1
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
2
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Tan Y, Ji L, Mo Y, Huang H, Lei X. Bibliometrics analysis of hotspots research on infertility syndromes and polystyrene. Toxicol Ind Health 2024; 40:465-478. [PMID: 38805015 DOI: 10.1177/07482337241257274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polystyrene plastic pollution poses a pressing environmental concern and represents a significant risk factor for infertility. Despite this, a comprehensive overview of the field remains scarce, with future trends largely unknown. Bibliometrics, an applied mathematical and statistical method, offers a means to analyze textual information across various levels, facilitating quantitative assessments of all knowledge carriers and unveiling the nature and developmental trajectories of a discipline. This study aimed to employ bibliometric methods to scrutinize the current status and research hotspots within the realm of polystyrene and infertility. Literature spanning from 1980 to 2023 pertaining to polystyrene and infertility was retrieved from the core database of Web of Science. Quantitative analyses were conducted utilizing CiteSpace (version 5.7.R7), VOSviewer (version 1.6.18.0), and an online literature analysis website (https://bibliometric.com/). The analysis visually represented countries, institutions, authors, journals, and keywords within the field. This study delved into the development history, knowledge structure, research hotspots, and potential trends in the field, furnishing a macro perspective for researchers. The investigation encompassed 267 articles published across 120 journals by 1,352 authors affiliated with 417 institutions in 51 countries, with these articles garnering 10,310 citations across 2,811 journals. The top three countries contributing the most articles were China, the United States, and Germany. In essence, the research hotspots primarily revolved around metabolism, endocrinology, and immunity. Despite China's relatively recent entry into this field, its rapid development is evident. However, the low citation frequency suggests a need for improved article quality.
Collapse
Affiliation(s)
- Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yi Mo
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Oger MJL, Vermeulen O, Lambert J, Madanu TL, Kestemont P, Cornet V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124094. [PMID: 38703983 DOI: 10.1016/j.envpol.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 μm) and NPs (250 nm) at a concentration of 1000 μg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.
Collapse
Affiliation(s)
- Mathilde J L Oger
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.
| | - Océane Vermeulen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Thomas L Madanu
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| |
Collapse
|
5
|
Huang S, Wang J, Lin T, He C, Chen Z. Esketamine Exposure Impairs Cardiac Development and Function in Zebrafish Larvae. TOXICS 2024; 12:427. [PMID: 38922107 PMCID: PMC11209413 DOI: 10.3390/toxics12060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at concentrations of 1, 10, and 100 mg/L from 48 h post-fertilization (hpf) to 72 hpf. We found that after exposure, zebrafish embryos had an increased hatching rate, decreased heart rate, stroke volume, and cardiac output. When we exposed transgenic zebrafish of the Tg(cmlc2:EGFP) strain to esketamine, we observed ventricular dilation and thickening of atrial walls in developing embryos. Additionally, we further discovered the abnormal expression of genes associated with cardiac development, including nkx2.5, gata4, tbx5, and myh6, calcium signaling pathways, namely ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a3, slc8a4a, and cacna1aa, as well as an increase in acetylcholine concentration. In conclusion, our findings suggest that esketamine may impair zebrafish larvae's cardiac development and function by affecting acetylcholine concentration, resulting in weakened cardiac neural regulation and subsequent effects on cardiac function. The insights garnered from this research advocate for a comprehensive safety assessment of esketamine in clinical applications.
