1
|
Yusuf HH, Xiaofang P, Ye ZL, Abdelwahab TAM, Fodah AEM. A novel strategy for enhancing high solid anaerobic digestion of fecal slag and food waste using percolate recirculation and dosage of nano zero-valent iron. WATER RESEARCH 2024; 267:122477. [PMID: 39306933 DOI: 10.1016/j.watres.2024.122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 11/28/2024]
Abstract
To speed up reaching UN Sustainable Development Goal 6 for safe sanitation by 2030, integrating high-solid anaerobic digestion (HSAD) into decentralized systems could recycle fecal slag (FS) and food waste (FW), aiding a circular economy and toilet revolution. In this study, a percolate recirculation system and conductive material were used to improve mass transfer, stability, and enhance methane production in HSAD of FS and FW. This setup consists of a percolate tank and a digester tank, where nano-zero valent iron (nZVI) was dosed in the percolate tank (PnZVI in P) and the digester tank (PnZVI in D) and compared with a control with no additive (PControl). The highest cumulative methane yield of 519.43 mL/gVS was achieved in PnZVI in D, which was 4.52 and 3.59 times higher than that of PControl (144.59 mL/gVS) and PnZVI in P (114.96 mL/gVS). This finding demonstrates that the dosing strategy of PnZVI in D facilitated effective interaction among organic matter, microbial communities, and nZVI, resulting in organics removal efficiencies of 67.42 % (total solid) and 77.22 % (volatile solid). Moreover, microbial community analysis supported the efficacy of the PnZVI in D strategy, revealing the enrichment of Clostridium sensu stricto 1 (46.91 %), which potentially engaged in interspecies electron transport (Interspecies hydrogen transfer (IHT) and direct interspecies electron transfer (DIET)) with Methanobacterium (81.19 %) and Methanosarcina (17.11 %). These interactions contribute to enhanced methane yield and stability maintenance in the HSAD system with percolate recirculation. The findings of this study demonstrate that the implementation of HSAD of FS and FW, coupled with percolate recirculation and the addition of nZVI, holds promise for enabling sustainable sanitation practices in developing regions. Moreover, this approach not only facilitates resource recovery but also eliminates the requirement for water.
Collapse
Affiliation(s)
- Hamza Hassan Yusuf
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pan Xiaofang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Digital Technology for Territorial Space Analysis and Simulation, Fuzhou 350108, China.
| | | | | |
Collapse
|
2
|
Manu P, Nketia PB, Osei-Poku P, Kwarteng A. Computational Mutagenesis and Inhibition of Staphylococcus aureus AgrA LytTR Domain Using Phenazine Scaffolds: Insight From a Biophysical Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8843954. [PMID: 39328594 PMCID: PMC11424843 DOI: 10.1155/2024/8843954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Biofilm formation by Staphylococcus aureus is a major challenge in clinical settings due to its role in persistent infections. The AgrA protein, a key regulator in biofilm development, is a promising target for therapeutic intervention. This study investigates the antibiofilm potential of halogenated phenazine compounds by targeting AgrA and explores their molecular interactions to provide insights for drug development. We employed molecular docking, molecular dynamics simulations, and computational mutagenesis to evaluate the binding of halogenated phenazine compounds (C1 to C7, HP, and HP-14) to AgrA. Binding free energy analysis was performed to assess the affinity of these compounds for the AgrA-DNA complex. Additionally, the impact of these compounds on AgrA's structural conformation and salt bridge interactions was examined. The binding-free energy analysis revealed that all compounds enhance binding affinity compared to the Apo form of AgrA, which has a ΔGbind of -80.75 kcal/mol. The strongest binding affinities were observed with compounds C7 (-113.84 kcal/mol), HP-14 (-115.23 kcal/mol), and HP (-112.28 kcal/mol), highlighting their effectiveness. Molecular dynamics simulations demonstrated that these compounds bind at the hydrophobic cleft of AgrA, disrupting essential salt bridge interactions between His174-Glu163 and His174-Glu226. This disruption led to structural conformational changes and reduced DNA binding affinity, aligning with experimental findings on biofilm inhibition. The halogenated phenazine compounds effectively inhibit biofilm formation by targeting AgrA, disrupting its DNA-binding function. The study supports the potential of these compounds as antibiofilm agents and provides a foundation for rational drug design targeting the AgrA-DNA interaction. Future research should focus on further optimizing these lead compounds and exploring additional active sites on AgrA to develop novel treatments for biofilm-associated infections.
