1
|
Li J, Lyu C, An R, Wang D. Interaction Between SARS-CoV-2 Spike Protein S1 Subunit and Oyster Heat Shock Protein 70. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:380-390. [PMID: 38635140 DOI: 10.1007/s12560-024-09599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
There is growing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminates the marine environment and is bioaccumulated in filter-feeding shellfish. Previous study shows the Pacific oyster tissues can bioaccumulate the SARS-CoV-2, and the oyster heat shock protein 70 (oHSP70) may play as the primary attachment receptor to bind SARS-CoV-2's recombinant spike protein S1 subunit (rS1). However, detailed information about the interaction between rS1 and oHSP70 is still unknown. In this study, we confirmed that the affinity of recombinant oHSP70 (roHSP70) for rS1 (KD = 20.4 nM) is comparable to the receptor-binding affinity of rACE2 for rS1 (KD = 16.7 nM) by surface plasmon resonance (SPR)-based Biacore and further validated by enzyme-linked immunosorbent assay (ELISA). Three truncated proteins (roHSP70-N/C/M) and five mutated proteins (p.I229del, p.D457del, p.V491_K495del, p.K556I, and p.ΣroHSP70) were constructed according to the molecular docking results. All three truncated proteins have significantly lower affinity for rS1 than the full-length roHSP70, indicating that all three segments of roHSP70 are involved in binding to rS1. Further, the results of SPR and ELISA showed that all five mutant proteins had significantly lower affinity for rS1 than roHSP70, suggesting that amino acids at these sites are involved in binding to rS1. This study provides a preliminary theoretical basis for the bioaccumulation of SARS-CoV-2 in oyster tissues or using roHSP70 as the capture unit to selectively enrich virus particles for detection.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
La Rosa G, Mancini P, Iaconelli M, Veneri C, Bonanno Ferraro G, Del Giudice C, Suffredini E, Muratore A, Ferrara F, Lucentini L, Martuzzi M, Piccioli A. Tracing the footprints of SARS-CoV-2 in oceanic waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167343. [PMID: 37751837 DOI: 10.1016/j.scitotenv.2023.167343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The detection of SARS-CoV-2 in water environments has predominantly focused on wastewater, neglecting its presence in oceanic waters. This study aimed to fill this knowledge gap by investigating the occurrence of SARS-CoV-2 in remote sea and oceanic waters, at large distances from the coastline. Forty-three 500-liter samples were collected between May 2022 and January 2023 from the Atlantic Ocean, the Mediterranean Sea, the Arctic region, the Persian Gulf and the Red Sea. Using molecular detection methods including real-time RT-qPCR and nested PCR followed by sequencing, we successfully detected SARS-CoV-2 RNA in 7 of the 43 marine water samples (16.3 %), and specifically in samples taken from the Atlantic Ocean and the Mediterranean Sea. The estimated concentrations of SARS-CoV-2 genome copies in the positive samples ranged from 6 to 470 per 100 l. The presence of mutations characteristic of the Omicron variant was identified in these samples by amplicon sequencing. These findings provide evidence of the unforeseen presence of SARS-CoV-2 in marine waters even at distances of miles from the coastline and in open ocean waters. It is important to consider that these findings only display the occurrence of SARS-CoV-2 RNA, and further investigations are required to assess if infectious virus can be present in the marine environment.
Collapse
Affiliation(s)
- Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy.
| | - P Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - C Del Giudice
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Muratore
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - F Ferrara
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - M Martuzzi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Piccioli
- Office of the Director General, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
4
|
Contrant M, Bigault L, Andraud M, Desdouits M, Rocq S, Le Guyader FS, Blanchard Y. Porcine Epidemic Diarrhea Virus, Surrogate for Coronavirus Decay Measurement in French Coastal Waters and Contribution to Coronavirus Risk Evaluation. Microbiol Spectr 2023; 11:e0184423. [PMID: 37395665 PMCID: PMC10433961 DOI: 10.1128/spectrum.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.
Collapse
Affiliation(s)
- Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Lionel Bigault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Mathieu Andraud
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | | | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| |
Collapse
|
5
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
6
|
Lyu C, An R, Liu C, Shi Z, Wang Y, Luo G, Li J, Wang D. Bioaccumulation Pattern of the SARS-CoV-2 Spike Proteins in Pacific Oyster Tissues. Appl Environ Microbiol 2023; 89:e0210622. [PMID: 36815797 PMCID: PMC10057954 DOI: 10.1128/aem.02106-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
There is mounting evidence of the contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sewage, surface water, and even marine environment. Various studies have confirmed that bivalve mollusks can bioaccumulate SARS-CoV-2 RNA to detectable levels. However, these results do not provide sufficient evidence for the presence of infectious viral particles. To verify whether oysters can bind the viral capsid and bioaccumulate the viral particles, Pacific oysters were artificially contaminated with the recombinant SARS-CoV-2 spike protein S1 subunit (rS1). The bioaccumulation pattern of the rS1 in different tissues was investigated by immunohistological assays. The results revealed that the rS1 was bioaccumulated predominately in the digestive diverticula. The rS1 was also present in the epithelium of the nondigestive tract tissues, including the gills, mantle, and heart. In addition, three potential binding ligands, including angiotensin-converting enzyme 2 (ACE 2)-like substances, A-type histo-blood group antigen (HBGA)-like substances, and oyster heat shock protein 70 (oHSP 70), were confirmed to bind rS1 and were distributed in tissues with various patterns. The colocalization analysis of rS1 and those potential ligands indicated that the distributions of rS1 are highly consistent with those of ACE 2-like substances and oHSP 70. Both ligands are distributed predominantly in the secretory absorptive cells of the digestive diverticula and may serve as the primary ligands to bind rS1. Therefore, oysters are capable of bioaccumulating the SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands, especially in digestive diverticula. IMPORTANCE This is the first article to investigate the SARS-CoV-2 spike protein bioaccumulation pattern and mechanism in Pacific oysters by the histochemical method. Oysters can bioaccumulate SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands. The new possible foodborne transmission route may change the epidemic prevention strategies and reveal some outbreaks that current conventional epidemic transmission routes cannot explain. This original and interdisciplinary paper advances a mechanistic understanding of the bioaccumulation of SARS-CoV-2 in oysters inhabiting contaminated surface water.
