1
|
Hu X, Sun H, Jiang Y, Xiao X, Liang Y, Lei M, Yang Y, Zhang J, Qin P, Luo L, Wu Z. π-π conjugated PDI supramolecular regulating the photoluminescence of imine-COFs for sensitive smartphone visual detection of levofloxacin. Food Chem 2024; 460:140688. [PMID: 39089027 DOI: 10.1016/j.foodchem.2024.140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
As the contamination and enrichment in food chain of levofloxacin (LV) antibiotics have caused a significant threat to life safety, the instant detection of LV has become an urgent need. Here, a PDI-functionalized imine-based covalent organic framework (PDI-COF300) was prepared by the electrostatic self-assembly method as fluorescent probe for smartphone visual detection of LV, which exhibited excellent fluorescence quantum yield (82.68%), greater stability, high sensitivity with detection limit of 0.303 μM. Based on the results of molecular docking and Stern-Volmer equation, the LV detection by PDI-COF300 was mainly a static quenching process through π-π stacked hydrophobic interactions and fluorescence resonance energy transfer. Besides, PDI-COF300 was applied to LV detection in environmental medium and milk samples with recoveries from 85.56% to 108.34% and relative standard deviations <2.70%. This work also provided a new general strategy for using PDI-COF in smartphone devices and fluorescent papers for LV fluorescence detection and microanalysis.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Xiang Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Ming Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China.
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Jiang X, Liu J, Han X, Wang F, Li Y, Wang F, Yi W. A new approach for endowing photocatalytic performance to biochar based on peryleneimide: Emphasizing the achievement of highly efficient degradation to RhB. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122770. [PMID: 39362155 DOI: 10.1016/j.jenvman.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Having unique structural characteristics of biochar contributes great potential in photocatalysis, the preparation process complexity is still a great challenge for biochar-based photocatalysts. Based on this, this study proposes a new, simple, efficient, and flexible approach to preparing biochar-based photocatalysts by perylene diimide (GPC/PDI). The results showed that the hybridization between GPC and PDI was achieved by π-π stacking, which was reduced with increasing pyrolysis temperature, increased first and then decreased with increasing PDI content, and improved with enhanced solvent polarity. When the pyrolysis temperature was 400 °C, the PDI addition was 0.05 mg, and the reaction solvent was water, the degradation of 200 mg/L rhodamine B (RhB) by GPC400/PDI0.5 was 94%, and the reaction rate constant was 10 and 4 times higher than GPC400 and PDI, which were also effective in simulating actual wastewater treatment. This was attributed to the efficient electron-hole separation and migration along the π-π stacking direction due to the hybridization of GPC and PDI, which in turn reacts to produce reactive oxygen species (1O2, •O2-, •OH), facilitating the photocatalytic degradation process.
Collapse
Affiliation(s)
- Xuya Jiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Jianbiao Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Xiangsheng Han
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Fang Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Yongxi Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Feiyu Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Weiming Yi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China.
| |
Collapse
|
3
|
Raja S, Paschoalin RT, Terra IAA, Schalla C, Guimarães F, Periyasami G, Mattoso LHC, Sechi A. Highly fluorescent hybrid nanofibers as potential nanofibrous scaffolds for studying cell-fiber interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124535. [PMID: 38830327 DOI: 10.1016/j.saa.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.
Collapse
Affiliation(s)
- Sebastian Raja
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany; Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody Street 9, Gliwice 44-100, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego Street 22b, Gliwice 44-100, Poland.