Collapse
Affiliation(s)
- Shuo Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| | - Jingyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Zhiyuan Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| |
Collapse
|
6
|
Zhang C, Bao F, Wang F, Xue Z, Lin D. Toxic effects of nanoplastics and microcystin-LR coexposure on the liver-gut axis of Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170011. [PMID: 38220005 DOI: 10.1016/j.scitotenv.2024.170011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastic products and nutrients are widely used in aquaculture facilities, resulting in copresence of nanoplastics (NPs) released from plastics and microcystins (MCs) from toxic cyanobacteria. The potential effects of NPs-MCs coexposure on aquatic products require investigation. This study investigated the toxic effects of polystyrene (PS) NPs and MC-LR on the gut-liver axis of silver carp Hypophthalmichthys molitrix, a representative commercial fish, and explored the effects of the coexposure on intestinal microorganism structure and liver metabolic function using traditional toxicology and multi-omics association analysis. The results showed that the PS-NPs and MC-LR coexposure significantly shortened villi length, and the higher the concentration of PS-NPs, the more obvious the villi shortening. The coexposure of high concentrations of PS-NPs and MC-LR increased the hepatocyte space in fish, and caused obvious loss of gill filaments. The diversity and richness of the fish gut microbes significantly increased after the PS-NPs exposure, and this trend was amplified in the copresence of MC-LR. In the coexposure, MC-LR contributed more to the alteration of fish liver metabolism, which affected the enrichment pathway in glycerophospholipid metabolism and folic acid biosynthesis, and there was a correlation between the differential glycerophospholipid metabolites and affected bacteria. These results suggested that the toxic mechanism of PS-NPs and MC-LR coexposure may be pathological changes of the liver, gut, and gill tissues, intestinal microbiota disturbance, and glycerophospholipid metabolism imbalance. The findings not only improve the understanding of environmental risks of NPs combined with other pollutants, but also provide potential microbiota and glycerophospholipid biomarkers in silver carp.
Collapse
Affiliation(s)
- Chaonan Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China
| | - Feifan Bao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhihao Xue
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China.
| |
Collapse
|
7
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
8
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Yi J, Ma Y, Ruan J, You S, Ma J, Yu H, Zhao J, Zhang K, Yang Q, Jin L, Zeng G, Sun D. The invisible Threat: Assessing the reproductive and transgenerational impacts of micro- and nanoplastics on fish. ENVIRONMENT INTERNATIONAL 2024; 183:108432. [PMID: 38219542 DOI: 10.1016/j.envint.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging as pervasive environmental pollutants, present multifaceted threats to diverse ecosystems. This review critically examines the ability of MNPs to traverse biological barriers in fish, leading to their accumulation in gonadal tissues and subsequent reproductive toxicity. A focal concern is the potential transgenerational harm, where offspring not directly exposed to MNPs exhibit toxic effects. Characterized by extensive specific surface areas and marked surface hydrophobicity, MNPs readily adsorb and concentrate other environmental contaminants, potentially intensifying reproductive and transgenerational toxicity. This comprehensive analysis aims to provide profound insights into the repercussions of MNPs on fish reproductive health and progeny, highlighting the intricate interplay between MNPs and other pollutants. We delve into the mechanisms of MNPs-induced reproductive toxicity, including gonadal histopathologic alterations, oxidative stress, and disruptions in the hypothalamic-pituitary-gonadal axis. The review also underscores the urgency for future research to explore the size-specific toxic dynamics of MNPs and the long-term implications of chronic exposure. Understanding these aspects is crucial for assessing the ecological risks posed by MNPs and formulating strategies to safeguard aquatic life.
Collapse
Affiliation(s)
- Jia Yi
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Si You
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing 402160, China
| | - Da Sun
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Choi HJ, Kim JH, Le VQA, Kim BN, Cho BK, Kim YH, Min J. Yeast vacuolar enzymes as novel hatching inhibitors for aquatic organisms, Daphnia magna and Danio rerio eggs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115446. [PMID: 37688866 DOI: 10.1016/j.ecoenv.2023.115446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Concerns over the spread of non-native species in aquatic environments have led to the need for effective methods to prevent and control their spread while protecting native species. This study investigated the potential of yeast vacuolar enzymes as a natural hatching inhibitor for controlling aquatic organisms. Hatching experiments with Daphnia magna eggs demonstrated that exposure to yeast vacuole enzymes inhibited hatching in a concentration-dependent manner, suggesting their potential as an effective inhibitor of egg hatching in aquatic organisms. Interestingly, the protease used for comparative purposes did not inhibit hatching, but instead increased the mortality of hatched D. magna. Additionally, chorionic changes were observed in non-hatched D. magna eggs and zebrafish eggs exposed to yeast vacuole enzymes, suggesting that the enzyme can alter the chorion and interfere with hatching. These findings suggest that yeast vacuolar enzymes may be a promising and natural management tool for controlling the spread of harmful aquatic organisms, and further research is warranted to explore their potential for species-specific control.
