1
|
Sang W, Du C, Ni L, Li S, Ma Y, Hamad AAA, Shi J, Li Y. Activation of algicidal bacteria and nitrogen-phosphorus removal bacteria during controlling cyanobacteria bloom in Taihu lake by artemisinin algaecide. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136461. [PMID: 39531823 DOI: 10.1016/j.jhazmat.2024.136461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) in Taihu Lake pose a persistent environmental challenge. This study investigated the inhibitory effects of artemisinin algaecide (AMA) on cyanobacteria in Taihu Lake and assessed its impact on nutrients, as well as the structures of particle-attached (PA) and free-living (FL) bacterial communities and potential ecological mechanisms. The results indicated that A-3 (0.8 g artemisinin/L) effectively inhibited CyanoHABs (inhibition rate = 93 %) and significantly increased the alpha diversity of PA and FL bacterial communities during the stationary phase, thereby promoting the proliferation of algicidal bacteria (AB) (e.g., Acinetobacter, Stenotrophomonas, and Exiguobacterium) and heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria (e.g., Acinetobacter, Stenotrophomonas, and Bacillus) through the utilization of dissolved organic carbon (DOC) from the dead cyanobacteria. This proliferation enhanced nitrogen metabolism and increased the abundance of nitrogen-cycling functional genes, improving nutrient cycling and enhancing system stability. The increased abundance of AB continuously suppressed cyanobacteria, while the proliferation of HN-AD bacteria removed nitrogen and phosphorus from the water, thus limiting nutrients available for cyanobacterial growth. Our findings demonstrate that AMA effectively inhibits CyanoHABs and prevents secondary blooms, providing a scientific foundation for the widespread application in cyanobacterial management, enhancing the effectiveness and sustainability of CyanoHAB control efforts.
Collapse
Affiliation(s)
- Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yushen Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| | - Amar Ali Adam Hamad
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098,PR China
| |
Collapse
|
2
|
Kang M, Jeong S, Ko SR, Kim MS, Ahn CY. Biotechnological approaches for suppressing Microcystis blooms: insights and challenges. Appl Microbiol Biotechnol 2024; 108:466. [PMID: 39283515 PMCID: PMC11405451 DOI: 10.1007/s00253-024-13260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants. Fungi and eukaryotic microalgae also exhibit algicidal properties; however, their practical applications still face challenges. Zooplankton grazing on Microcystis can improve water quality, but hurdles exist because of the colonial form and toxin production of Microcystis. Aquatic plants control blooms through allelopathy and nutrient absorption. Although cyanophages hold promise for Microcystis control, their strain-specificity hinders widespread use. Despite successful laboratory validation, field applications of biological methods are limited. Future research should leverage advanced molecular and bioinformatic techniques to understand microbial interactions during blooms and offer insights into innovative control strategies. Despite progress, the efficacy of biological methods under field conditions requires further verification, emphasizing the importance of integrating advanced multi-meta-omics techniques with practical applications to address the challenges posed by Microcystis blooms. KEY POINTS: • A diverse range of biotechnological methods is presented for suppressing Microcystis blooms. • Efficacy in laboratory experiments needs to be proved further in field applications. • Multi-meta-omics techniques offer novel insights into Microcystis dynamics and interactions.
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Min-Seong Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Xie Y, Zhang H, Cui B, Geng R, Grossart HP, Xiao P, Zuo J, Zhang H, Wang Z, Wang G, Wang X, Ma Z, Li R. Enhanced inhibitory efficiency against toxic bloom forming Raphidiopsis raciborskii by Streptomyces sp. HY through triple algicidal modes: Direct and indirect attacks combined with bioflocculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135152. [PMID: 39047554 DOI: 10.1016/j.jhazmat.2024.135152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Raphidiopsis raciborskii (R. raciborskii) forms harmful cyanobacterial blooms globally, and poses a great threat to the safety of drinking water and public health. There is a great need to develop eco-friendly biological alternative measures to mitigate mass blooms of R. raciborskii. However, previous rare studies on algicidal microorganisms against R. raciborskii restricted this aim. Recently, an algicidal bacterium Streptomyces sp. HY (designated HY) was identified with flavones producing ability, and could remove up to 98.73 % of R. raciborskii biomass within 48 h by directly attacking the cyanobacterium and release of algicidal substances (i.e., flavonoids) with a inoculum ratio of 5 %. Algicidal rate of HY was enhanced by 88.05 %, 89.33 % under dark and light, and full-light conditions respectively, when compared with the dark condition. Its algicidal substances were stable in a broad range of temperature (-80-55 °C) and pH (3-11) conditions, and all treated groups exhibited ≈ 100 % algicidal rate at day 3. HY treatment disrupted the photosynthesis system and triggered serious oxidative stress resulting in severe morphological injury. Thereby, HY treatment significantly affected expression levels of several essential genes (i.e., psbA, psaB, rbcL, ftsZ, recA, grpE), and simultaneously inhibited the biosynthesis and release of cylindrospermopsin. Yet, HY treatment didn't show any toxicity to zebrafish test embryos. Such results indicate that HY is a promising algicidal candidate strain to control global R. raciborskii blooms, and holds great promises for an effective biological measure to sustain water safety.