Collapse
Affiliation(s)
- Prince Manu
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prisca Baah Nketia
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Priscilla Osei-Poku
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Lizama AC, Figueiras CC, Pedreguera AZ, Saady NMC, Ruiz Espinoza JE. Improving the anaerobic digestion of sewage sludge by adding cobalt nanoparticles. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39292531 DOI: 10.1080/09593330.2024.2404648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
This work evaluated the effects of cobalt nanoparticles (CoNPs) (0.025-7 mg/gVS) on the intensification of sewage sludge anaerobic digestion (AD) using biochemical methane potential (BMP) tests. This study was motivated by the need to improve the efficiency and stability of anaerobic digestion of sewage sludge, a critical process in waste management and renewable energy production. The effects at doses less than 2 mg/gVS were not substantial, but 3-7 mg/gVS improved the performance. The maximum biogas yield was 232 mL/gVS (at a dose of 7 mg/gVS), whereas it was 132 mL/gVS in the control (zero dose). Similarly, the reductions in the volatile solids and methane contents reached maxima of 16 and 74.3%, respectively. The analyses of volatile fatty acids, redox potential, and electron transfer system activity indicated that the addition of CoNPs stimulated the early stages of AD. Finally, acetate consumption and the increase in CH4 content suggested that CoNPs positively affected system stability and acetoclastic methanogenesis. That is, CoNPs effectively intensified the behaviour and stability of the anaerobic process. The novelty of this research lies in the comprehensive evaluation of the effects of CoNPs across a wide range of doses on sewage sludge AD, providing new insights into the optimisation of this process for increased biogas production and organic matter reduction.
Collapse
Affiliation(s)
| | | | | | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's,Canada
| | | |
Collapse
|
4
|
Dong X, Dong A, Liu J, Qadir K, Xu T, Fan X, Liu H, Ji F, Xu W. Impact of Iron Oxide on Anaerobic Digestion of Frass in Biogas and Methanogenic Archaeal Communities' Analysis. BIOLOGY 2024; 13:536. [PMID: 39056727 PMCID: PMC11273746 DOI: 10.3390/biology13070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Collapse
Affiliation(s)
- Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Aoqi Dong
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Juhao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Kamran Qadir
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Tianping Xu
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiya Fan
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Weiping Xu
- School of Chemical Engineering, Ocean, and Life Sciences, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
5
|
Chen Z, Ding Q, Ning X, Song Z, Gu J, Wang X, Sun W, Qian X, Hu T, Wei S, Xu L, Li Y, Zhou Z, Wei Y. Fe-Mn binary oxides improve the methanogenic performance and reduce the environmental health risks associated with antibiotic resistance genes during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133921. [PMID: 38452670 DOI: 10.1016/j.jhazmat.2024.133921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Increasing evidence indicates that metal oxides can improve the methanogenic performance during anaerobic digestion (AD) of piggery wastewater. However, the impacts of composite metal oxides on the methanogenic performance and risk of antibiotic resistance gene (ARG) transmission during AD are not fully understood. In this study, different concentrations of Fe-Mn binary oxides (FMBO at 0, 250, 500, and 1000 mg/L) were added to AD to explore the effects of FMBO on the process. The methane yield was 7825.1 mL under FMBO at 250 mg/L, 35.2% higher than that with FMBO at 0 mg/L. PICRUSt2 functional predictions showed that FMBO promoted the oxidation of acetate and propionate, and the production of methane from the substrate, as well as increasing the abundances of most methanogens and genes encoding related enzymes. Furthermore, under FMBO at 250 mg/L, the relative abundances of 14 ARGs (excluding tetC and sul2) and four mobile gene elements (MGEs) decreased by 24.7% and 55.8%, respectively. Most of the changes in the abundances of ARGs were explained by microorganisms, especially Bacteroidetes (51.20%), followed by MGEs (11.98%). Thus, the methanogenic performance of AD improved and the risk of horizontal ARG transfer decreased with FMBO, especially at 250 mg/L.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Ning
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Jin B, Jia Y, Cheng K, Chu C, Wang J, Liu Y, Du J, Wang L, Pang L, Ji J, Cao X. Facilitating effects of the synergy with zero-valent iron and peroxysulfate on the sludge anaerobic fermentation system: Combined biological enzyme, microbial community and fermentation mechanism assessment. CHEMOSPHERE 2024; 355:141805. [PMID: 38552797 DOI: 10.1016/j.chemosphere.2024.141805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