Collapse
Affiliation(s)
- Chenang Lyu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Chu Liu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhentao Shi
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Guangda Luo
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Ransome E, Hobbs F, Jones S, Coleman CM, Harris ND, Woodward G, Bell T, Trew J, Kolarević S, Kračun-Kolarević M, Savolainen V. Evaluating the transmission risk of SARS-CoV-2 from sewage pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159161. [PMID: 36191696 PMCID: PMC9525188 DOI: 10.1016/j.scitotenv.2022.159161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/02/2023]
Abstract
The presence of SARS-CoV-2 in untreated sewage has been confirmed in many countries but its incidence and infection risk in contaminated waters is poorly understood. The River Thames in the UK receives untreated sewage from 57 Combined Sewer Overflows (CSOs), with many discharging dozens of times per year. This study investigated if such discharges provide a pathway for environmental transmission of SARS-CoV-2. Samples of wastewater, surface water, and sediment collected close to six CSOs on the River Thames were assayed over eight months for SARS-CoV-2 RNA and infectious virus. Bivalves were also sampled as an indicator species of viral bioaccumulation. Sediment and water samples from the Danube and Sava rivers in Serbia, where raw sewage is also discharged in high volumes, were assayed as a positive control. No evidence of SARS-CoV-2 RNA or infectious virus was found in UK samples, in contrast to RNA positive samples from Serbia. Furthermore, this study shows that infectious SARS-CoV-2 inoculum is stable in Thames water and sediment for <3 days, while SARS-CoV-2 RNA is detectable for at least seven days. This indicates that dilution of wastewater likely limits environmental transmission, and that detection of viral RNA alone is not an indication of pathogen spillover.
Collapse
Affiliation(s)
- E Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK.
| | - F Hobbs
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Jones
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - C M Coleman
- Wolfson Centre for Global Virus Research, Department of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - N D Harris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - G Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - T Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - J Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - M Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - V Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
8
|
Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. Int J Mol Sci 2022; 23:ijms232315136. [PMID: 36499463 PMCID: PMC9737530 DOI: 10.3390/ijms232315136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2 as a zoonotic virus has significantly affected daily life and social behavior since its outbreak in late 2019. The concerns over its transmission through different media directly or indirectly have evoked great attention about the survival of SARS-CoV-2 virions in the environment and its potential infection of other animals. To evaluate the risk of infection by SARS-CoV-2 and to counteract the COVID-19 disease, extensive studies have been performed to understand SARS-CoV-2 biogenesis and its pathogenesis. This review mainly focuses on the molecular architecture of SARS-CoV-2, its potential for infecting marine animals, and the prospect of drug discovery using marine natural products to combat SARS-CoV-2. The main purposes of this review are to piece together progress in SARS-CoV-2 functional genomic studies and antiviral drug development, and to raise our awareness of marine animal safety on exposure to SARS-CoV-2.
Collapse
|
9
|
Jiang Q, Xu Z, Ye G, Pahlow M, Hu M, Qu S. A systematic scoping review of environmental and socio-economic effects of COVID-19 on the global ocean-human system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157925. [PMID: 35952896 PMCID: PMC9359760 DOI: 10.1016/j.scitotenv.2022.157925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The global outbreak of the coronavirus disease 2019 (COVID-19) has strongly affected human lives. The restrictions taken to slow down the spread of the virus impact socio-economic activities and the environment. A comprehensive review of these COVID-19 impacts on the ocean-human system is lacking. The current study fills this gap by synthesizing the environmental and socio-economic effects of the COVID-19 pandemic on the global ocean by conducting a systemic scoping review of 92 published articles. From a geospatial perspective, the studies covered a total of 37 countries, mainly from Asia, Europe, and North America, with a particular focus on the Indian Ocean and the Mediterranean Sea. From an environmental perspective, both positive and negative effects on global oceans were summarized. Notably, improved coastal water quality and reduced underwater noise were reported. On the other hand, the increasing COVID-19-related medical waste such as personal protective equipment leads to severe pollution, which threatens the marine ecosystem and wildlife. From a socioeconomic perspective, the impacts of the pandemic were negative throughout with marine tourism and the fishery industry being severely disrupted. Coastal communities suffered from loss of income, unemployment, inequalities and health problems. The COVID-19 pandemic offers an opportunity for transformation of management and economic practices in order to save our ocean and boost progress towards Sustainable Development Goal 14 (SDG 14). Future research should include other sectors such as marine biodiversity, marine renewable energy, climate change, and blue economy development of Small Island Developing States. Effective policies and strategies across land and ocean around the world need to be developed and implemented to enhance resilience of the human-ocean system and to achieve post-pandemic global sustainable ocean development.