Collapse
Affiliation(s)
- Yan Xie
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Baiyu Cui
- Wenzhou Shanxi Hydro-junction Management Center, Zhejiang 325035, China
| | - Ruozhen Geng
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment of the People' s Republic of China, Shanghai 200125, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14469, Germany
| | - Peng Xiao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jun Zuo
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Hai Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zeshuang Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Guang Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xudong Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Lin T, Feng Y, Miao W, Wang S, Bao Z, Shao Z, Zhang D, Wang X, Jiang H, Zhang H. Elevated temperature alters bacterial community from mutualism to antagonism with Skeletonema costatum: insights into the role of a novel species, Tamlana sp. MS1. mSphere 2024; 9:e0019824. [PMID: 38940599 PMCID: PMC11288006 DOI: 10.1128/msphere.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.
Collapse
Affiliation(s)
- Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yumeng Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenfei Miao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shuqi Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zeyuan Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Hou K, Wang J, Li X, Feng J, Yang C, Zhang X, Guo J, Dai X. Inhibition of Fusarium graminearum growth and spore germination by a Streptomyces amritsarensis strain capable of killing and growing on Microcystis scum. J Appl Microbiol 2024; 135:lxae171. [PMID: 39003242 DOI: 10.1093/jambio/lxae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
AIMS Developing energy-saving and ecofriendly strategies for treating harvested Microcystis biomass. METHODS AND RESULTS Streptomyces amritsarensis HG-16 was first reported to effectively kill various morphotypes of natural Microcystis colonies at very high cell densities. Concurrently, HG-16 grown on lysed Microcystis maintained its antagonistic activity against plant pathogenic fungus Fusarium graminearum. It could completely inhibit spore germination and destroy mycelial structure of F. graminearum. Transcriptomic analysis revealed that HG-16 attacked F. graminearum in a comprehensive way: interfering with replication, transcription, and translation processes, inhibiting primary metabolisms, hindering energy production and simultaneously destroying stress-resistant systems of F. graminearum. CONCLUSIONS The findings of this study provide a sustainable and economical option for resource reclamation from Microcystis biomass: utilizing Microcystis slurry to propagate HG-16, which can subsequently be employed as a biocontrol agent for managing F. graminearum.
Collapse
Affiliation(s)
- Kaiyu Hou
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jiayu Wang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xu Li
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junzhou Feng
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Caiyun Yang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaohui Zhang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jianlin Guo
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Xianzhu Dai
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in TGR Region (WEMST, www.wemst.com), College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
6
|
Ma B, Li A, Chen S, Guo H, Li N, Pan S, Chen K, Liu H, Kosolapov DB, Liu X, Zhi W, Chen Z, Mo Y, Sekar R, Huang T, Zhang H. Algicidal activity synchronized with nitrogen removal by actinomycetes: Algicidal mechanism, stress response of algal cells, denitrification performance, and indigenous bacterial community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134117. [PMID: 38554519 DOI: 10.1016/j.jhazmat.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS) 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
7
|
Kim W, Park Y, Jung J, Jeon CO, Toyofuku M, Lee J, Park W. Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms. J Microbiol 2024; 62:249-260. [PMID: 38587591 DOI: 10.1007/s12275-024-00115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 02841, Republic of Korea
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-0006, Japan
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Linz D, Struewing I, Sienkiewicz N, Steinman AD, Partridge CG, McIntosh K, Allen J, Lu J, Vesper S. Periodic Addition of Glucose Suppressed Cyanobacterial Abundance in Additive Lake Water Samples during the Entire Bloom Season. JOURNAL OF WATER RESOURCE AND PROTECTION 2024; 16:140-155. [PMID: 38487714 PMCID: PMC10936582 DOI: 10.4236/jwarp.2024.162009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with glucose for the entire Harsha Lake bloom season. Water samples (1000 ml) were collected weekly from Harsha Lake during the algal-bloom season starting June 9 and lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 500 ml of Harsha Lake water was added, and the containers were placed in a controlled environment chamber. To one container labeled "Treated," 0.15 g of glucose was added, and nothing was added to the container labeled "Control." After that, three 25 ml samples from each container were collected and used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake water was newly collected each week, with 500 ml added to each container, along with the addition of 0.15 g glucose to the "Treated" container. Sequencing data were used to examine differences in the composition of bacterial communities between Treated and Control containers. Treatment with glucose altered the microbial communities by 1) reducing taxonomic diversity, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and Actinobacteriota). These effects were observed across time despite weekly inputs derived directly from Lake water. The addition of glucose to a container receiving weekly additions of Lake water suppressed the cyanobacterial populations during the entire summer bloom season. The glucose appears to stimulate the diversity of certain bacterial taxa at the expense of the cyanobacteria.