Collapse
Affiliation(s)
- Hyo Jin Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Vu Quynh Anh Le
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Bit-Na Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea.
| |
Collapse
|
11
|
Felisbino K, Kirsten N, da Silva Milhorini S, Marçal IS, Bernert K, Schiessl R, Nominato-Oliveira L, Guiloski IC. Teratogenic effects of the dicamba herbicide in Zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122187. [PMID: 37442326 DOI: 10.1016/j.envpol.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Dicamba has been used worldwide for 60 years, but few studies have been conducted on its environmental safety and health effects. Therefore, this study aims to evaluate the acute toxicity, teratogenic effects, oxidative stress, and neurotoxicity of Dicamba in zebrafish embryos. Embryos were exposed to concentrations of 4.5, 18, 72, and 288 mg/L of Dicamba for 96 h. Among the teratogenic effects, yolk sac edema predominated, besides malabsorption of nutrients (grayish yolk sac). The presence of edema may indicate problems with circulation and water efflux from the embryos, which may be related to kidney and cardiovascular problems. Other effects such as hemorrhage, spinal and eye malformations, and dwarfism were also observed. The hatching rate was reduced in the highest concentration, and in the other concentrations, a decrease was noticeable indicating a delay in development. Neurotoxic effects were also observed. Oxidative stress analysis showed a significant decrease in SOD at all concentrations and an increase in GPx, GSH, and LPO at 288 mg/L of Dicamba. It was observed that the herbicide is capable of causing teratogenic effects, developmental delay, and oxidative stress. These results show that exposure to Dicamba, in a commercial formulation, can bring risks during embryonic development. In addition, it highlights the need for further studies on the effects of the herbicide and a reassessment of toxicity categorization.
Collapse
Affiliation(s)
- Karoline Felisbino
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil.
| | - Nathalia Kirsten
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Shayane da Silva Milhorini
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Isabela Saragioto Marçal
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Karina Bernert
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Rafaela Schiessl
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Leticia Nominato-Oliveira
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Lin W, Luo H, Wu J, Liu X, Cao B, Liu Y, Yang P, Yang J. Polystyrene microplastics enhance the microcystin-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162664. [PMID: 36894083 DOI: 10.1016/j.scitotenv.2023.162664] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The coexistence of eutrophication and plastic pollution in the aquatic environment is becoming a realistic water pollution problem worldwide. To investigate the microcystin-LR (MC-LR) bioavailability and the underlying reproductive interferences in the presence of polystyrene microplastic (PSMPs), zebrafish (Danio rerio) were exposed to individual MC-LR (0, 1, 5, and 25 μg/L) and combined MC-LR + PSMPs (100 μg/L) for 60 d. Our results showed that the existence of PSMPs increased the accumulation of MC-LR in zebrafish gonads compared to the MC-LR-only group. In the MC-LR-only exposure group, seminiferous epithelium deterioration and widened intercellular spaces were observed in the testis, and basal membrane disintegration and zona pellucida invagination were noticed in the ovary. Moreover, the existence of PSMPs exacerbated these injuries. The results of sex hormone levels showed that PSMPs enhanced MC-LR-induced reproductive toxicity, which is tightly related to the abnormal increase of 17β-estradiol (E2) and testosterone (T) levels. The changes of gnrh2, gnrh3, cyp19a1b, cyp11a, and lhr mRNA levels in the HPG axis further proved that MC-LR combined with PSMPs aggravated reproductive dysfunction. Our results revealed that PSMPs could increase the MC-LR bioaccumulation by serving as a carrier and exaggerate the MC-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Changde 415000, China
| | - Huimin Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Jingyi Wu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Xiangli Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Beibei Cao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Yuqing Liu
- Department of Gastroenterology, The First People's Hospital of Changde City, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Changde 415000, China.