Collapse
Affiliation(s)
- Qutu Jiang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China; HKU Shenzhen Institute of Research and Innovation, Nanshan District, Shenzhen 518057, China
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China; HKU Shenzhen Institute of Research and Innovation, Nanshan District, Shenzhen 518057, China; Peng Cheng Laboratory, Shenzhen 518000, China.
| | - Guanqiong Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Markus Pahlow
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Mingzhao Hu
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, CA 93101, United States
| | - Shen Qu
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
do Nascimento LG, Sarmento SK, Leonardo R, Gutierrez MB, Malta FC, de Oliveira JM, Guerra CR, Coutinho R, Miagostovich MP, Fumian TM. Detection and Molecular Characterization of Enteric Viruses in Bivalve Mollusks Collected in Arraial do Cabo, Rio de Janeiro, Brazil. Viruses 2022; 14:2359. [PMID: 36366459 PMCID: PMC9695388 DOI: 10.3390/v14112359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Viral bivalve contamination is a recognized food safety hazard. Therefore, this study investigated the detection rates, seasonality, quantification, and genetic diversity of enteric viruses in bivalve samples (mussels and oysters). We collected 97 shellfish samples between March 2018 and February 2020. The screening of samples by qPCR or RT-qPCR revealed the detection of norovirus (42.3%), rotavirus A (RVA; 16.5%), human adenovirus (HAdV; 24.7%), and human bocavirus (HBoV; 13.4%). There was no detection of hepatitis A virus. In total, 58.8% of shellfish samples tested positive for one or more viruses, with 42.1% of positive samples contaminated with two or more viruses. Norovirus showed the highest median viral load (3.3 × 106 GC/g), followed by HAdV (median of 3.5 × 104 GC/g), RVA (median of 1.5 × 103 GC/g), and HBoV (median of 1.3 × 103 GC/g). Phylogenetic analysis revealed that norovirus strains belonged to genotype GII.12[P16], RVA to genotype I2, HAdV to types -C2, -C5, and -F40, and HBoV to genotypes -1 and -2. Our results demonstrate the viral contamination of bivalves, emphasizing the need for virological monitoring programs to ensure the quality and safety of shellfish for human consumption and as a valuable surveillance tool to monitor emerging viruses and novel variants.
Collapse
Affiliation(s)
- Lilian Gonçalves do Nascimento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Raphael Leonardo
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Caroline Rezende Guerra
- Laboratory of Marine Genetics, Department of Marine Biotechnology, Sea Studies Institute Admiral Paulo Moreira (IEAPM), Arraial do Cabo 28930-000, RJ, Brazil
| | - Ricardo Coutinho
- Laboratory of Marine Genetics, Department of Marine Biotechnology, Sea Studies Institute Admiral Paulo Moreira (IEAPM), Arraial do Cabo 28930-000, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
11
|
Yamazaki Y, Thongchankaew-Seo U, Yamazaki W. Very low likelihood that cultivated oysters are a vehicle for SARS-CoV-2: 2021-2022 seasonal survey at supermarkets in Kyoto, Japan. Heliyon 2022; 8:e10864. [PMID: 36217407 PMCID: PMC9535880 DOI: 10.1016/j.heliyon.2022.e10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The pandemic caused by novel coronavirus disease of 2019 (COVID-19) is a global threat. Wastewater surveillance in Japan and abroad has led to the detection of SARS-CoV-2, causing concern that SARS-CoV-2 in the feces of infected persons may contaminate the aquatic environment. Bivalves such as oysters cultivated in coastal areas are known to filter and concentrate viruses such as norovirus present in seawater in their bodies; however, whether they do so with SARS-CoV-2 is unknown. Therefore, we examined cultivated oysters sold in Japan for the presence of SARS-CoV-2 between October 2021 and April 2022 to clarify the extent of viral contamination and evaluate the risk of food-borne transmission of SARS-CoV-2. Porcine epidemic diarrhea virus (PEDV), known as pig coronavirus, was used to spike midgut-gland samples as a whole process control. The presence of SARS-CoV-2 and PEDV was investigated using a modified polyethylene glycol precipitation method and RT-qPCR. While all samples spiked with the whole process control were positive, no SARS-CoV-2 was detected in any of the 145 raw oyster samples surveyed, despite a marked increase in infections caused by the Omicron variant from January to April 2022 in Japan. Therefore, our results suggest that with well-developed sewage treatment facilities, consumption of oysters cultivated in coastal areas may not be a risk factor for SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Yasuko Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Uraiwan Thongchankaew-Seo
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan,Kyoto University School of Public Health, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan,Corresponding author.