| | - Rafaella T Paschoalin
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Idelma A A Terra
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Carmen Schalla
- Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany
| | - Francisco Guimarães
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Luiz H C Mattoso
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Antonio Sechi
- Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany
| |
Collapse
|
4
|
Marinho E, Figueiredo PR, Araújo R, Proença MF. A simple protocol for the synthesis of perylene bisimides from perylene tetracarboxylic dianhydride. RSC Adv 2024; 14:11141-11150. [PMID: 38590355 PMCID: PMC10999908 DOI: 10.1039/d4ra01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Perylene bisimides are highly attractive polycyclic aromatic hydrocarbons due to their photostability associated to unique and characteristic photochemical properties. They have been widely used for analytical purposes, despite the hydrophobicity of most of these compounds. The ring substitution pattern plays an important role in fine-tuning the physicochemical properties that govern solubility and aggregation. In this work, a selection of perylene bisimides were prepared from the reaction of perylenetetracarboxylic dianhydride with α-amino acids or primary aliphatic and aromatic amines. These molecules were obtained in good yield by a simple synthetic protocol based on the use of imidazole as a green solvent and avoiding the need for complex purification methods, a major advantage for future applications. Functionalization of the exocyclic substituent can also be performed and was exemplified by the incorporation of the maleimide and anthraquinone moieties.
Collapse
Affiliation(s)
- Elina Marinho
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - Pedro R Figueiredo
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - Rui Araújo
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - M Fernanda Proença
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| |
Collapse
|
5
|
Pal A, Dey N. Surfactant-induced alterations in optoelectronic properties of perylene diimide dyes: modulating sensing responses in the aqueous environment. SOFT MATTER 2024; 20:3044-3052. [PMID: 38525678 DOI: 10.1039/d3sm01694c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The compartmentalization effect of microheterogeneous systems, like surfactant aggregates, showcases altered optoelectronic properties of a perylene diimide-based chromogenic dye (PDI-Ala) compared to bulk water. The relatively hydrophobic microenvironment, poor hydration, and exceptionally large local concentration of dye molecules in the confined environment affect their interaction with target analytes. This realization intrigued us to investigate if micellization can modify the sensing properties (selectivity, sensitivity, response kinetics, output signal, etc.) of the encapsulated dye molecules in the aqueous medium. Response comparisons of PDI-Ala to the ionic analyte (Fe3+) and biomolecule (heparin) in aqueous and surfactant-bound states highlighted significant variations. Fe3+ interaction exhibited a "turn-off" fluorescence response in a water medium, while surfactant-bound conditions triggered "turn-on" fluorescence, enhancing selectivity at the micelle-water interface. Conversely, the native probe showed no interaction with heparin in water but displayed a turn-on fluorescence response in cetyltrimethylammonium bromide (CTAB) micelles, indicating the transformation of a silent molecule into a turn-on fluorescence sensor. This study underscores the influence of micellar environments on dye molecules, altering the sensing responses and selectivity toward analytes, crucial for applications in understanding cellular pathways and toxicity mechanisms.
Collapse
Affiliation(s)
- Animesh Pal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India.
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
6
|
Geng L, Li H, Liu J, Yang Z, Wei J. Molecular Stacking Dependent Molecular Oxygen Activation in Supramolecular Polymeric Photocatalysts. J Phys Chem Lett 2024; 15:3127-3134. [PMID: 38471101 DOI: 10.1021/acs.jpclett.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Here, we showed that supramolecular assemblies based on perylene diimides (PDIs) are able to activate molecular oxygen through both the electron transfer and energy transfer pathways, which consequently leads to the formation of superoxide radicals (·O2-) and singlet oxygen species (1O2), respectively. These reactive oxygen species (ROS) can effectively lead to oxidative coupling of benzylamine and oxidation of 2-chloroethyl sulfide (CEES). We have designed and synthesized PDIs with similar molecular structures yet differing by the molecular stacking modes. We found that the photooxidation activities of the PDI supramolecular assemblies are inversely associated with the photoluminescence wavelength difference between the assemblies and the monomers (Δλ) quantitatively, and a smaller Δλ results in a higher catalytic efficiency accordingly. Overall, this work contributes to the design and fabrication of high performance photocatalysts based on metal-free organic materials.