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China.
| |
Collapse
|
13
|
Zhou R, Zhou D, Yang S, Shi Z, Pan H, Jin Q, Ding Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162096. [PMID: 36791853 DOI: 10.1016/j.scitotenv.2023.162096] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) have received global attention due to their wide application and detection in various environmental or biological media. NPs can penetrate physical barriers and accumulate in organisms after being ingested, producing a variety of toxic effects and possessing particle size-dependent effects, distinguishing them from traditional contaminants. This paper explored the neurotoxicity of polystyrene (PS)-NPs of different particle sizes on zebrafish (Danio rerio) embryos at environmental concentrations at the tissue and molecular levels using visualized transgenic zebrafish. Results showed that all particle sizes of PS-NPs produced developmental toxicity in zebrafish embryos and induced neuronal loss, axonal deletion/shortening/hybridization, and developmental and apoptotic-related genetic alterations, ultimately leading to behavioral abnormalities. PS-NPs with smaller sizes may have more severe neurotoxicity due to their entry into the embryo and brain through the chorionic pore before hatching. In addition, PS-NPs at 100 nm and 1000 nm can specifically interfere with GABAergic, cholinergic or serotonergic system and affect neuronal signaling. Our results reveal the neurotoxic risk of NPs, and smaller particle-size NPs may have a greater ecological risk. We anticipate that our study can provide a basis for exploring the toxicity mechanisms of NPs and the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Shixin Yang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhiqiao Shi
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hui Pan
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
14
|
Xia X, Ma X, Liang N, Duan X, Wang S, Guo W, Chang Z. QNZ exposure induces development toxicity and mechanisms of hatching inhibition in large-scale loach (Paramisgurnus dabryanus) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114663. [PMID: 36805135 DOI: 10.1016/j.ecoenv.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
QNZ is a quinazoline-type NF-κB inhibitor and is one of the hot anti-inflammatory drug candidates in recent years. With its development and application, QNZ will inevitably enter the aquatic environment posing a threat to aquatic organisms. To investigate the potential toxicity of QNZ in the early life stages of the organism, this study exposed embryos of large-scale loach (Paramisgurnus dabryanus) to 0, 20, 40, 60, and 80 nM of QNZ. The hatching of embryos was significantly inhibited and hatching time was delayed. We explored the mechanism of hatching delay and failure. The results suggested that QNZ exposure reduced the number of hatching gland cells (HGCs) and hatching enzyme activity. Also, the frequency of spontaneous movements was inhibited by interfering with the expression of genes related to the cholinergic system and skeletal muscle development. Further, QNZ exposure induces a series of morphological changes (spine deformation, pericardial edema, tail deformation, and yolk sac edema) in embryos and newly-hatched larvae, and finally increased the deformity rate and mortality rate of newly-hatched larvae. The information presented in this study will provide a scientific basis for further studies into the potential toxicity of QNZ on aquatic organisms.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiangyu Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Songyun Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
15
|
Exogenous Hydrogen Sulfide Mitigates Oxidative Stress and Mitochondrial Damages Induced by Polystyrene Microplastics in Osteoblastic Cells of Mice. DISEASE MARKERS 2023; 2023:2516472. [PMID: 36860583 PMCID: PMC9969973 DOI: 10.1155/2023/2516472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
Polystyrene microplastics (mic-PS) have become harmful pollutants that attracted substantial attention about their potential toxicity. Hydrogen sulfide (H2S) is the third reported endogenous gas transmitter with protective functions on numerous physiologic responses. Nevertheless, the roles for mic-PS on skeletal systems in mammals and the protective effects of exogenous H2S are still indistinct. Here, the proliferation of MC3T3-E1 cell was analyzed by CCK8. Gene changes between the control and mic-PS treatment groups were analyzed by RNA-seq. The mRNA expression of bone morphogenetic protein 4 (Bmp4), alpha cardiac muscle 1 (Actc1), and myosin heavy polypeptide 6 (Myh6) was analyzed by QPCR. ROS level was analyzed by 2',7'-dichlorofluorescein (DCFH-DA). The mitochondrial membrane potential (MMP) was analyzed by Rh123. Our results indicated after exposure for 24 h, 100 mg/L mic-PS induced considerable cytotoxicity in the osteoblastic cells of mice. There were 147 differentially expressed genes (DEGs) including 103 downregulated genes and 44 upregulated genes in the mic-PS-treated group versus the control. The related signaling pathways were oxidative stress, energy metabolism, bone formation, and osteoblast differentiation. The results indicate that exogenous H2S may relieve mic-PS toxicity by altering Bmp4, Actc1, and Myh6 mRNA expressions associated with mitochondrial oxidative stress. Taken together, this study demonstrated that the bone toxicity effects of mic-PS along with exogenous H2S have protective function in mic-PS-mediated oxidative damage and mitochondrial dysfunction in osteoblastic cells of mice.