| |
Collapse
|
12
|
Boni M, Gorgé O, Mullot JU, Wurtzer S, Moulin L, Maday Y, Obépine G, Canini F, Chantre M, Teyssou R, Maréchal V, Janvier F, Tournier JN. [The French Armed Forces Biomedical Research Institute (IRBA) and wastewater-based epidemiology: Applicability and relevance in armed forces]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2022; 206:1011-1021. [PMID: 36778592 PMCID: PMC9906811 DOI: 10.1016/j.banm.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
The French Armed Forces Biomedical Research Institute (IRBA) deeply involved in research on SARS-COV-2, participated in the creation of the Obépine sentinel network in charge of detecting, qualifying and quantifying the virus genome in wastewater in France. During this pandemic, wastewater-based epidemiology has proven to be a first class public health tool for assessing viral dynamics in populations and environment. Obépine has also conducted research demonstrating the low infectivity of faeces and wastewater and allowed for early detection of epidemic waves linked to new variants. The IRBA has adapted this powerful tool to the monitoring of viral infections on board the aircraft carrier Charles-de-Gaulle in order to get an operational system for anticipation after the first local outbreak in 2020. The presence of this surveillance and anticipation tool has allowed a better management of SARS-CoV-2 contingent introductions on board during stopovers or crewmembers entries. The combination of a mandatory vaccination protocol and the surveillance of viral circulation in black waters has made it possible to identify and locate cases, and thus to continue the operational mission in the COVID-19 environment while limiting the spread and preserving the health of the crew. This innovative tool can easily be redirected to the search for any other pathogens in blackwater or even, in the long term, to ensure health surveillance of any military establishment, at sea or on land, in France or on overseas bases.
Collapse
Affiliation(s)
- M Boni
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- Groupement d'intérêt scientifique Obépine, France
| | - O Gorgé
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
| | - J-U Mullot
- Laboratoire d'analyses de surveillance et d'expertise de la Marine, 83000 Toulon, France
- Laboratoire d'analyses de surveillance et d'expertise de la Marine, 83000 Toulon, France
| | - S Wurtzer
- Eau de Paris, département de recherche, développement et qualité de l'eau, 33, avenue Jean-Jaurès, 94200 Ivry-sur-Seine, France
- Groupement d'intérêt scientifique Obépine, France
| | - L Moulin
- Eau de Paris, département de recherche, développement et qualité de l'eau, 33, avenue Jean-Jaurès, 94200 Ivry-sur-Seine, France
- Groupement d'intérêt scientifique Obépine, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), Institut universitaire de France, 75005 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - Gis Obépine
- Groupement d'intérêt scientifique Obépine, France
| | - F Canini
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
| | - M Chantre
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
| | - R Teyssou
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - V Maréchal
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine, 75012 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - F Janvier
- Hôpital d'instruction des armées Sainte-Anne, service de microbiologie et hygiène hospitalière, 83000 Toulon, France
| | - J-N Tournier
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
13
|
Li Q, Bergquist R, Grant L, Song JX, Feng XY, Zhou XN. Consideration of COVID-19 beyond the human-centred approach of prevention and control: the ONE-HEALTH perspective. Emerg Microbes Infect 2022; 11:2520-2528. [PMID: 36102336 PMCID: PMC9621238 DOI: 10.1080/22221751.2022.2125343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the new emerging and re-emerging zoonotic virus outbreaks in recent years stem from close interaction with dead or alive infected animals. Since late 2019, the coronavirus disease 2019 (COVID-19) has spread into 221 countries and territories resulting in close to 300 million known infections and 5.4 million deaths in addition to a huge impact on both public health and the world economy. This paper reviews the COVID-19 prevalence in animals, raise concerns about animal welfare and discusses the role of environment in the transmission of COVID-19. Attention is drawn to the One Health concept as it emphasizes the environment in connection with the risk of transmission and establishment of diseases shared between animals and humans. Considering the importance of One Health for an effective response to the dissemination of infections of pandemic character, some unsettled issues with respect to COVID-19 are highlighted.
Collapse
Affiliation(s)
- Qin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
| | - Robert Bergquist
- Ingerod, Brastad, Sweden (formerly at the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Liz Grant
- Global Health, The University of Edinburgh, Edinburgh, UK
| | - Jun-Xia Song
- Food and Agriculture Organization of United Nations, Rome, Italy
| | - Xin-Yu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
| |
Collapse
|
14
|
Vincent-Hubert F, Wacrenier C, Desdouits M, Jousse S, Schaeffer J, Le Mehaute P, Nakache-Danglot F, Le Guyader FS. Development of passive samplers for the detection of SARS-CoV-2 in sewage and seawater: Application for the monitoring of sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155139. [PMID: 35405243 PMCID: PMC8993413 DOI: 10.1016/j.scitotenv.2022.155139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/16/2023]
Abstract
Recent studies have shown that passive sampling is a promising tool for SARS-CoV-2 detection for wastewater-based epidemiology (WBE) application. We have previously developed passive sampling of viruses using polymer membranes in seawater. Even though SARS-CoV-2 was not detected yet in seawater, passive sampling could be optimized for future application in coastal areas close to wastewater treatment plant (WWTP). The aim of this study was to optimize passive sampling of SARS-CoV-2 in sewage and seawater by selecting a suitable membrane, to determine whether the quantities of virus increase over time, and then to determine if passive sampling and traditional sampling are correlated when conducted in a wastewater treatment plant. Nylon and Zetapor allowed the detection of heat inactivated SARS-CoV-2 and of the Porcine Epidemic Diarrhea Virus (PEDV), a coronavirus surrogate, in wastewater and seawater spiked with these 2 viruses, showing an increase in detection between 4 h and 24 h of immersion and significantly higher recoveries of both viruses with nylon in seawater (15%) compared to wastewater (4%). On wastewater samples, both membranes detected the virus, the recovery rate was of about 3% for freshly collected samples, and no significant difference was found between SARS-CoV-2 genome concentration on Zetapor and that in water. In sewage spiked seawater, similar concentrations of genome were found on both membranes, with a mean recovery rate of 16% and 11% respectively for nylon and Zetapor. A 3-weeks monitoring with passive sampler allowed the detection of viruses in the influent of a WWTP with a frequency of 100% and 76% for SARS-CoV-2 and norovirus GII respectively. Passive and traditional sampling gave the same evolution of the SARS-CoV-2 concentration over time. All these results confirmed the interest of passive sampling for virus detection and its potential application for monitoring in the wastewater system for targeted public health actions.
