 137Cs and 210Pb dating methods. Geochemical modeling indicates that the flood-related shift in the physicochemical parameters of the lake water could have caused the scavenging of dissolved elements by the precipitation of fresh secondary minerals. Moreover, particles contaminated with HMRs have also possibly been delivered by the river, along with the nutrients (e.g., phosphorus and nitrogen).
Collapse
Affiliation(s)
- Ilona Sekudewicz
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland.
| | - Marcin Syczewski
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Jan Rohovec
- Institute of Geology, Czech Academy of Sciences, 16500 Praha, Rozvojová 269, Czech Republic
| | - Šárka Matoušková
- Institute of Geology, Czech Academy of Sciences, 16500 Praha, Rozvojová 269, Czech Republic
| | - Urszula Kowalewska
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland
| | - Roberts Blukis
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
| | - Walter Geibert
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ingrid Stimac
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Michał Gąsiorowski
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland
| |
Collapse
|
45
|
Wang X, Jiang Z, Qian J, Fu W, Pan B. Structure Evolution of Iron (Hydr)oxides under Nanoconfinement and Its Implication for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:826-835. [PMID: 38154031 DOI: 10.1021/acs.est.3c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.
Collapse
Affiliation(s)
- Xuening Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Ni R, Chu X, Liu R, Shan J, Tian Y, Zhao W. Chromium immobilization and release by pipe scales in drinking water distribution systems: The impact of anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167600. [PMID: 37802346 DOI: 10.1016/j.scitotenv.2023.167600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Due to its high toxicity, the release of chromium (Cr) by pipe scales poses a serious risk to drinking water quality and human health. This study looked into how Cr immobilized and released by pipe scales. SEM, XRD, and XPS were applied to evaluate the physicochemical characterization of pipe scales. To identify times of immobilization and release and the proper scale to water ratio, the behaviors of Cr were examined in stagnation experiments. Afterward, the common anions in drinking water were designed as nine concentration gradients to explore their species and concentrations impacts on the immobilization and release process of Cr. It is worth mentioning that the pipe scales were classified into block pipe scales, lumpy pipe scales, and powder pipe scales in this experiment. The types of pipe scales were rarely considered as an influencing factor. Results revealed that in contrast to powder pipe scales, block pipe scales and lumpy pipe scales exhibited extremely comparable trends. Specifically, in terms of accumulation capacity, the order from largest to smallest was powder pipe scales, lumpy pipe scales, and block pipe scales. However, the potential of Cr release from block pipe scales was the highest, indicating a high danger of heavy metal re-release in actual circumstances. Findings from this study discovered the turning points of chloride and sulfate concentrations associated with the pipe scales species in the anion-promoted release. These results provide insight into the relationship between pipe scales and Cr in drinking water distribution systems (DWDS).
Collapse
Affiliation(s)
- Ruoling Ni
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Ran Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jinlin Shan
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
47
|
Zhang Y, O'Loughlin EJ, Park SY, Kwon MJ. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166993. [PMID: 37717756 DOI: 10.1016/j.scitotenv.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
48
|
Sanaei D, Sarmadi M, Dehghani MH, Sharifan H, Ribeiro PG, Guilherme LRG, Rahimi S. Towards engineering mitigation of leaching of Cd and Pb in co-contaminated soils using metal oxide-based aerogel composites and biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2110-2124. [PMID: 37916297 DOI: 10.1039/d3em00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Applications of metal-based nanomaterials for the remediation of heavy metal (HM) contaminated environments are of great importance. The ability of metal oxide-based carbon aerogel composite to immobilize HMs in multi-metal contaminated soils has not yet been investigated, particularly under acidic conditions. Herein, we investigate the performance of metal oxides (Sr0.7 Mn0.3 Co0.5 Fe0.5O3-δ)-based carbon aerogel composite (MO-CAg) compared with coconut coil fiber biochar (CCFB) and carbon aerogel (CAg) for Cd and Pb immobilization in contaminated soil. The MO-CAg, applied at 2% (w/w), significantly decreased Pb leaching by 67-75% and Cd by 60-65%, CAg decreased Cd by 54% and Pb by 46%, while biochar decreased Cd by 40-44% and Pb by 43%. The addition of MO-CAg altered Cd and Pb geochemical fractions by increasing their residual fraction, i.e., stabilized both metals compared to the control. This presents a comprehensive elaboration on the probable reaction interactions between the MO-Cag and heavy metals, including a combination of (co)precipitation, and reduction-oxidation as the predominant mechanisms of metal stabilization with MO-CAg. Moreover, MO-CAg increased Pb and Cd stabilization in soils by strengthening the bonding between metal oxides and Cd/Pb. By imbedding MO into the CAg, in MO-CAg, the immobilization of Cd(II) and Pb(II) occurred through inner-sphere complexation, while with CCFB and CAg metals, immobilization occurred through outer-sphere complexation. MO-CAg is a promising and highly efficient material that could be recommended for the remediation of Cd- and Pb-contaminated soils in subsequent studies.