Collapse
|
16
|
Junaid M, Liu S, Chen G, Liao H, Wang J. Transgenerational impacts of micro(nano)plastics in the aquatic and terrestrial environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130274. [PMID: 36327853 DOI: 10.1016/j.jhazmat.2022.130274] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plastic particles of diameters ranging from 1 to 1000 nm and > 1 µm to 5 mm are respectively known as nanoplastics and microplastics, and are collectively termed micro(nano)plastics (MNPs). They are ubiquitously present in aquatic and terrestrial environments, posing adverse multifaceted ecological impacts. Recent transgenerational studies have demonstrated that MNPs negatively impact both the exposed parents and their unexposed generations. Therefore, this review summarizes the available research on the transgenerational impacts of MNPs in aquatic and terrestrial organisms, induced by exposure to MNPs alone or in combination with other organic and inorganic chemicals. The most commonly reported transgenerational effects of MNPs include tissue bioaccumulation and transfer, affecting organisms' survival, growth, reproduction, and energy metabolism; inducing oxidative stress; enzyme and genetic responses; and causing tissue damage. Similarly, co-exposure to MNPs and chemicals (organic and inorganic pollutants) significantly impacts survival, growth, and reproduction and induces oxidative stress, thyroid disruption, and genetic toxicity in organisms. The characteristics of MNPs (degree of aging, size, shape, polymer type, and concentration), exposure type and duration (parental exposure vs. multigenerational exposure and acute exposure vs. chronic exposure), and MNP-chemical interactions are the main factors affecting transgenerational impacts. Selecting MNP properties based on their realistic environmental behavior, employing more diverse animal models, and considering chronic exposure and MNP-chemical mixture exposure are salient research prospects for an in-depth understanding of the transgenerational impacts of MNPs.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
17
|
Xiong F, Liu J, Xu K, Huang J, Wang D, Li F, Wang S, Zhang J, Pu Y, Sun R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120939. [PMID: 36581239 DOI: 10.1016/j.envpol.2022.120939] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) draw international attention owing to their widespread distribution in water ecosystems, but whether MPs cause neurotoxic effects in aquatic animals at environmentally realistic concentrations is still controversial. This meta-analysis recompiled 35 studies to determine whether MPs could change the levels of brain (in vivo) neurotransmitters in aquatic animals at environmentally realistic concentrations (≤1 mg/L, median = 0.100 mg/L). Then, a group comparison was conducted to compare the effects of different factors on the effect size and to explore the significant factors affecting the neurotoxicity of MPs. The results demonstrated that MP exposure could considerably decrease the levels of acetylcholinesterase (AchE) in the brain of aquatic animals by 16.2%. However, the effects of MPs on cholinesterase (CHE), acetylcholine (ACh), dopamine (DA) and γ-aminobutyric acid (GABA) were not statistically significant due to the small number of studies and samples. The neurotoxicity of MPs was closely linked with particle size and exposure time but independent of animal species, MP compositions, MP morphology and MP concentrations. Further literatures review indicated that MP-induced neurotoxicity and behavioral changes are related with multiple biological processes, including nerve damage, oxidative stress, intestinal flora disturbance and metabolic disorder. Furthermore, some factors influencing MP neurotoxicity in the real environment (e.g. the aging of MPs, the release of MP additives, and the co-exposure of MPs and pollutants) were discussed. Overall, this study preliminarily explored whether MPs induced changes in neurotoxicity-related indicators in aquatic animals through meta-analysis and provided scientific evidence for evaluating the health risks and neurotoxicity of MPs at the environmental level.