Collapse
Affiliation(s)
- Françoise Vincent-Hubert
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France.
| | - Candice Wacrenier
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Marion Desdouits
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Sarah Jousse
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | | | | | - Françoise S Le Guyader
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| |
Collapse
|
15
|
Bukha KK, Sharif EA, Eldaghayes IM. The One Health concept for the threat of severe acute respiratory syndrome coronavirus-2 to marine ecosystems. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.48-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. This virus is the causative agent for coronavirus disease 2019 (COVID-19). Pandemic prevention is best addressed through an integrated One Health (OH) approach. Understanding zoonotic pathogen fatality and spillover from wildlife to humans are effective for controlling and preventing zoonotic outbreaks. The OH concept depends on the interface of humans, animals, and their environment. Collaboration among veterinary medicine, public health workers and clinicians, and veterinary public health is necessary for rapid response to emerging zoonotic pathogens. SARS-CoV-2 affects aquatic environments, primarily through untreated sewage. Patients with COVID-19 discharge the virus in urine and feces into residential wastewater. Thus, marine organisms may be infected with SARS-CoV-2 by the subsequent discharge of partially treated or untreated wastewater to marine waters. Viral loads can be monitored in sewage and surface waters. Furthermore, shellfish are vulnerable to SARS-CoV-2 infection. Filter-feeding organisms might be monitored to protect consumers. Finally, the stability of SARS-CoV-2 to various environmental factors aids in viral studies. This article highlights the presence and survival of SARS-CoV-2 in the marine environment and its potential to enter marine ecosystems through wastewater. Furthermore, the OH approach is discussed for improving readiness for successive outbreaks. This review analyzes information from public health and epidemiological monitoring tools to control COVID-19 transmission.
Collapse
Affiliation(s)
- Khawla K. Bukha
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ehab A. Sharif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
16
|
Barbé L, Schaeffer J, Besnard A, Jousse S, Wurtzer S, Moulin L, Le Guyader FS, Desdouits M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front Microbiol 2022; 13:889811. [PMID: 35756003 PMCID: PMC9218694 DOI: 10.3389/fmicb.2022.889811] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
Collapse
Affiliation(s)
- Laure Barbé
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Alban Besnard
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Sarah Jousse
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | | | - Laurent Moulin
- R&D Laboratory, DRDQE, Eau de Paris, Ivry-sur-Seine, France
| | | | - Marion Desdouits
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| |
Collapse
|
17
|
Brnić D, Lojkić I, Škoko I, Krešić N, Šimić I, Keros T, Ganjto M, Štefanac D, Viduka B, Karšaj D, Štiler D, Habrun B, Jemeršić L. SARS-CoV-2 circulation in Croatian wastewaters and the absence of SARS-CoV-2 in bivalve molluscan shellfish. ENVIRONMENTAL RESEARCH 2022; 207:112638. [PMID: 34990611 PMCID: PMC8721915 DOI: 10.1016/j.envres.2021.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 12/26/2021] [Indexed: 05/07/2023]
Abstract
The circulation of SARS-CoV-2 in the environment has been confirmed numerous times, whilst research on the bioaccumulation in bivalve molluscan shellfish (BMS) has been rather scarce. The present study aimed to fulfil the knowledge gap on SARS-CoV-2 circulation in wastewaters and surface waters in this region and to extend the current knowledge on potential presence of SARS-CoV-2 contamination in BMS. The study included 13 archive wastewater and surface water samples from the start of epidemic and 17 influents and effluents from nine wastewater treatment plants (WWTP) of different capacity and treatment stage, sampled during the second epidemic wave. From that period are the most of 77 collected BMS samples, represented by mussels, oysters and warty venus clams harvested along the Dalmatian coast. All samples were processed according to EN ISO 15216-1 2017 using Mengovirus as a whole process control. SARS-CoV-2 detection was performed by real-time and conventional RT-PCR assays targeting E, N and nsp14 protein genes complemented with nsp14 partial sequencing. Rotavirus A (RVA) real-time RT-PCR assay was implemented as an additional evaluation criterion of virus concentration techniques. The results revealed the circulation of SARS-CoV-2 in nine influents and two secondary treatment effluents from eight WWTPs, while all samples from the start of epidemic (wastewaters, surface waters) were negative which was influenced by sampling strategy. All tertiary effluents and BMS were SARS-CoV-2 negative. The results of RVA amplification were beneficial in evaluating virus concentration techniques and provided insights into RVA dynamics within the environment and community. In conclusion, the results of the present study confirm SARS-CoV-2 circulation in Croatian wastewaters during the second epidemic wave while extending the knowledge on wastewater treatment potential in SARS-CoV-2 removal. Our findings represent a significant contribution to the current state of knowledge that considers BMS of a very low food safety risk regarding SARS-CoV-2.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia.