This study evaluated a synergetic waste activated sludge treatment strategy with environmentally friendly zero-valent iron nanoparticles (Fe0) and peroxysulfate. To verify the feasibility of the synergistic treatment, Fe0, peroxysulfate, and the mixture of peroxysulfate and Fe0 (synergy treatment) were added to different sludge fermentation systems. The study demonstrated that the synergy treatment fermentation system displayed remarkable hydrolysis performance with 435.50 mg COD/L of protein and 197.67 mg COD/L of polysaccharide, which increased 1.13-2.85 times (protein) and 1.12-1.49 times (polysaccharide) for other three fermentation system. Additionally, the synergy treatment fermentation system (754.52 mg COD/L) exhibited a well acidification performance which was 1.35-41.73 times for other systems (18.08-557.27 mg COD/L). The synergy treatment fermentation system had a facilitating effect on the activity of protease, dehydrogenase, and alkaline phosphatase, which guaranteed the transformation of organic matter. Results also indicated that Comamonas, Soehngenia, Pseudomonas, and Fusibacter were enriched in synergy treatment, which was beneficial to produce SCFAs. The activation of Fe0 on peroxysulfate promoting electron transfer, improving the active groups, and increasing the enrichment of functional microorganisms showed the advanced nature of synergy treatment. These results proved the feasibility of synergy treatment with Fe0 and peroxysulfate to enhance waste activated sludge anaerobic fermentation.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Yusheng Jia
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ken Cheng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Chenchen Chu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiacheng Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jingjing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Long Pang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Cao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Yusuf HH, Pan X, Ye ZL, Cai G, Appels L, Cai J, Lv Z, Li Y, Ning J. Revolutionizing sanitation: Valorizing fecal slags through co-digesting food waste at high-solid content and dosing metallic nanomaterials for anaerobic digestion stability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120177. [PMID: 38278113 DOI: 10.1016/j.jenvman.2024.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
To achieve the UN Sustainable Development Goals (SDGs) and the China Toilet Revolution on a global scale, it is crucial to implement a decentralized sanitation management system in developing countries. Fecal slags (FS) generated from septic tanks of toilets pose a challenge for remote villages. This study sought to resourcefully utilize FS through co-digesting with food waste (FW) under high-solid anaerobic co-digestion (HSAD). Besides, two metallic nanomaterials, nano-zerovalent iron (nZVI) and magnetite (Fe3O4), were employed to demonstrate the practical improvement of HSAD. The results showed that nZVI-dosed digesters produced the highest cumulative methane of 295.72 mL/gVS, 371.36 mL/gVS, 360.53 mL/gVS and 296.64 mL/gVS in 10%, 15%, 20% and 25% TS content, respectively, which was 1.15, 1.22, 1.16, 1.12 times higher than Fe3O4 dosed digesters. This increment could be ascribed to the simultaneous production of H2 from Fe2+ release from nZVI and the enrichment of homoacetogen. Changes in carbon degradation and methanogenic pathways, which facilitated stability under high TS contents, were observed. At low solid digestion (10% TS), Syntrophomonas cooperated with Methanosarcina and Methanobacterium to metabolize butyrate and propionate. However, due to the buildup of total ammonia nitrogen and volatile fatty acids, acetoclastic methanogens were inhibited in the high-solid digesters (15%, 20% and 25% TS). Consequently, a more resilient and highly tolerant Syntrophaceticus, alongside hydrogenotrophic methanogens such as Methanoculleus and Methanobrevibacter, maintained stability in the harsh environment.
Collapse
Affiliation(s)
- Hamza Hassan Yusuf
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Digital Technology for Territorial Space Analysis and Simulation, Fuzhou 350108, China.
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Jiasheng Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zunjing Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ning
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
8
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
9
|
Castaldi B, Butera G, Chessa M, Galletti L, Giamberti A, Giugno L, Secinaro A, Vida V, Di Salvo G, Carminati M. Transcatheter pulmonary valve implantation in clinical practice: A nationwide survey of cardiological implanting and non-implanting physicians. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2023; 14:100478. [PMID: 39712983 PMCID: PMC11658437 DOI: 10.1016/j.ijcchd.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 12/24/2024] Open
Abstract
Aim Transcatheter Pulmonary Valve Implantation (TPVI), when feasible, is the first-line approach to pulmonary valve replacement. Our aim was to obtain a picture of current TPVI practice in Italy. Methods After conducting a literature review on TPVI, online surveys were devised by an Advisory Board of 10 experts from the three Italian reference centers for congenital heart diseases and sent electronically to physicians working either in implanting center or in referral non-implanting cardiologic centers. Results Approximately 450 physicians across Italy were invited to contribute. 82 (18%) physicians answered. EchoColorDoppler, electrocardiogram and cardiac magnetic resonance were considered the first line approach to monitor these patients, before and after TPVI.For non-implanting centers, reasons for non-referral of patients for PVR were: paucisymptomatic disease (67%) and patients' poor adherence to disease management programs (41%), but also the lack of connections with specialized centers (33%). For implanters, the main reasons for refraining from TPVI were: high risk for coronary compression (67% first rank), the need for concomitant cardiac surgical procedures (39% first rank) and the unsuitable anatomy of the conduit (39% first rank). The availability of new larger valves of a self-expandable nature was indicated as a key technological development for expanding the cohort of patients currently eligible for TPVI. Conclusions Despite a non-invasive imaging protocol for the follow up and selection of patients candidate to TPVI is well implemented in Italy, there is still a lack in connections between non-implanting and implanting centers.