Collapse
Affiliation(s)
- David Linz
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Ian Struewing
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | - Alan David Steinman
- Annis Water Resources Institute, Grand Valley State University, Muskegon, USA
| | | | - Kyle McIntosh
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Joel Allen
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Stephen Vesper
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Cha Y, Kim W, Park Y, Kim M, Son Y, Park W. Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806. JOURNAL OF PHYCOLOGY 2024; 60:152-169. [PMID: 38073162 DOI: 10.1111/jpy.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 02/17/2024]
Abstract
Superior antagonistic activity against axenic Microcystis aeruginosa PCC7806 was observed with Paucibacter sp. B51 isolated from cyanobacterial bloom samples among 43 tested freshwater bacterial species. Complete genome sequencing, analyzing average nucleotide identity and digital DNA-DNA hybridization, designated the B51 strain as Paucibacter aquatile. Electron and fluorescence microscopic image analyses revealed the presence of the B51 strain in the vicinity of M. aeruginosa cells, which might provoke direct inhibition of the photosynthetic activity of the PCC7806 cells, leading to perturbation of cellular metabolisms and consequent cell death. Our speculation was supported by the findings that growth failure of the PCC7806 cells led to low pH conditions with fewer chlorophylls and down-regulation of photosystem genes (e.g., psbD and psaB) during their 48-h co-culture condition. Interestingly, the concentrated ethyl acetate extracts obtained from B51-grown supernatant exhibited a growth-inhibitory effect on PCC7806. The physical separation of both strains by a filter system led to no inhibitory activity of the B51 cells, suggesting that contact-mediated anti-cyanobacterial compounds might also be responsible for hampering the growth of the PCC7806 cells. Bioinformatic tools identified 12 gene clusters that possibly produce secondary metabolites, including a class II lasso peptide in the B51 genome. Further chemical analysis demonstrated anti-cyanobacterial activity from fractionated samples having a rubrivinodin-like lasso peptide, named paucinodin. Taken together, both contact-mediated inhibition of photosynthesis and the lasso peptide secretion of the B51 strain are responsible for the anti-cyanobacterial activity of P. aquatile B51.
Collapse
Affiliation(s)
- Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Li Y, Qin M, Han S, Wang Y, Gao C, Niu W, Xia X. Elimination of Microcystis aeruginosa through Leuconostoc mesenteroides DH and its underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168290. [PMID: 37939934 DOI: 10.1016/j.scitotenv.2023.168290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Microcystis aeruginosa is ubiquitously found in various water bodies and can produce microcystins (MCs), which threaten the health of aquatic animals and human beings. The elimination of excessive M. aeruginosa is beneficial for the protection of the ecosystems and public health. In this regard, algae-lysing bacteria have been extensively studied as an effective measure for their eradication. However, the active substances generated by algae-lysing bacteria are limited. For this study, we reveal that the phenyllactic acid (PLA) produced by Leuconostoc mesenteroides DH exhibits high efficacy for the removal of M. aeruginosa, and explore the elimination mechanism of strain DH on M. aeruginosa. It was found that a cell-free supernatant of strain DH possessed high removal activities against M. aeruginosa. Abundant reactive oxygen species were induced in algal cells following exposure to strain DH supernatant, as well as superoxide dismutase and catalase responses. Furthermore, the integrity of algal cell membranes and photosynthesis was seriously damaged. Interestingly, added exogenous eugenol significantly inhibited the synthesis of active substance produced by strain DH, which further identified that PLA is one of the active substances that contribute to the eradication of M. aeruginosa on the basis of metabolomics analysis. Our finding demonstrated, for the first time, that PLA (as an anti-cyanobacterial compound) can be used for the removal of M. aeruginosa, which provides a theoretical basis for the control of M. aeruginosa.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Dai Q, Shan J, Deng X, Yang H, Chen C, Zhao Y. The characteristics of H6 against Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7702-7711. [PMID: 38170350 DOI: 10.1007/s11356-023-31616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Algal bloom caused by Microcystis aeruginosa has always been the focus of attention; microbial algal control has the advantages of significant effect, low investment cost, and environmental friendliness; the use of microbial technology to inhibit the bloom has a broad prospect for development. In this study, a strain of Enterobacterium algicidal bacteria screened from a river was used to study the algicidal characteristics against Microcystis aeruginosa using SEM, 3-D EEM and zeta potential. The results showed that the optimal dosage (v/v) of the strain was 5% and the removal rate of algal cells was 70% after 7 days. When the algal density was OD680nm = 0.3, the removal rate of algal cells reached 83% after 7 days. In the pH range of 5 ~ 11, the removal rate of algal cells was 70 ~ 80% after 7 days. Algicidal bacteria H6 is mainly indirect algae lysis and is supplemented by direct algae lysis. Algicidal bacteria H6 removes algicidal substances by secreting high temperature resistant algicidal substances and algicidal products are humic acids. Algicidal bacterium H6 was a strain of Enterobacterium with good algicidal effect in a wide pH range, which enriched the bacterial resources in the control of cyanobacteria bloom in water. The high temperature resistance of the algae-soluble substance secreted by the algae-soluble substance provided convenience for the subsequent preparation and application of bacterial powder.