Collapse
Affiliation(s)
- Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
18
|
Cho HJ, Lee WS, Jeong J, Lee JS. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109428. [PMID: 35940544 DOI: 10.1016/j.cbpc.2022.109428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Wang Y, Weng Y, Lv L, Wang D, Yang G, Jin Y, Wang Q. Transgenerational effects of co-exposure to cadmium and carbofuran on zebrafish based on biochemical and transcriptomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129644. [PMID: 35882171 DOI: 10.1016/j.jhazmat.2022.129644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The combined toxicity of heavy metals and pesticides to aquatic organisms is still largely unexplored. In this study, we investigated the combined impacts of cadmium (Cd) and carbofuran (CAR) on female zebrafish (F0 generation) and their following F1 generation. Results showed that mixtures of Cd and CAR induced acute synergistic effects on both zebrafish adults of the F0 generation and embryos of the F1 generation. Combined exposure to Cd and CAR could obviously alter the hepatic VTG level of females, and the individual exposures increased the relative mRNA levels of vtg1 and vtg2. Through maternal transmission, co-exposure of Cd and CAR caused toxicity to 4-day-old larvae of the F1 generation, evidenced by the significant changes in T4 and VTG levels, CYP450 activity, and the relative transcriptional levels of genes related to the hormone, oxidative stress, and apoptosis. These effects were also reflected by the global gene expression pattern to 7-day-old larvae of F1 generation using the transcriptomic analysis, and they could also affect energy metabolism. Our results provided a more comprehensive insight into the transgenerational toxic impacts of heavy metal and pesticide mixtures. These findings highlighted that it was highly necessary to consider transgenerational exposures in the ecological risk assessment of chemical mixtures.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
20
|
Zhang X, Zhao J, Gan T, Jin C, Li X, Cao Z, Jiang K, Zou W. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129409. [PMID: 35752050 DOI: 10.1016/j.jhazmat.2022.129409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Understanding the role of microplastics (MPs) in the biological fate and toxicity of organic pollutants in food webs is vital for its risk assessment. However, contradictory results and the neglect of MP aging as a factor have led to a research gap, which needs to be filled. Our study discovered that polyamide (PA, a ubiquitous MP in water) MPs clearly facilitated bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in the F0 zebrafish gonads and parental transfer of TDCIPP to the F1 offspring. Rapid TDCIPP desorption in the gut and intestine barrier dysfunction triggered by MPs were the causes for the phenomenon. In contrast to the pristine forms, aged PA with higher hydrophilcity exhibited stronger binding and polar interactions with TDCIPP, and the intestine damage was neglectable, resulting in increased intestinal immobilization and prevented parental transfer of TDCIPP. Additionally, the aggravated body weight loss and decreased length of TDCIPP offspring were relieved after PA aging. The recovery of subintestinal venous plexus angiogenesis, yolk lipid utilization, and ATP synthesis were responsible for the mitigated transgenerational toxicity. Our results highlight the significance of aging on the role of MPs with respect to coexisting pollutants and have great implications for understanding MP-associated risks.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Jingyi Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tiantian Gan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
21
|
Wang Y, Zhou B, Chen H, Yuan R, Wang F. Distribution, biological effects and biofilms of microplastics in freshwater systems - A review. CHEMOSPHERE 2022; 299:134370. [PMID: 35318017 DOI: 10.1016/j.chemosphere.2022.134370] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The rapidly rising output and mass use of plastics have made plastics pollution a major environmental problem. Since plastics are persistent in the environment, understanding the migration transformation characteristics of plastics is critical. Given the ever-increasing concern about the environmental risks posed by microplastics, their prevalence, fate, abundance and impact have been intensively studied. Most of these investigations focused on the marine environment, but research on freshwater microplastics is less extensive. This article aims to briefly summarize the research progress of freshwater microplastics, identify existing gaps and draw novel conclusions, so as to provide useful information for the research of freshwater microplastics. Using the statistics and analysis of freshwater microplastics studies in 2016-2021, this review systematically discusses microplastics in globally freshwater systems. The biological effects of microplastics on freshwater organisms were discussed as well. Some potential ecological effects of microplastic biofilms were shown, such as climate change and material circulation. More importantly, we present some unique conclusions. For example, the detection of freshwater microplastics is mainly concentrated in natural freshwater systems, while few are concentrated in artificial freshwater systems. In addition, polystyrene is the main mode for testing the biological effects of freshwater microplastics, and polyethene and polypropylene which are the most common in freshwater environments, have not been taken seriously. We also pointed out that studies on advanced freshwater plants in the topic of biological effects of microplastics still need strengthen.