Collapse
Affiliation(s)
- Biagio Castaldi
- pediatric Cardiology Unit, Department of Women's and Children's Health, University of Padua, Italy
| | - Gianfranco Butera
- Cardiology, Cardiac Surgery and Heart Lung Transplantation, ERN GUARD-Heart, Bambino Gesù Hospital and Research Institute, IRCCS, Rome, Italy
| | - Massimo Chessa
- Adult Congenital Heart Disease Cardiology Unit - Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- San Raffaele Vita e Salute University, Milan, Italy
| | - Lorenzo Galletti
- Cardiology, Cardiac Surgery and Heart Lung Transplantation, ERN GUARD-Heart, Bambino Gesù Hospital and Research Institute, IRCCS, Rome, Italy
| | - Alessandro Giamberti
- Congenital Cardiac Surgery Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Luca Giugno
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Aurelio Secinaro
- Advanced Cardiothoracic Imaging Unit, Bambino Gesù Hospital and Research Institute, IRCCS, Rome, Italy
| | - Vladimiro Vida
- Pediatric Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giovanni Di Salvo
- pediatric Cardiology Unit, Department of Women's and Children's Health, University of Padua, Italy
| | - Mario Carminati
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
10
|
Hatinoglu D, Lee J, Fortner J, Apul O. Superparamagnetic Iron Oxide Nanoparticles as Additives for Microwave-Based Sludge Prehydrolysis: A Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12191-12200. [PMID: 37550081 DOI: 10.1021/acs.est.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Wastewater treatment plants are critical for environmental pollution control. The role that they play in protecting the environment and public health is unquestionable; however, they produce massive quantities of excess sludge as a byproduct. One pragmatic approach to utilizing excess sludge is generating methane via anaerobic digestion. For this, a prehydrolysis step can significantly improve digestion by increasing biogas quality and quantity while decreasing final sludge volumes. One of the many prehydrolysis approaches is to deliver heat into sludge via microwave irradiation. Microwave-absorbing additives can be used to further enhance thermal degradation processes. However, the implications of such an approach include potential release of said additive materials into the environment via digested sludge. In this perspective, we present and discuss the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as recoverable, hyperreactive microwave absorbers for sludge prehydrolysis. Due to their size and characteristics, SPIONs pack spin electrons within a single domain that can respond to the magnetic field without remanence magnetism. SPIONs have properties of both paramagnetic and ferromagnetic materials with little to no magnetic hysteresis, which can enable their rapid recovery from slurries, even in complicated reactor installations. Further, SPIONs are excellent microwave absorbers, which result in high local heat gradients. This perspective introduces the vision that SPION properties can be tuned for desirable dielectric heating and magnetic responses while maintaining material integrity to accomplish repeated use for microwave-enhanced pretreatment.
Collapse
Affiliation(s)
- Dilara Hatinoglu
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, United States
| | - Junseok Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - John Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Onur Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
11
|
Luisa de Castro E Silva H, Sigurnjak I, Robles-Aguilar A, Adriaens A, Meers E. Development of conversion factors to estimate the concentrations of heavy metals in manure-derived digestates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:334-343. [PMID: 37336141 DOI: 10.1016/j.wasman.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
During biogas production, a residual by-product rich in organic matter, nutrients, and trace elements - called digestate - is generated. Due to the nature of the anaerobic digestion process (i.e., conversion of organic matter into biogas) and the non-digestibility of trace elements, metal concentrations are higher in digestate than initially in the treated feedstock, resulting in a detrimental effect on the environment when directly applied as fertiliser on the soil. This study aims to predict the concentration of heavy metals in digestate through four different process parameters (Biogas yield - M1, Biodegradable fraction - M2, Dry matter - M3 and Power generation - M4) in full-scale biogas plants. For the validation of the process parameters, the predictions were compared against laboratory analyses of feedstocks and digestates samples from mono- and co-digestion processes. The convergence between the conversion factors based on laboratory data and process parameters (CLD and CFA, respectively) ranged in the following order: M3 > M2 > M1 > M4. Based on laboratory analyses, better predictions were obtained for Al, Cr, Cu, Fe, Mn, and Zn employing M3. Moreover, a robust convergence was achieved between the CLD and CFA conversion factors for the mono-digestion process. Further assessment of a diverse range of feedstocks is needed to increase the convergence between the conversion factors based on process parameters and laboratory data, specifically for the co-digestion process M3. The concentrations of Cd, Co, Ni, and Pb elements were below the detection limits, whereas Cr, Cu, and Zn did not exceed the legal threshold limits of the legislations.