Collapse
Affiliation(s)
- Qunwei Dai
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jing Shan
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xinshuang Deng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huixian Yang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chuntan Chen
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yulian Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
12
|
Le VV, Ko SR, Oh HM, Ahn CY. Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter. J Microbiol Biotechnol 2023; 33:1615-1624. [PMID: 37811910 PMCID: PMC10772561 DOI: 10.4014/jmb.2307.07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganism-based methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Le VV, Kang M, Ko SR, Jeong S, Park CY, Lee JJ, Choi IC, Oh HM, Ahn CY. Dynamic response of bacterial communities to Microcystis blooms: A three-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165888. [PMID: 37544456 DOI: 10.1016/j.scitotenv.2023.165888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Although nutrient availability is widely recognized as the driving force behind Microcystis blooms, identifying the microorganisms that play a pivotal role in their formation is a challenging task. Our understanding of the contribution of bacterial communities to the development of Microcystis blooms remains incomplete, despite the fact that the relationship between Microcystis and bacterial communities has been extensively investigated. Most studies have focused on their interaction for a single year rather than for multiple years. To determine key bacteria crucial for the formation of Microcystis blooms, we collected samples from three sites in the Daechung Reservoir (Chuso, Hoenam, and Janggye) over three years (2017, 2019, and 2020). Our results indicated that Microcystis bloom-associated bacterial communities were more conserved across stations than across years. Bacterial communities could be separated into modules corresponding to the different phases of Microcystis blooms. Dolichospermum and Aphanizomenon belonged to the same module, whereas the module of Microcystis was distinct. The microbial recurrent association network (MRAN) showed that amplicon sequence variants (ASVs) directly linked to Microcystis belonged to Pseudanabaena, Microscillaceae, Sutterellaceae, Flavobacterium, Candidatus Aquiluna, Bryobacter, and DSSD61. These ASVs were also identified as key indicators of the bloom stage, indicating that they were fundamental biological elements in the development of Microcystis blooms. Overall, our study highlights that, although bacterial communities change annually, they continue to share core ASVs that may be crucial for the formation and maintenance of Microcystis blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
14
|
Liu F, Qin L, Zhu S, Chen H, Al-Haimi AANM, Xu J, Zhou W, Wang Z. Applications-oriented algicidal efficacy research and in-depth mechanism of a novel strain Brevibacillus sp. on Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121812. [PMID: 37178955 DOI: 10.1016/j.envpol.2023.121812] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
The utilization of algicidal bacteria for the control of harmful algal blooms (HABs) is a promising technology for ecological remediation. In our most recent publication, a novel strain of Brevibacillus sp. was isolated and proved to have significant algicidal activity and stability against Microcystis aeruginosa. In order to verify the algicidal effect of the strain in the practical application scenario, the algicidal efficacy of Brevibacillus sp. under conditions close to water in the environment was investigated. Results indicated that the algicidal threshold of Brevibacillus sp. culture was 3‰ inoculation concentration, and the removal rate of M. aeruginosa reached 100%. The process of Chl-a degradation followed a first-order kinetic model, which could be used to predict the degradation effect of M. aeruginosa in practical applications. Additionally, the inoculation of Brevibacillus sp. culture introduced additional nutrients, some of which remained in the water. Furthermore, the algicidal substances demonstrated good sustainability, with a removal rate of up to 78.53% at 144 h after three repeated uses. At 12 h, the algicidal substances caused a 78.65% increase in malondialdehyde (MDA) content in M. aeruginosa compared to the control group, thereby triggering the antioxidant system of M. aeruginosa. Moreover, algal cell fragments were observed to aggregate. This study provides a promising direction for treating cyanobacterial blooms using algicidal bacteria in practical applications.
Collapse
Affiliation(s)
- Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Akram Ali Nasser Mansoor Al-Haimi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Weizheng Zhou
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| |
Collapse
|
15
|
Butsat W, Somdee T, Somdee T. A novel actinomycete Streptomyces enissocaesilis exhibiting algicidal activity against the toxic cyanobacterium Phormidium angustissimum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66897-66911. [PMID: 37099114 DOI: 10.1007/s11356-023-27179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Harmful cyanobacterial blooms that occur in freshwater can produce hazardous cyanotoxins as contaminants that threaten ecosystems, aquatic organisms, and human health. In the present study, the actinobacterium Streptomyces enissocaesilis, strain M35, isolated from soils, exhibited the strongest algicidal activity against the toxic cyanobacterium Phormidium angustissimum TISTR 8247. To improve the P. angustissimum removal efficiency of strain M35, the optimum carbon and nitrogen sources were determined as starch and yeast extract, respectively. Response surface methodology (RSM) using the Box-Behnken design (BBD) revealed that the optimal independent parameters among the culture medium conditions for enhancing the algicidal activity of strain M35 were 21.5 g/L starch, 0.57 g/L yeast extract, and a pH value of 8.00. The Phormidium sp. removal efficiency increased notably from 80.8 to 94.4% under the optimum conditions. In a batch experiment, the removal of P. angustissimum in an internal airlift loop (IAL) bioreactor containing immobilized strain M35 on a plastic medium indicated a high anti-Phormidium activity of 94.8%, whereas in a continuous system, strain M35 exhibited a removal efficiency of 85.5%. This study revealed that this actinobacterium could potentially be utilized to remove the toxic cyanobacterium Phormidium from water.