Collapse
Affiliation(s)
- Yan Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| |
Collapse
|
22
|
Ling X, Zuo J, Pan M, Nie H, Shen J, Yang Q, Hung TC, Li G. The presence of polystyrene nanoplastics enhances the MCLR uptake in zebrafish leading to the exacerbation of oxidative liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151749. [PMID: 34843796 DOI: 10.1016/j.scitotenv.2021.151749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of diminutive plastic waste in the environment, including microplastics and nanoplastics, has threatened the health of multiple species. Nanoplastics can adsorb the pollutants from the immediate environment, and may be used as carriers for pollutants to enter organisms and bring serious ecological risk. To evaluate the toxic effects of microcystin-LR (MCLR) on the liver of adult zebrafish (Danio rerio) in the presence of 70 nm polystyrene nanoplastics (PSNPs), zebrafish were exposed to MCLR alone (0, 0.9, 4.5 and 22.5 μg/L) and a mixture of MCLR + PSNPs (100 μg/L) for three months. The results indicated that groups with combined exposure to MCLR and PSNPs further enhanced the accumulation of MCLR in the liver when compared to groups only exposed to MCLR. Cellular swelling, fat vacuolation, and cytoarchitectonic damage were observed in zebrafish livers after exposure to MCLR, and the presence of PSNPs exacerbated these adverse effects. The results of biochemical tests showed the combined effect of MCLR + PSNPs enhanced MCLR-induced hepatotoxicity, which could be attributed to the altered levels of reactive oxygen species, malondialdehyde and glutathione, and activities of catalase. The expression of genes related to antioxidant responses (p38a, p38b, ERK2, ERK3, Nrf2, HO-1, cat1, sod1, gax, JINK1, and gstr1) was further performed to study the mechanisms of MCLR combined with PSNPs aggravated oxidative stress of zebrafish. The results showed that PSNPs could improve the bioavailability of MCLR in the zebrafish liver by acting as a carrier and accelerate MCLR-induced oxidative stress by regulating the levels of corresponding enzymes and genes.
Collapse
Affiliation(s)
- Xiaodong Ling
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
23
|
Wang L, Jin H, Zeng Y, Tan Y, Wang J, Fu W, Chen W, Cui K, Qiu Z, Zhou Z. HOXB4 Mis-Regulation Induced by Microcystin-LR and Correlated With Immune Infiltration Is Unfavorable to Colorectal Cancer Prognosis. Front Oncol 2022; 12:803493. [PMID: 35211403 PMCID: PMC8861523 DOI: 10.3389/fonc.2022.803493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Microcystin-LR (MC-LR) exists widely in polluted food and water in humid and warm areas, and facilitates the progression of colorectal cancer (CRC). However, the molecular mechanism associated with the MC-LR-induced CRC progression remains elusive. The purpose of this study is to explore the role of the hub genes associated with MC-LR-induced CRC development at the molecular, cellular and clinical levels through bioinformatics and traditional experiments. By utilizing R, we screened and investigated the differentially expressed genes (DEGs) between the MC-LR and the control groups with the GEO, in which, HOXB4 highly expressed in MC-LR-treated group was identified and further explored as a hub gene. With the aid of TCGA, GEPIA, HPA, UALCAN, Cistrome, and TIMER, the increased mRNA and protein levels of HOXB4 in CRC tissue were found to be positively associated with high tumor stage and poor prognosis, and were linked to immune infiltration, especially tumor-associated macrophages and cancer-associated fibroblasts. Cox regression analysis and nomogram prediction model indicated that high HOXB4 expression was correlated to poor survival probability. To elucidate the mechanism of high HOXB4 expression induced by MC-LR, we overlapped the genes involved in the MC-LR-mediated CRC pathways and the HOXB4-correlated transcription genes. Importantly, C-myc instead of PPARG and RUNX1 promoted the high expression of HOXB4 through experiment validation, and was identified as a key target gene. Interestingly, C-myc was up-regulated by HOXB4 and maintained cell cycle progression. In addition, MC-LR was proved to up-regulate HOXB4 expression, thus promoting proliferation and migration of Caco2 cells and driving the cell cycle progression. In conclusion, MC-LR might accelerate CRC progression. In the process, MC-LR induced C-myc augmentation elevates the high expression of HOXB4 through increasing the S phase cell proportion to enhance Caco2 cell proliferation. Therefore, HOXB4 might be considered as a potential prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Zeng