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia
| | - Ines Škoko
- Croatian Veterinary Institute, Veterinary Department Split, Poljička cesta 33, 21000, Split, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia
| | - Ivana Šimić
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia; Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia
| | - Marin Ganjto
- Zagreb Wastewater Ltd., Čulinečka cesta 287, 10040, Zagreb, Croatia
| | - Dario Štefanac
- Vodovod i kanalizacija d.o.o., Gažanski trg 8, 47000, Karlovac, Croatia
| | - Branka Viduka
- Odvodnja d.o.o., Hrvatskog sabora 2D, 23000, Zadar, Croatia
| | - Dario Karšaj
- Vodovod d.o.o., Nikole Zrinskog 25, 35000, Slavonski brod, Croatia
| | - Darko Štiler
- Vinkovački vodovod i kanalizacija d.o.o., Ulica Dragutina Žanića Karle 47a, 32100, Vinkovci, Croatia
| | - Boris Habrun
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia.
| |
Collapse
|
18
|
Green TJ, Yin Walker C, Leduc S, Michalchuk T, McAllister J, Roth M, Janes JK, Krogh ET. Spatial and Temporal Pattern of Norovirus Dispersal in an Oyster Growing Region in the Northeast Pacific. Viruses 2022; 14:v14040762. [PMID: 35458492 PMCID: PMC9024690 DOI: 10.3390/v14040762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Contamination of Pacific oysters, Crassostrea gigas, by human norovirus (HuNoV) is a major constraint to sustainable shellfish farming in coastal waters of the Northeast Pacific. HuNoV is not a marine virus and must originate from a human source. A barrier to effective management is a paucity of data regarding HuNoV dispersal in the marine environment. The main objective of this study was to identify the spatial distribution and persistence of HuNoV in an active shellfish farming region in the Northeast Pacific. Market-size C. gigas were sequentially deployed for two-week intervals at 12 sites during the 2020 winter risk period from January to April. Detection of HuNoV quantification was performed by reverse transcription real-time PCR (RTqPCR) according to method ISO 15216-1:2017, with modifications. RTqPCR did not detect GI HuNoV. The estimated prevalence of GII HuNoV in oyster digestive tissue was 0.8 ± 0.2%. Spatiotemporal analysis revealed that contamination of oysters with GII HuNoV changed through time and space during the surveillance period. A single cluster of oysters contaminated with GII.2 HuNoV was detected in a small craft harbor on 23 April. There was no significant increase in the proportion of positive pools in the next nearest sampling station, indicating that HuNoV is likely to disperse less than 7 km from this non-point source of contamination. Results from this study indicate that HuNoV contamination of coastal waters from non-point sources, such as small craft harbors and urban settings, can pose a significant localised risk to shellfish farming operations in the region.
Collapse
Affiliation(s)
- Timothy J. Green
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
- Correspondence:
| | - Chen Yin Walker
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
| | - Sarah Leduc
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
| | - Trevor Michalchuk
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
| | - Joe McAllister
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
| | - Myron Roth
- BC Ministry of Agriculture, Food & Fisheries, P.O. Box 9120, Victoria, BC V8W 9B4, Canada;
| | - Jasmine K. Janes
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Erik T. Krogh
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (C.Y.W.); (S.L.); (T.M.); (J.M.); (J.K.J.); (E.T.K.)
| |
Collapse
|
19
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Mancusi A, Capuano F, Girardi S, Di Maro O, Suffredini E, Di Concilio D, Vassallo L, Cuomo MC, Tafuro M, Signorelli D, Pierri A, Pizzolante A, Cerino P, La Rosa G, Proroga YTR, Pierri B. Detection of SARS-CoV-2 RNA in Bivalve Mollusks by Droplet Digital RT-PCR (dd RT-PCR). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:943. [PMID: 35055765 PMCID: PMC8776039 DOI: 10.3390/ijerph19020943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
Bivalve shellfish are readily contaminated by human pathogens present in waters impacted by municipal sewage, and the detection of SARS-CoV-2 in feces of infected patients and in wastewater has drawn attention to the possible presence of the virus in bivalves. The aim of this study was to collect data on SARS-CoV-2 prevalence in bivalve mollusks from harvesting areas of Campania region. A total of 179 samples were collected between September 2019 and April 2021 and were tested using droplet digital RT-PCR (dd RT-PCR) and real-time RT-PCR. Combining results obtained with different assays, SARS-CoV-2 presence was detected in 27/179 (15.1%) of samples. A median viral concentration of 1.1 × 102 and 1.4 × 102 g.c./g was obtained using either Orf1b nsp14 or RdRp/gene E, respectively. Positive results were unevenly distributed among harvesting areas and over time, positive samples being more frequent after January 2021. Partial sequencing of the spike region was achieved for five samples, one of which displaying mutations characteristic of the Alpha variant (lineage B.1.1.7). This study confirms that bivalve mollusks may bioaccumulate SARS-CoV-2 to detectable levels and that they may represent a valuable approach to track SARS-CoV-2 in water bodies and to monitor outbreak trends and viral diversity.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (F.C.); (S.G.); (O.D.M.)