Collapse
Affiliation(s)
- Weeraput Butsat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Centre for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thidarat Somdee
- Faculty of Public Health, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Theerasak Somdee
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Centre for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
16
|
Zhang H, Xie Y, Zhang R, Zhang Z, Hu X, Cheng Y, Geng R, Ma Z, Li R. Discovery of a High-Efficient Algicidal Bacterium against Microcystis aeruginosa Based on Examinations toward Culture Strains and Natural Bloom Samples. Toxins (Basel) 2023; 15:toxins15030220. [PMID: 36977111 PMCID: PMC10058357 DOI: 10.3390/toxins15030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Harmful cyanobacterial blooms occur worldwide and pose a great threat to aquatic ecosystems and public health. The application of algicidal bacteria represents an eco-friendly strategy for controlling harmful cyanobacterial blooms; thus, searching for a high efficiency of algicidal bacteria has been becoming an important and continuous task in science. Herein, we identified a bacterial strain coded Streptomyces sp. HY with a highly algicidal activity, and investigated its algicidal efficiency and mechanism against Microcystis aeruginosa. The strain HY displayed high algicidal activity toward Microcystis aeruginosa cells, with a removal rate of 93.04% within 2 days via indirect attack. Streptomyces sp. HY also showed the ability to lyse several genera of cyanobacterial strains, including Dolichospermum, Pseudanabaena, Anabaena, and Synechocystis, whereas it showed a minor impact on the green alga Scenedesmus obliquus, demonstrating its selectivity specially for targeting cyanobacteria. Its algicidal mechanism involved damages to the photosynthesis system, morphological injury of algal cells, oxidative stress, and dysfunction of the DNA repair system. Furthermore, HY treatment reduced the expression levels of genes (mcyB and mcyD) related to microcystin biosynthesis and decreased the total content of microcystin-leucine-arginine by 79.18%. Collectively, these findings suggested that the algicidal bacteria HY is a promising candidate for harmful cyanobacterial bloom control.
Collapse
Affiliation(s)
- He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Xie
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Rongzhen Zhang
- Wenzhou Shanxi Hydro-junction Management Center, Wenzhou 325035, China
| | - Zhongliang Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xinglong Hu
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yao Cheng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ruozhen Geng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
17
|
Ibrahimi M, Loqman S, Jemo M, Hafidi M, Lemee L, Ouhdouch Y. The potential of facultative predatory Actinomycetota spp. and prospects in agricultural sustainability. Front Microbiol 2023; 13:1081815. [PMID: 36762097 PMCID: PMC9905845 DOI: 10.3389/fmicb.2022.1081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Actinomycetota in the phylum of bacteria has been explored extensively as a source of antibiotics and secondary metabolites. In addition to acting as plant growth-promoting agents, they also possess the potential to control various plant pathogens; however, there are limited studies that report the facultative predatory ability of Actinomycetota spp. Furthermore, the mechanisms that underline predation are poorly understood. We assessed the diversity of strategies employed by predatory bacteria to attack and subsequently induce the cell lysing of their prey. We revisited the diversity and abundance of secondary metabolite molecules linked to the different predation strategies by bacteria species. We analyzed the pros and cons of the distinctive predation mechanisms and explored their potential for the development of new biocontrol agents. The facultative predatory behaviors diverge from group attack "wolfpack," cell-to-cell proximity "epibiotic," periplasmic penetration, and endobiotic invasion to degrade host-cellular content. The epibiotic represents the dominant facultative mode of predation, irrespective of the habitat origins. The wolfpack is the second-used approach among the Actinomycetota harboring predatory traits. The secondary molecules as chemical weapons engaged in the respective attacks were reviewed. We finally explored the use of predatory Actinomycetota as a new cost-effective and sustainable biocontrol agent against plant pathogens.
Collapse
Affiliation(s)
- Manar Ibrahimi
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni-Mellal, Morocco,Higher School of Technology Fkih Ben Salah, Sultan Moulay Slimane University, Fkih Ben Salah, Morocco
| | - Souad Loqman
- Laboratory of Microbiology and Virology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hafidi
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco,Labelled Research Unit N°4 CNRST, Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Laurent Lemee
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP–CNRS UMR 7285), Université de Poitiers, Poitiers, France
| | - Yedir Ouhdouch
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco,Labelled Research Unit N°4 CNRST, Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco,*Correspondence: Yedir Ouhdouch,
| |
Collapse
|
18
|
Ko SR, Le VV, Srivastava A, Kang M, Oh HM, Ahn CY. Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound. MARINE POLLUTION BULLETIN 2023; 186:114397. [PMID: 36493515 DOI: 10.1016/j.marpolbul.2022.114397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Margalefidinium polykrikoides causes significant economic losses in the aquaculture industry by red tide formation. Algicidal bacteria have attracted research interests as a potential bloom control approach without secondary pollution. Qipengyuania sp. 3-20A1M, isolated from surface seawater, exerted an algicidal effect on M. polykrikoides. However, it exhibited a significantly lower algicidal activity toward other microalgae. It reduced photosynthetic efficiency of M. polykrikoides and induced lipid peroxidation and cell disruption. The growth inhibition of M. polykrikoides reached 64.9 % after 24 h of co-culturing, and expression of photosynthesis-related genes was suppressed. It killed M. polykrikoides indirectly by secreting algicidal compounds. The algicide was purified and identified as pyrrole-2-carboxylic acid. After 24 h of treatment with pyrrole-2-carboxylic acid (20 μg/mL), 60.8 % of the M. polykrikoides cells were destroyed. Overall, our results demonstrated the potential utility of Qipengyuania sp. 3-20A1M and its algicidal compound in controlling M. polykrikoides blooms in the marine ecosystem.