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
24
|
Balasch JC, Brandts I, Barría C, Martins MA, Tvarijonaviciute A, Tort L, Oliveira M, Teles M. Short-term exposure to polymethylmethacrylate nanoplastics alters muscle antioxidant response, development and growth in Sparus aurata. MARINE POLLUTION BULLETIN 2021; 172:112918. [PMID: 34526262 DOI: 10.1016/j.marpolbul.2021.112918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Polymethylmethacrylate (PMMA) plastic fragments have been found abundant in the environment, but the knowledge regarding its effects on the physiology of aquatic animals is still poorly studied. Here the short-term (96 h) effects of waterborne exposure to PMMA nanoplastics (PMMA-NPs) on the muscle of gilthead sea bream (Sparus aurata) fingerlings was evaluated at a concentration range that includes 0.001 up to 10 mg/L. The expression of key transcripts related to cell stress, tissue repair, immune response, antioxidant status and muscle development, together with several biochemical endpoints and metabolic parameters. Results indicate that exposure to PMMA-NPs elicit mildly antioxidant responses, enhanced the acetylcholinesterase (AChE) activity, and inhibited key regulators of muscle development (growth hormone receptors ghr-1/ghr-2 and myostatin, mstn-1 transcripts). However, no effects on pro-inflammatory cytokines (interleukin 1β, il1β and tumor necrosis factor α, tnfα) expression nor on the levels of energetic substrates (glucose, triglycerides and cholesterol) were found.
Collapse
Affiliation(s)
- J C Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - I Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - C Barría
- Programa de doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - M A Martins
- Department of Physics & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
25
|
Yu T, Zhou G, Cai Z, Liang W, Du Y, Wang W. Behavioral effects of early-life exposure to perfluorooctanoic acid might synthetically link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105926. [PMID: 34340000 DOI: 10.1016/j.aquatox.2021.105926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is known as an environmental endocrine disruptor and has developmental neurotoxicity that could be associated with behavior changes in human and animal studies. Previous studies have shown that PFOA might affect the dopaminergic nervous system. However, the mode of action underlying the effects of PFOA remains poorly understood. Our study used zebrafish as an animal model to investigate the effects of early-life PFOA exposure on dopaminergic neuron development and dopamine functions in zebrafish larvae. Zebrafish fertilized eggs were exposed to different concentrations of PFOA (0, 10, 100, 1000 μg/L). After exposure to PFOA for 7 days, the locomotor activity of zebrafish was decreased; the mRNA levels of nuclear receptor subfamily 4 group a member 2b (nr4a2b), paired box 2 and 5 (pax2, pax5), tyrosine hydroxylase 1/2 (th1/th2) and dopamine transporter (dat) were increased; mRNA and protein level of mesencephalic astrocyte-derived neurotrophic factor (manf) were decreased. Neural cell proliferation in the preoptic area of hypothalamus was increased. In conclusion, dopaminergic neuron development might be one of the targets of early-life PFOA exposure. The neurobehavior changes induced by PFOA exposure might link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae.
Collapse
Affiliation(s)
- Tingting Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|