| | - Federico Capuano
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (F.C.); (S.G.); (O.D.M.)
| | - Santa Girardi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (F.C.); (S.G.); (O.D.M.)
| | - Orlandina Di Maro
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (F.C.); (S.G.); (O.D.M.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Denise Di Concilio
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Lucia Vassallo
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Maria Concetta Cuomo
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Maria Tafuro
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Daniel Signorelli
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Andrea Pierri
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Antonio Pizzolante
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Pellegrino Cerino
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (F.C.); (S.G.); (O.D.M.)
| | - Biancamaria Pierri
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (D.D.C.); (L.V.); (M.C.C.); (M.T.); (D.S.); (A.P.); (A.P.); (P.C.); (B.P.)
| |
Collapse
|
21
|
Le Guernic A, Palos Ladeiro M, Boudaud N, Do Nascimento J, Gantzer C, Inglard JC, Mouchel JM, Pochet C, Moulin L, Rocher V, Waldman P, Wurtzer S, Geffard A. First evidence of SARS-CoV-2 genome detection in zebra mussel (Dreissena polymorpha). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113866. [PMID: 34624574 PMCID: PMC9467573 DOI: 10.1016/j.jenvman.2021.113866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions. Within their digestive tissues, our results showed that SARS-CoV-2 genome was detected in zebra mussels, whether in raw and treated wastewaters. Moreover, the detection of the SARS-CoV-2 genome in such bivalve molluscans appeared even with low concentrations in raw wastewaters. This is the first detection of the SARS-CoV-2 genome in the tissues of a sentinel species exposed to raw and treated urban wastewaters. Despite the need for development for quantitative approaches, these results support the importance of such invertebrate organisms, especially zebra mussel, for the active surveillance of pathogenic microorganisms and their indicators in environmental waters.
Collapse
Affiliation(s)
- Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I02 SEBIO, Moulin de la Housse, BP1039, 51687, Reims, France.
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I02 SEBIO, Moulin de la Housse, BP1039, 51687, Reims, France
| | | | - Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I02 SEBIO, Moulin de la Housse, BP1039, 51687, Reims, France
| | - Christophe Gantzer
- Université de Lorraine, LCPME, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, Institut Jean Barriol, Faculté des Sciences et Technologies, Vandœuvre-lès-Nancy, F-54506, France
| | - Jean-Christophe Inglard
- Grand Reims Communauté Urbaine, Direction de l'eau et de l'assainissement, CS 80036, 51722, Reims, Cedex, France
| | - Jean-Marie Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, E-LTER Zone Atelier Seine, Paris, F-75005, France
| | - Cécile Pochet
- Grand Reims Communauté Urbaine, Direction de l'eau et de l'assainissement, CS 80036, 51722, Reims, Cedex, France
| | - Laurent Moulin
- Eau de Paris. Direction de la Recherche, du Développement et de la Qualité de l'Eau, 94200, Ivry-sur-Seine, France
| | - Vincent Rocher
- Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne (SIAAP), Direction de l'Innovation, 82 avenue Kléber, Colombes, 92700, France
| | - Prunelle Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, E-LTER Zone Atelier Seine, Paris, F-75005, France
| | - Sébastien Wurtzer
- Eau de Paris. Direction de la Recherche, du Développement et de la Qualité de l'Eau, 94200, Ivry-sur-Seine, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I02 SEBIO, Moulin de la Housse, BP1039, 51687, Reims, France
| |
Collapse
|
22
|
Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52651-52674. [PMID: 34453253 PMCID: PMC8397333 DOI: 10.1007/s11356-021-16024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/14/2021] [Indexed: 06/02/2023]
Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2, which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover, viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater. Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic in different communities as well as possible infection dynamics to prevent future outbreaks.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
- Consejo Mexiquense de Ciencia y Tecnología - COMECYT, Diagonal Alfredo del Mazo 198 y 103, Guadalupe y Club Jardín, C.P. 50010, Toluca de Lerdo, Estado de México, México.