Collapse
Affiliation(s)
- So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
19
|
Mankiewicz-Boczek J, Morón-López J, Serwecińska L, Font-Nájera A, Gałęzowska G, Jurczak T, Kokociński M, Wolska L. Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects. CHEMOSPHERE 2022; 309:136609. [PMID: 36195129 DOI: 10.1016/j.chemosphere.2022.136609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a global problem with serious consequences for public health and many sectors of the economy. The use of algicidal bacteria as natural antagonists to control bloom-forming cyanobacteria is a topic of growing interest. However, there are still unresolved questions that need to be addressed to better understand their mode of action and to implement effective mitigation strategies. In this study, thirteen bacterial strains isolated from both scums and concentrated bloom samples exhibited algicidal activity on three Microcystis aeruginosa strains with different characteristics: the axenic microcystin (MC)-producing strain M. aeruginosa PCC7820 (MaPCC7820), and two environmental (non-axenic) M. aeruginosa strains isolated from two different water bodies in Poland, one MC-producer (MaSU) and another non-MC-producer (MaPN). The bacterial strain SU7S0818 exerted the highest average algicidal effect on the three cyanobacterial strains. This strain was identified as Morganella morganii (99.51% similarity) by the 16S rRNA gene analyses; hence, this is the first study that demonstrates the algicidal properties of these ubiquitous bacteria. Microscopic cell counting and qPCR analyses showed that M. morganii SU7S0818 removed 91%, 96%, and 98.5% of MaPCC7820, MaSU and MaPN cells after 6 days of co-culture, respectively. Interestingly, the ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) analyses showed that this bacterium was involved on the release of several substances with algicidal potential. It was remarkable how the profile of some compounds evolved over time, as in the case of cadaverine, tyramine, cyclo[Pro-Gly] and cyclo[Pro-Val]. These dynamic changes could be attributed to the action of M. morganii SU7S0818 and the presence of associated bacteria with environmental cyanobacterial strains. Therefore, this study sheds light on how algicidal bacteria may adapt their action on cyanobacterial cells by releasing a combination of compounds, which is a crucial insight to exploit them as effective biological tools in the control of cyanoHABs.
Collapse
Affiliation(s)
- J Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - J Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - L Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - A Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - G Gałęzowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| | - T Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, 12/16 Banacha, 90-237, Łódź, Poland.
| | - M Kokociński
- Department of Hydrobiology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - L Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| |
Collapse
|
20
|
Huang J, Xu M, Zhang W, Mao L. A novel algicidal bacteria isolated from native snail lived in Taihu Lake against algal blooms: identification, degradation kinetic, and algicidal mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83921-83930. [PMID: 35776301 DOI: 10.1007/s11356-022-21666-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) impacted negatively the water ecosystem, and produced toxic microcystins that poses toxic effect on liver, nervous, and genital system. The introduction of useful and adaptive algae-degrading microbes or bio-augmentation can be regarded as an efficient way to inhibit the outbreak of HABs. The purpose of this study is to evaluate the application potential of algicidal bacteria named XMC, which is isolated from native snails. Response surface methodology (RSM) experiments showed that self-characteristic and various external conditions affected the actual algae inhibition ability of XMC. In particular, actual algicidal efficiency was strongly depend on the temperature and growth stage of XMC, and the maximum algicidal rate could reach 93.95% within 7 days. The degradation curve of Microcystis aeruginosa was compliant with the first-order kinetic model, which could be used to predict the degradation effect of Microcystis aeruginosa in engineering applications. The analysis results of algae dissolution products showed that algicidal bacteria XMC had both direct and indirect algicidal capacity. In addition, XMC had strong algicidal ability and greater environmental adaptability, and its algae dissolution products were environmentally friendly. All results indicated that XMC had the potential to be used in the bio-degradation of cyanobacteria bloom.
Collapse
Affiliation(s)
- Jinjie Huang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China
| | - Mingchen Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China
| | - Wenyi Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China
| | - Linqiang Mao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.
| |
Collapse
|
21
|
Xue G, Wang X, Xu C, Song B, Chen H. Removal of harmful algae by Shigella sp. H3 and Alcaligenes sp. H5: algicidal pathways and characteristics. ENVIRONMENTAL TECHNOLOGY 2022; 43:4341-4353. [PMID: 34184617 DOI: 10.1080/09593330.2021.1949047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Application of algicidal bacteria is a promising technology to control harmful algal blooms (HABs). In this study, algicidal bacteria strains Shigella sp. H3 and Alcaligenes sp. H5 were obtained via two different isolation methods from the same lake water sample, with optimal algicidal efficiencies 96% and 74% against algae mixture. The Shigella sp. H3 and Alcaligenes sp. H5 lysed algae cells through cells-to-cells direct contact and secretion of algicidal metabolites, respectively. The stronger algicidal capability of Shigella sp. H3 was also attributable to its higher efficiency for triggering reactive oxygen species, which led to broken down of the antioxidant system and more severe damage to the bacterial cells. The antioxidant enzyme activities in Alcaligenes sp. H5 group were still expressed because of its relatively weaker algicidal capability and some intact algal cells were remained. The liquid carbohydrates from algal lysis in both groups increased significantly, whereas the quantities of liquid protein decreased, which might be assimilated by algicidal bacteria. Nonetheless, the whole algicidal process resulted in the increase of total released organic matters content. This study revealed the algicidal pathways of diverse bacterial strains, and the possible secondary environmental problem caused by the algal released organic matters should be considered when applying bacteria to control HABs.