Collapse
Affiliation(s)
- Hellen Luisa de Castro E Silva
- Faculty of Bioscience Engineering - Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Ivona Sigurnjak
- Faculty of Bioscience Engineering - Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ana Robles-Aguilar
- Faculty of Bioscience Engineering - Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Anne Adriaens
- Faculty of Bioscience Engineering - Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Erik Meers
- Faculty of Bioscience Engineering - Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
12
|
He ZW, Zou ZS, Ren YX, Tang CC, Zhou AJ, Liu W, Wang L, Li Z, Wang A. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158420. [PMID: 36049687 DOI: 10.1016/j.scitotenv.2022.158420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
13
|
Hassaneen FY, Abdallah RZ, Abdallah MS, Ahmed N, Abd Elaziz SMM, El‐Mokhtar MA, Badary MS, Siam R, Allam NK. Impact of innovative nanoadditives on biodigesters microbiome. Microb Biotechnol 2022; 16:128-138. [PMID: 36415905 PMCID: PMC9803333 DOI: 10.1111/1751-7915.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Nanoparticles (NPs) supplementation to biodigesters improves the digestibility of biowaste and the generation of biogas. This study investigates the impact of innovative nanoadditives on the microbiome of biodigesters. Fresh cow manure was anaerobically incubated in a water bath under mesophilic conditions for 30 days. Three different NPs (zinc ferrite, zinc ferrite with 10% carbon nanotubes and zinc ferrite with 10% C76 fullerene) were separately supplemented to the biodigesters at the beginning of the incubation period. Methane and hydrogen production were monitored daily. Manure samples were collected from the digesters at different time points and the microbial communities inside the biodigesters were investigated via real-time PCR and 16 S rRNA gene amplicon-sequencing. The results indicate that zinc ferrite NPs enhanced biogas production the most. The microbial community was significantly affected by NPs addition in terms of archaeal and bacterial 16 S rRNAgene copy numbers. The three ZF formulations NPs augmented the abundance of members within the hydrogenotrophic methanogenic phyla Methanobacteriaceae. While Methanomassiliicoccacaea were enriched in ZF/C76 supplemented biodigester due to a significant increase in hydrogen partial pressure, probably caused by the enrichment of Spirochaetaceae (genus Treponema). Overall, NPs supplementation significantly enriched acetate-producing members within Hungateiclostridiaceae in ZF/CNTs, Dysgonomonadaceae in ZF and Spirochaetaceae ZF/C76 biodigesters.
Collapse
Affiliation(s)
- Fatma Y. Hassaneen
- Energy Materials Laboratory, Physics Department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt,Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt,Biology department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
| | - Rehab Z. Abdallah
- Biology department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt,Max Planck institute for Terrestrial MicrobiologyMarburgGermany
| | - Muhammed S. Abdallah
- Energy Materials Laboratory, Physics Department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
| | - Nashaat Ahmed
- Energy Materials Laboratory, Physics Department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
| | - Shereen M. M. Abd Elaziz
- Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mohamed A. El‐Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mohamed S. Badary
- Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Rania Siam
- Biology department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
| | - Nageh K. Allam
- Energy Materials Laboratory, Physics Department, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
| |
Collapse
|
14
|
Hoffmann N, Fincheira P, Tortella G, Rubilar O. The role of iron nanoparticles on anaerobic digestion: mechanisms, limitations, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82619-82631. [PMID: 36219292 DOI: 10.1007/s11356-022-23302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is the most widely used technology for organic matter treatment. However, multiple types of research have reported on improving the process because different operation inhibition factors and limitations affect the performance of AD process. Owing to the increasing use of iron-nanoparticles (Fe-NP) on AD, this review addresses the knowledge gaps and summarizes the finding from academic articles based on (i) the AD upgrading operations: limitations and upgrade techniques, (ii) Fe-NPs mechanisms on AD, (iii) Fe-NP effect on microbial communities associated to AD systems, and (iv) perspectives. The selected topics give the Fe-NP positive effects on the AD methane-production process in terms of gas production, effluent quality, and process optimization. The main results of this work indicate that (i) Fe-NP addition can be adapted among different feedstocks and complement other pretreatments, (ii) Fe-NP physicochemical characteristics enhance biogas production via direct interspecies electron transfer (DIET) mechanisms, and Fe-ion release due to their structure and their conductivity capability, and (iii) syntrophic bacteria and acetoclastic methanogens have been reported as the communities that better uptake Fe-NPs on their metabolisms. Finally, our research perspectives and gaps will be discussed to contribute to our knowledge of using Fe-NPs on AD systems.