| |
Collapse
|
23
|
Polo D, Lois M, Fernández-Núñez MT, Romalde JL. Detection of SARS-CoV-2 RNA in bivalve mollusks and marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147534. [PMID: 33984699 PMCID: PMC8099584 DOI: 10.1016/j.scitotenv.2021.147534] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 05/04/2023]
Abstract
The presence of SARS-CoV-2 in wastewater pose the question of whether this new pandemic virus could be released into watercourses and potentially continue to finally reach coastal waters. In this study, we employed two bivalve molluscan species from the genus Ruditapes as sentinel organisms to investigate the presence of SARS-CoV-2 signals in the marine coastal environment. Estuarine sediments from the natural clam banks were also analyzed. Viral RNA was detected by RT-qPCR, targeting IP4, E and N1 genomic regions. Positive samples were also subjected to a PMAxx-triton viability RT-qPCR assay in order to discriminate between intact and altered capsids, obtaining indirect information about the viability of the virus. SARS-CoV-2 RNA traces were detected in 9/12 clam samples by RT-qPCR, from which 4 were positive for two different target regions. Viral quantification ranged from
Collapse
Affiliation(s)
- David Polo
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marta Lois
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
24
|
De Rijcke M, Shaikh HM, Mees J, Nauwynck H, Vandegehuchte MB. Environmental stability of porcine respiratory coronavirus in aquatic environments. PLoS One 2021; 16:e0254540. [PMID: 34260643 PMCID: PMC8279332 DOI: 10.1371/journal.pone.0254540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses (CoVs) are a family of viruses that are best known as the causative agents of human diseases like the common cold, Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. CoVs spread by human-to-human transmission via droplets or direct contact. There is, however, concern about potential waterborne transmission of SARS-CoV-2, the virus responsible for COVID-19, as it has been found in wastewater facilities and rivers. To date, little is known about the stability of SARS-CoV-2 or any other free coronavirus in aquatic environments. The inactivation of terrestrial CoVs in seawater is rarely studied. Here, we use a porcine respiratory coronavirus (PRCV) that is commonly found in animal husbandry as a surrogate to study the stability of CoVs in natural water. A series of experiments were conducted in which PRCV (strain 91V44) was added to filtered and unfiltered fresh- and saltwater taken from the river Scheldt and the North Sea. Virus titres were then measured by TCID50-assays using swine testicle cell cultures after various incubation times. The results show that viral inactivation of PRCV in filtered seawater can be rapid, with an observed 99% decline in the viral load after just two days, which may depend on temperature and the total suspended matter concentration. PRCV degraded much slower in filtered water from the river Scheldt, taking over 15 days to decline by 99%, which was somewhat faster than the PBS control treatment (T99 = 19.2 days). Overall, the results suggest that terrestrial CoVs are not likely to accumulate in marine environments. Studies into potential interactions with exudates (proteases, nucleases) from the microbial food web are, however, recommended.
Collapse
Affiliation(s)
- Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean Site, Oostende, Belgium
| | | | - Jan Mees
- Flanders Marine Institute (VLIZ), InnovOcean Site, Oostende, Belgium
- Marine Biology Research Group, Ghent University, Faculty of Sciences, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
25
|
Occurrence of Human Enteric Viruses in Shellfish along the Production and Distribution Chain in Sicily, Italy. Foods 2021; 10:foods10061384. [PMID: 34203938 PMCID: PMC8232761 DOI: 10.3390/foods10061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Contamination of bivalve mollusks with human pathogenic viruses represents a recognized food safety risk. Thus, monitoring programs for shellfish quality along the entire food chain could help to finally preserve the health of consumers. The aim of the present study was to provide up-to-date data on the prevalence of enteric virus contamination along the shellfish production and distribution chain in Sicily. To this end, 162 batches of mollusks were collected between 2017 and 2019 from harvesting areas, depuration and dispatch centers (n = 63), restaurants (n = 6) and retail stores (n = 93) distributed all over the island. Samples were processed according to ISO 15216 standard method, and the presence of genogroup GI and GII norovirus (NoV), hepatitis A and E viruses (HAV, HEV), rotavirus and adenovirus was investigated by real-time reverse transcription polymerase chain reaction (real-time-RT PCR), nested (RT)-PCR and molecular genotyping. Our findings show that 5.56% of samples were contaminated with at least one NoV, HAV and/or HEV. Contaminated shellfish were sampled at production sites and retail stores and their origin was traced back to Spain and several municipalities in Italy. In conclusion, our study highlights the need to implement routine monitoring programs along the whole food chain as an effective measure to prevent foodborne transmission of enteric viruses.
Collapse
|
26
|
Ahmed W, Bibby K, D'Aoust PM, Delatolla R, Gerba CP, Haas CN, Hamilton KA, Hewitt J, Julian TR, Kaya D, Monis P, Moulin L, Naughton C, Noble RT, Shrestha A, Tiwari A, Simpson SL, Wurtzer S, Bivins A. Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. FEMS MICROBES 2021; 2:xtab007. [PMID: 38626275 PMCID: PMC8135732 DOI: 10.1093/femsmc/xtab007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Charles P Gerba
- Department of Environmental Science, Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | | | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and the Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St #116, Corvallis, OR 97331, USA
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Laurent Moulin
- Eau de Paris R&D Laboratory. 33 Av. Jean Jaures 94200 Ivry/seine, France
| | - Colleen Naughton
- University of California Merced Department of Civil and Environmental Engineering, 5200 N, Lake Rd. Merced, CA 95343, USA
| | - Rachel T Noble
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | | | - Sebastien Wurtzer
- Eau de Paris R&D Laboratory. 33 Av. Jean Jaures 94200 Ivry/seine, France
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|