Collapse
Affiliation(s)
- Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution control and Ecological Security, People's Republic of China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Chenlan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Binxue Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Jiangsu Tongyan Environmental Production Science & Technology Co. Ltd, Yancheng, People's Republic of China
| |
Collapse
|
22
|
Le VV, Ko SR, Kang M, Park CY, Lee SA, Oh HM, Ahn CY. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119849. [PMID: 35952989 DOI: 10.1016/j.envpol.2022.119849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Microcystis blooms pose a major threat to the quality of drinking water. Cyanobactericidal bacteria have attracted much attention in the research community as a vehicle for controlling Microcystis blooms because of their ecological safety. Nonetheless, most studies on cyanobactericidal bacteria have been conducted on a laboratory scale but have not been scaled-up as field experiments. Thus, our understanding of the microbial response to cyanobactericidal bacteria in natural ecosystems remains elusive. Herein, we applied Paucibacter aquatile DH15 to control Microcystis blooms in a 1000 L mesocosm experiment and demonstrated its potential with the following results: (1) DH15 reduced Microcystis cell density by 90.7% within two days; (2) microcystins released by Microcystis death decreased to the control level in four days; (3) during the cyanobactericidal processes, the physicochemical parameters of water quality remained safe for other aquatic organisms; and (4) the cyanobactericidal processes promoted the growth of eukaryotic microalgae, replacing cyanobacteria. The cyanobactericidal processes accelerated turnover rates, decreased stability, and altered the functional profile of the microbial community. Network analysis demonstrated that this process resulted in more complex interactions between microbes. Overall, our findings suggest that strain DH15 could be considered a promising candidate for controlling Microcystis blooms in an eco-friendly manner.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea; Environmental Safety Groups, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
23
|
Le VV, Ko SR, Kang M, Lee SA, Oh HM, Ahn CY. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119079. [PMID: 35245623 DOI: 10.1016/j.envpol.2022.119079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The excessive proliferation of Microcystis aeruginosa can lead to ecological damage, economic losses, and threaten animal and human health. For controlling Microcystis blooms, microorganism-based methods have attracted much attention from researchers because of their eco-friendliness and species-specificity. Herein, we first found that a Paucibacter strain exhibits algicidal activity against M. aeruginosa and microcystin degradation capability. The algicidal activity of DH15 (2.1 × 104 CFU/ml) against M. aeruginosa (2 × 106 cells/ml) was 94.9% within 36 h of exposure. DH15 also degraded microcystin (1.6 mg/L) up to 62.5% after 72 h. We demonstrated that the algicidal activity of DH15 against M. aeruginosa can be mediated by physical attachment and indirect attack: (1) Both washed cells and cell-free supernatant could kill M. aeruginosa efficiently; (2) Treatment with DH15 cell-free supernatants caused oxidative stress, altered the fatty acid profile, and damaged photosynthetic system, carbohydrate, and protein metabolism in M. aeruginosa. The combination of direct and indirect attacks supported that strain DH15 exerts high algicidal activity against M. aeruginosa. The expression of most key genes responsible for photosynthesis, antioxidant activity, microcystin synthesis, and other metabolic pathways in M. aeruginosa was downregulated. Strain DH15, with its microcystin degradation capacity, can overcome the trade-off between controlling Microcystis blooms and increasing microcystin concentration. Our findings suggest that strain DH15 possesses great potential to control outbreaks of Microcystis blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
24
|
Kong Y, Wang Y, Miao L, Mo S, Li J, Zheng X. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms 2022; 10:microorganisms10061136. [PMID: 35744654 PMCID: PMC9229865 DOI: 10.3390/microorganisms10061136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Harmful algal blooms (HABs) have attracted great attention around the world due to the numerous negative effects such as algal organic matters and cyanobacterial toxins in drinking water treatments. As an economic and environmentally friendly technology, microorganisms have been widely used for pollution control and remediation, especially in the inhibition/biodegradation of the toxic cyanobacterium Microcystis aeruginosa in eutrophic water; moreover, some certain anticyanobacterial microorganisms can degrade microcystins at the same time. Therefore, this review aims to provide information regarding the current status of M. aeruginosa inhibition/biodegradation microorganisms and the acute toxicities of anticyanobacterial substances secreted by microorganisms. Based on the available literature, the anticyanobacterial modes and mechanisms, as well as the in situ application of anticyanobacterial microorganisms are elucidated in this review. This review aims to enhance understanding the anticyanobacterial microorganisms and provides a rational approach towards the future applications.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-27-69111182
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| |
Collapse
|
25
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
26
|
Vesper S, Sienkiewicz N, Struewing I, Linz D, Lu J. Prophylactic Addition of Glucose Suppresses Cyanobacterial Abundance in Lake Water. Life (Basel) 2022; 12:life12030385. [PMID: 35330137 PMCID: PMC8949225 DOI: 10.3390/life12030385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
To mitigate harmful cyanobacterial blooms (HCBs), toxic algicides have been used, but alternative methods of HCB prevention are needed. Our goal was to test the prophylactic addition of glucose to inhibit HCB development, using Microcystis and the toxin microcystin as the HCB model. Water samples were collected weekly, from 4 June to 2 July, from Harsha Lake in southwestern Ohio during the 2021 algal bloom season. From each weekly sample, a 25 mL aliquot was frozen for a 16S rRNA gene sequencing analysis. Then, 200 mL of Harsha Lake water was added to each of the three culture flasks, and glucose was added to create concentrations of 0 mM (control), 1.39 mM, or 13.9 mM glucose, respectively. The microcystin concentration in each flask was measured after 1 and 2 weeks of incubation. The results showed an 80 to 90% reduction in microcystin concentrations in glucose-treated water compared to the control. At the end of the second week of incubation, a 25 mL sample was also obtained from each of the culture flasks for molecular analysis, including a 16S rRNA gene sequencing and qPCR-based quantification of Microcystis target genes. Based on these analyses, the glucose-treated water contained significantly lower Microcystis and microcystin producing gene (mcy) copy numbers than the control. The 16S rRNA sequencing analysis also revealed that Cyanobacteria and Proteobacteria were initially the most abundant bacterial phyla in the Harsha Lake water, but as the summer progressed, Cyanobacteria became the dominant phyla. However, in the glucose-treated water, the Cyanobacteria decreased and the Proteobacteria increased in weekly abundance compared to the control. This glucose-induced proteobacterial increase in abundance was driven primarily by increases in two distinct families of Proteobacteria: Devosiaceae and Rhizobiaceae. In conclusion, the prophylactic addition of glucose to Harsha Lake water samples reduced Cyanobacteria’s relative abundance, Microcystis numbers and microcystin concentrations and increased the relative abundance of Proteobacteria compared to the control.