Collapse
Affiliation(s)
- Nicolás Hoffmann
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
15
|
Gao Y, Li Z, Cai J, Zhang L, Liang Q, Jiang Y, Zeng RJ. Metal nanoparticles increased the lag period and shaped the microbial community in slurry-electrode microbial electrosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156008. [PMID: 35588810 DOI: 10.1016/j.scitotenv.2022.156008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Concerns about energy crisis and CO2 emission have motivated the development of microbial electrosynthesis (MES); recent studies have showed the potential of novel slurry-electrode MES. In this study, the effect of nonprecious metal nanoparticles (NPs) on the performance of slurry-electrode MES was systematically evaluated in terms of chemical production, physicochemical properties, electrochemical characterization, and microbial community. Ni and Cu NPs increased the lag period from 6 to 15 days for acetate production, while Mo NPs showed no apparent effect. However, these metal NPs slightly affected the final total acetate production (ca. 10 g L-1), Faradic efficiency (ca. 50%), net water flux across the anion exchange membrane (ca. 6 mL d-1), or electrochemical characterization of catholyte. BRH-c20a was enriched as the dominated microbe (>48%), and its relative abundance was largely affected by the addition of metal NPs. This study demonstrates that metal NPs affect the performance of biocathodes, mainly by shaping the microbial community.
Collapse
Affiliation(s)
- Yu Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhigang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lixia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. ENERGIES 2022. [DOI: 10.3390/en15155387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.
Collapse
|
17
|
Rani P, Ahmed B, Singh J, Kaur J, Rawat M, Kaur N, Matharu AS, AlKahtani M, Alhomaidi EA, Lee J. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29:103296. [PMID: 35574283 PMCID: PMC9092993 DOI: 10.1016/j.sjbs.2022.103296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles play a significant role in biomedical sciences due to their unique properties allowing for their use as an effective sensing and remediation platform Herein, the green synthesis of silver nanostructures (Ag NSs), prepared via aqueous extract of waste Brassica oleracea leaves in the presence of silver nitrate solution (10-4 M), is reported. The Ag NSs are fully characterized and their efficacy with respect to 4-nitrophenol reduction, glucose sensing, and microbes is determined. Visually, the color of silver nitrate containing solution altered from colorless to yellowish, then reddish grey, confirming the formation of Ag NSs. HRTEM and SEAD studies revealed the Ag NSs to have different morphologies (triangular, rod-shaped, hexagonal, etc., within a size range of 20-40 nm) with face-centered cubic (fcc) crystal structure. The Ag NSs possess high efficacy for nitrophenol reduction (<11 min and degradation efficiency of 98.2%), glucose sensing (LOD: 5.83 µM), and antimicrobial activity (E. coli and B. subtilis with clearance zones of 18.3 and 14 mm, respectively). Thus, the current study alludes towards the development of a cost-effective, sustainable, and efficient three-in-one platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Jasmeen Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Navjot Kaur
- Rayat Institute of Pharmacy, Railmajra, SBS Nagar, Punjab 144533, India
| | - Avtar Singh Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Muneera AlKahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman A.H. Alhomaidi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| |
Collapse
|
18
|
Dębowski M, Zieliński M, Kazimierowicz J. Anaerobic Reactor Filling for Phosphorus Removal by Metal Dissolution Method. MATERIALS 2022; 15:ma15062263. [PMID: 35329713 PMCID: PMC8949496 DOI: 10.3390/ma15062263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
A commonly indicated drawback of anaerobic wastewater treatment is the low effectiveness of phosphorus removal. One possibility to eliminate this disadvantage is the implementation of active fillings that contain admixtures of metals, minerals, or other elements contributing to wastewater treatment intensification. The aim of the research was to present an active filling produced via microcellular extrusion technology, and to determine its properties and performance in anaerobic wastewater treatment. The influence of copper and iron admixtures on the properties of the obtained porous extrudate in terms of its functional properties was also examined. The Barus effect increased with the highest content of the blowing agent in the material from 110 ± 12 to 134 ± 14. The addition of metal powders caused an increase in the extrudate density. The modification of PVC resulted in the highest porosity, amounting to 47.0% ± 3.2%, and caused the tensile strength to decrease by about 50%. The determined values ranged from 211.8 ± 18.3 MPa to 97.1 ± 10.0 MPa. The use of the filling in anaerobic rectors promoted COD removal, intensified biogas production, and eliminated phosphorus with an efficiency of 64.4% to 90.7%, depending on the type of wastewater and applied technological parameters.