Collapse
Affiliation(s)
- Daryoush Sanaei
- Faculty of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad H Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | - Paula G Ribeiro
- Instituto Tecnológico Vale, Boaventura da Silva 955, Belém, PA 66055090, Brazil
| | - Luiz R G Guilherme
- School of Agricultural Science, Federal University of Lavras, Lavras, MG, Brazil
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
49
|
Liu X, Liu Q, Sheng Y. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL RESEARCH 2023; 238:117135. [PMID: 37714367 DOI: 10.1016/j.envres.2023.117135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Excessive nutrients in aquatic ecosystems are the main driving factors for eutrophication and water quality deterioration. However, the influence of nutrients in overlying water on sediment heavy metals is not well understood. In this study, the effects of nitrate nitrogen (NO3-N) addition and phosphate addition in the overlying water on the environmental behaviors of chromium (Cr), copper (Cu), and cadmium (Cd) in coastal river sediments were investigated. Fresh estuary sediments and synthetic saltwater were used in microcosm studies conducted for 13 d. To determine the biological effect, unsterilized and sterilized treatments were considered. The results showed that the diffusion of Cr and Cu was inhibited in the unsterilized treatments with increased NO3-N. However, under the NO3-N sterilized treatments, Cr and Cu concentrations in the overlying water increased. This was mostly related to changes in the microbial regulation of dissolved organic carbon and pH in the unsterilized treatments. Further, in the unsterilized treatments, NO3-N addition considerably increased the concentrations of the acid-soluble (Cr, Cu, and Cd increased by 5%-8%, 29%-41%, and 31%-42%, respectively) and oxidizable (Cr, Cu, and Cd increased by 10%, 5%, and 14%, respectively) fractions. Additionally, compared with that in the unsterilized treatments, Cu and Cd concentrations in P-3 treatments decreased by 7% and 63%, respectively. By producing stable metal ions, microorganisms reduced the amount of unstable heavy metals in the sediment and heavy metal concentration in the overlying water, by considerably enhancing the binding ability of phosphate and heavy metal ions. This study provides a theoretical basis for investigating the coupling mechanisms between heavy metals and nutrients.
Collapse
Affiliation(s)
- Xiaozhu Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qunqun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
50
|
Stumbea D. Statistics in identifying factors that control the geochemical distribution of potentially polluting elements over a tailings pond surface: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121062-121076. [PMID: 37947936 DOI: 10.1007/s11356-023-30357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
The study shows how the statistical approach can provide information on the factors and processes that control the geochemical distribution of elements at the surface of an abandoned tailings pond. In this regard, the case study of a waste deposit resulting from the ore processing plant of Fundu Moldovei was carried out. The facility was concentrating Cu, Pb, and Zn from the polymetallic sulfide ores of the Fundu Moldovei-Leșu Ursului mining district (Romania). The statistics indicate three types of waste, showing specific properties: (i) Waste of the beach, rich in soluble fraction (14.4%) and secondary minerals (e.g., jarosite, ferricopiapite, magnesiocopiapite, pickeringite, and clay minerals). The latter and the related high contents of Al, K, Fe, Co, Ni, Cu, Pb, and Zn are controlled by the water evaporation and subsequent transient pH (2.6-3.5) of the leachates accumulated as puddles. The lower pH and scarce soluble fraction favor a rise in the Cu and Zn contents, while Al, K, Fe, and Co are noticeable at a higher pH when the soluble fraction is abundant. (ii) Waste of the upper dam slope, marked by intense oxidation and a meager occurrence of secondary minerals precipitated from highly acidic pore leachates (average pH of 2.55), namely, jarosite, ferricopiapite, magnesiocopiapite, and coquimbite. The surface waste contains more pyrite and is coarser because of the fine particle removal during rainfall. Unlike the beach waste, in the upper dam tailings, Al, K, Fe, Co, Cu, Pb, and Zn seem to relate mainly to the primary minerals (muscovite, chlorite, and pyrite). (iii) Downslope dam waste is less acidic (average pH of 3.75) than that of the upper slope; it contains secondary minerals stable at a higher pH (e.g., gypsum, apjohnite, dietrichite, clay minerals, and schwertmannite). Calcium, Mn, and Cd are more abundant in the dam waste. They originate from both primary and secondary minerals (e.g., muscovite, chlorite, gypsum, ferricopiapite, and magnesiocopiapite) and correlate with the coarser waste.
Collapse
Affiliation(s)
- Dan Stumbea
- Department of Geology, University "Alexandru Ioan Cuza" of Iasi, 20A Carol I Blvd., Iasi, Romania.
| |
Collapse
|