Collapse
|
27
|
Pound HL, Martin RM, Sheik CS, Steffen MM, Newell SE, Dick GJ, McKay RML, Bullerjahn GS, Wilhelm SW. Environmental Studies of Cyanobacterial Harmful Algal Blooms Should Include Interactions with the Dynamic Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12776-12779. [PMID: 34529413 PMCID: PMC9017748 DOI: 10.1021/acs.est.1c04207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Helena L Pound
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996-0845, United States
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996-0845, United States
| | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 55812-3000, United States
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807-0001, United States
| | - Silvia E Newell
- Department of Earth and Environmental Sciences, Wright State University, Dayton, Ohio 45435, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - R Michael L McKay
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - George S Bullerjahn
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996-0845, United States
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
28
|
Li J, Cao L, Guo Z, An G, Li B, Li J. Time- and dose-dependent allelopathic effects and mechanisms of kaempferol on toxigenic Microcystis growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112508. [PMID: 34284326 DOI: 10.1016/j.ecoenv.2021.112508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
This study determined time-dependent IC50 and confirmed 3.5 mg/L as IC50 value for kaempferol inhibiting toxigenic Microcystis growth, based on which algicidal effects and mechanisms against toxigenic Microcystis exposed to various kaempferol doses (0.5-2 × IC50) were explored along 14 day-test. Results showed that growth inhibition ratio (GIR) almost elevated with increasing kaempferol dose, and at each dose GIR elevated firstly and fluctuated around 17.8%- > 40%, 53.6%-65.6% and 84.8%-89.3% at 1.75, 3.5 and 7 mg/L kaempferol during mid-late stage, respectively. With rising kaempferol dose, photosynthetic pigments contents (chlorophyll-a, phycobiliproteins), antioxidant response (superoxide dismutase and catalase (CAT) activities, glutathione (GSH) contents) and microcystins (MCs) production were almost increasingly stimulated as cellular protective responses during early-mid stage. However, these parameters (excluding CAT and GSH) were almost increasingly inhibited at late stage by prolonged stress and Microcystis cell was still more severely damaged as dose elevated along test, which could be reasons for increasing GIR with rising kamepferol dose. Persistent stimulation of CAT and GSH at each dose could alleviate cell damage until late stage, thus GIR no longer increased at late stage at each kaempferol dose. Moreover, fewer MCs release under kaempferol stress than control suggested kaempferol as eco-safe algaecide for migrating toxigenic Microcystis-dominated blooms (MCBs) and decreasing MCs risks. Compared with our previous data for luteolin inhibiting toxigenic Microcystis, this study supported formerly-proposed 'flavonoids structure - algicidal activity' relationship that the only OH-location difference between kaempferol and luteolin could affect algicidal activity and mechanisms against toxigenic Microcystis. Also, kaempferol and luteolin was revealed to exert additive effect on toxigenic Microcystis growth at equitoxic ratio. Our findings gave novel algicidal scenario of flavonoids and were greatly implicated in eco-friendly migrating toxigenic MCBs.
Collapse
Affiliation(s)
- Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Linrong Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS One 2021; 16:e0257017. [PMID: 34550975 PMCID: PMC8457463 DOI: 10.1371/journal.pone.0257017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Collapse
Affiliation(s)
- Alexa K. Hoke
- James Madison University, Harrisonburg, VA, United States of America
| | - Guadalupe Reynoso
- James Madison University, Harrisonburg, VA, United States of America
- Virginia Tech, Blacksburg, VA, United States of America
| | - Morgan R. Smith
- James Madison University, Harrisonburg, VA, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Malia I. Gardner
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Naomi E. Gilbert
- James Madison University, Harrisonburg, VA, United States of America
- University of Tennessee, Knoxville, TN, United States of America
| | | | | | - Grant J. Brennan
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Shannon R. Farnan
- James Madison University, Harrisonburg, VA, United States of America
| | - Victoria Mendoza
- James Madison University, Harrisonburg, VA, United States of America
| | - Alison C. Poole
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Lucy K. Utz
- James Madison University, Harrisonburg, VA, United States of America
| | - Louie L. Wurch
- James Madison University, Harrisonburg, VA, United States of America
| | - Morgan M. Steffen
- James Madison University, Harrisonburg, VA, United States of America
- * E-mail:
| |
Collapse
|