Collapse
Affiliation(s)
- Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland;
- Correspondence:
| | - Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland;
| | - Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland;
| |
Collapse
|
19
|
Dang VS, Tran HH, Dieu PTT, Tran MT, Dang CH, Mai DT, Doan VD, Nguyen TLH, Chi TTK, Nguyen TD. Effective catalysis and antibacterial activity of silver and gold nanoparticles biosynthesized by Phlogacanthus turgidus. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Chen Y, Wu Y, Bian Y, Dong L, Zheng X, Chen Y. Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. BIORESOURCE TECHNOLOGY 2022; 348:126789. [PMID: 35104652 DOI: 10.1016/j.biortech.2022.126789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The long-term effects of copper nanoparticles (Cu NPs) on volatile fatty acids (VFAs) production during the waste activated sludge (WAS) fermentation, and the underlying mechanisms regarding copper species distribution and bacterial community evolution were explored. The yield of VFAs in the control was 1086 mg COD/L, whereas those were inhibited by 11.1%, 56.0% and 83.1%, with 25, 50, and 100 mg/g-TSS Cu NPs, respectively. Further investigation indicated that Cu NPs severely affected hydrolysis and acidification of WAS in a dose-dependent manner, while had little impact on solubilization. Besides, Cu NPs enriched the acid-consuming anaerobe while reducing the acid-forming bacteria. The metabolic pathways, microbial function, and enzymatic activities involved were inhibited at all tested dosages. Moreover, soluble and acid-extractable fractions dominated the copper speciation, which were also the main factors inhibiting the VFA production. This study provides a new perspective to interpret the long-term impacts of Cu NPs on WAS fermentation.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
21
|
Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. ENVIRONMENTAL RESEARCH 2022; 204:112043. [PMID: 34543635 DOI: 10.1016/j.envres.2021.112043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
Collapse
Affiliation(s)
- Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Zaied Bin Khalid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Santhana Krishnan
- Centre of Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Malaysia; PSU Energy Systems Research Institute, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia.
| |
Collapse
|
22
|
Yu J, Liu J, Senthil Kumar P, Wei Y, Zhou M, Vo DVN, Xiao L. Promotion of methane production by magnetite via increasing acetogenesis revealed by metagenome-assembled genomes. BIORESOURCE TECHNOLOGY 2022; 345:126521. [PMID: 34896259 DOI: 10.1016/j.biortech.2021.126521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Metal oxides are wildly studied to enhance anaerobic digestion and the methanogenic process, which is generally interpreted by increased direct interspecies electron transfer (DIET). Yet microbial mechanisms involved are under debate. Herein, methane production dynamics were analyzed, and acceleration on biogas accumulation was presented. Complementing previous findings, Fe3O4 nanoparticles stimulated bacterial fermentation rather than methanogenesis or syntropy between electro-microorganism and methanogen. More importantly, metagenome-assembled genomes proved that Fe3O4 nanoparticles increased acetogenesis by Parabacteroides chartae, which provided abundant substrates for acetoclastic methanogenesis. Interestingly, the weakly conductive V3O7·H2O nanowires increased potential hydrogen-producing bacteria, Brevundimonas, and electro-microorganisms, Clostridium and Rhodoferax, which is convenient for conducting DIET. Collectively, conductivity may not be a critical factor in mediating DIET and distinct strategies of metal oxides on methane production propose more possibilities, such as fermentation process.
Collapse
Affiliation(s)
- Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110 India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Meng Zhou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Leilei Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
23
|
Zhou L, Yan X, Pei X, Du J, Ma R, Qian J. The role of NiFe2O4 nanoparticle in the anaerobic digestion (AD) of waste activated sludge (WAS). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Hassanein A, Naresh Kumar A, Lansing S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2021; 342:126023. [PMID: 34852449 DOI: 10.1016/j.biortech.2021.126023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a biochemical process that converts waste organic matter into energy-rich biogas with methane as the main component. Addition of electric electro-conductive, such as that nanoparticles (NP), has been shown to improve biogas generation. Interspecies electron transfer and direct interspecies electron transfer (DIET) using conductive materials is one of the mechanisms responsible for observed increases in CH4. This article discusses the effect of the type and size of electro-conductive NPs on improving microbial degradation within AD systems, as well as the effect of electro-conductive NPs on microbial community shifts and syntrophic metabolism. Limitations and future perspectives of using NPs in an AD system is also discussed.
Collapse
Affiliation(s)
- Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
26
|
Marcon L, Oliveras J, Puntes VF. In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148324. [PMID: 34412401 DOI: 10.1016/j.scitotenv.2021.148324] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic pollution coming from industrial processes, agricultural practices and consumer products, results in the release of toxic substances into rural and urban environments. Once released, these chemicals migrate through the atmosphere and water, and find their way into matrices such as sediments and groundwaters, thus making large areas potentially uninhabitable. Common pollutants, including heavy metal(loid)s, radionuclides, aliphatic hydrocarbons and halogenated organics, are known to adversely affect physiological systems in animal species. Pollution can be cleaned up using techniques such as coagulation, reverse osmosis, oxidation and biological methods, among others. The use of nanoparticles (NPs) extends the range of available technologies and offers particular benefits, not only by degrading, transforming and immobilizing contaminants, but also by reaching inaccessible areas and promoting biotic degradation. The development of NPs is understandably heralded as an environmentally beneficial technology; however, it is only now that the ecological risks associated with their use are being evaluated. This review presents recent developments in the use of engineered NPs for the in situ remediation of two paramount environmental matrices: soils and groundwaters. Emphasis will be placed on (i) the successful applications of nano-objects for environmental cleanup, (ii) the potential safety implications caused by the challenging requirements of [high reactivity toward pollutants] vs. [none reactivity toward biota], with a thorough view on their transport and evolution in the matrix, and (iii) the perspectives on scientific and regulatory challenges. To this end, the most promising nanomaterials will be considered, including nanoscale zerovalent iron, nano-oxides and carbonaceous materials. The purpose of the present review is to give an overview of the development of nanoremediators since they appeared in the 2000s, from their chemical modifications, mechanism of action and environmental behavior to an understanding of the problematics (technical limitations, economic constraints and institutional precautionary approaches) that will drive their future full-scale applications.
Collapse
Affiliation(s)
- Lionel Marcon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) USR CNRS 3579, Observatoire Océanologique, F-66650 Banyuls/Mer, France; Université de Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France.
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la Universitat Autònoma de Barcelona (Campus UAB), 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la Universitat Autònoma de Barcelona (Campus UAB), 08193, Bellaterra, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Edificio Mediterránea, Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
27
|
Shitu A, Liu G, Zhang Y, Ye Z, Zhao J, Zhu S, Liu D. Enhancement of mariculture wastewater treatment using moving bed biofilm reactors filled with modified biocarriers: Characterisation, process performance and microbial community evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112724. [PMID: 33962286 DOI: 10.1016/j.jenvman.2021.112724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
This research investigated two proposed modified biofilm carriers' performances in treating recirculating aquaculture systems (RAS) wastewater under different salinities (12‰, 26‰, and 35‰) for about 92 days. Three moving bed biofilm reactors (MBBRs; R1, R2, and R3) were filled with unmodified novel sponge biocarriers (SB) served as a control, modified novel SB with ferrous oxalate (C2FeO4@SB), and modified novel SB with combined ferrous oxalate and activated carbon (C2FeO4-AC@SB), respectively. Under the highest saline condition, a significantly higher ammonia removal efficiency of 98.86 ± 0.7% (p ˃ 0.05) was obtained in R3, whereas R2 and R1 yielded 95.18 ± 2.8% and 91.66 ± 1.5%, respectively. Microbial analysis showed that Vibrio, Ruegeria, Formosa, Thalassospira, and Denitromonas were predominant genera, strictly halophilic heterotrophic nitrifying bacteria involved in nitrogen removal. In conclusion, the synergistic effects of novel sponge, C2FeO4 and AC accelerated biofilm formations and stability, subsequently enhanced the removal of ammonia from the mariculture RAS wastewater by the C2FeO4-AC@SB carriers in R3.
Collapse
Affiliation(s)
- Abubakar Shitu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Gang Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yadong Zhang
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jian Zhao
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| |
Collapse
|
28
|
Barrena R, Vargas-García MDC, Capell G, Barańska M, Puntes V, Moral-Vico J, Sánchez A, Font X. Sustained effect of zero-valent iron nanoparticles under semi-continuous anaerobic digestion of sewage sludge: Evolution of nanoparticles and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145969. [PMID: 33676214 DOI: 10.1016/j.scitotenv.2021.145969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The effects of adding zero-valent iron nanoparticles (nZVI) on the physicochemical, biological and biochemical responses of a semi-continuous anaerobic digestion of sewage sludge have been assessed. Two sets of consecutive experiments of 103 and 116 days, respectively, were carried out in triplicate. nZVI were magnetically retained in the reactors, and the effect of punctual doses (from 0.27 to 4.33 g L-1) over time was studied. Among the different parameters monitored, only methane content in the biogas was significantly higher when nZVI was added. However, this effect was progressively lost after the addition, and in 5-7 days, the methane content returned to initial values. The increase in the oxidation state of nanoparticles seems to be related to the loss of effect over time. Higher dose (4.33 g L-1) sustained positive effects for a longer time along with higher methane content, but this fact seems to be related to microbiome acclimation. Changes in microbial community structure could also play a role in the mechanisms involved in methane enhancement. In this sense, the microbial consortium analysis reported a shift in the balance among acetogenic eubacterial communities, and a marked increase in the relative abundance of members assigned to Methanothrix genus, recognized as acetoclastic species showing high affinity for acetate, which explain the rise in methane content in the biogas. This research demonstrates that biogas methane enrichment in semicontinuous anaerobic digesters can be achieved by using nZVI nanoparticles, thus increasing energy production or reducing costs of a later biogas upgrading process.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B, Universidad de Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - Georgina Capell
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Maja Barańska
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), P. Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier Moral-Vico
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
29
|
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021; 22:5266. [PMID: 34067696 PMCID: PMC8156540 DOI: 10.3390/ijms22105266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Collapse
Affiliation(s)
| | | | | | - Artur Y. Prilepskii
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (D.V.K.); (A.S.F.); (N.S.S.)
| |
Collapse
|