Collapse
Affiliation(s)
- Lifang Geng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
7
|
Mathew R, Mazumder A, Kumar P, Matula J, Mohamed S, Brazda P, Hariharan M, Thomas B. Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach. Chem Sci 2024; 15:490-499. [PMID: 38179523 PMCID: PMC10762722 DOI: 10.1039/d3sc05514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Profound knowledge of the molecular structure and supramolecular organization of organic molecules is essential to understand their structure-property relationships. Herein we demonstrate the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI), revealing that the perylenediimide units exhibit an X-shaped packing pattern. The packing of NO2-PDI is derived using a complementary approach that utilises solid-state NMR (ssNMR) and 3D electron diffraction (3D ED) techniques. Perylenediimide (PDI) molecules are captivating due to their high luminescence efficiency and optoelectronic properties, which are related to supramolecular self-assembly. Increasing the alkyl chain length on the imide substituent poses a more significant challenge in crystallizing the resulting molecule. In addition to the alkyl tails, other functional groups, like the nitro group attached as a bay substituent, can also cause disorder. Such heterogeneity could lead to diffuse scattering, which then complicates the interpretation of diffraction experiment data, where perfect periodicity is expected. As a result, there is an unmet need to develop a methodology for solving the structures of difficult-to-crystallize materials. A synergistic approach is utilised in this manuscript to understand the packing arrangement of the disordered material NO2-PDI by making use of 3D ED, ssNMR and density functional theory calculations (DFT). The combination of these experimental and theoretical approaches provides great promise in enabling the structural investigation of novel materials with customized properties across various applications, which are, due to the internal disorder, very difficult to study by diffraction techniques. By effectively addressing these challenges, our methodology opens up new avenues for material characterization, thereby driving exciting advancements in the field.
Collapse
Affiliation(s)
- Renny Mathew
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Praveen Kumar
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Julie Matula
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Petr Brazda
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2/1999 18200 Prague 8 Czech Republic
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Brijith Thomas
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
8
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
9
|
Shao C, Guo B, Lu B, Yu J, Kong H, Wang B, Ding M, Li C. PDI-Based Organic Small Molecule Regulated by Inter/Intramolecular Interactions for Efficient Solar Vapor Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305856. [PMID: 37635112 DOI: 10.1002/smll.202305856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Organic small molecules with processing feasibility, structural diversity, and fine-tuned properties have the potential applications in solar vapor generation. However, the common defects of narrow solar absorption, low photothermal conversion efficiency, and photobleaching result in limited materials available and unsatisfactory evaporation performance. Herein, the perylene diimide (PDI) derivatives are exploited as stable sunlight absorbers for solar vapor generation. Particularly, the N,N'-bis(3,4,5-trimethoxyphenyl)-3,4,9,10-perylenetetracarboxylic diimide (PDI-DTMA) is well-designed with donor-acceptor-donor configuration based on plane rigid PDI core. The efficient photothermal conversion is enabled through strong intermolecular π-π stacking and intramolecular charge transfer, as revealed by experimental demonstration and theoretical calculation. The PDI-DTMA with a narrow band gap of 1.17 eV exhibits expanded absorption spectrum and enhanced nonradiative transition capability. The 3D hybrid hydrogels (PPHs) combining PDI-DTMA and polyvinyl alcohol are constructed. With the synergistic effect of solar-to-heat conversion, thermal localization management, water activation, and unobstructed water transmission of PPHs, the high water evaporation rates can reach 3.61-10.07 kg m-2 h-1 under one sun. The hydrogels also possess great potential in seawater desalination and sewage treatment. Overall, this work provides valuable insights into the design of photothermal organic small molecules and demonstrates their potentials in solar water evaporation.
Collapse
Affiliation(s)
- Changxiang Shao
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bingpeng Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250103, China
| | - Bing Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiahui Yu
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huijun Kong
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Baolei Wang
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Meichun Ding
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chenwei Li
- School of Chemistry & Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
10
|
Konidaris KF, Zambra M, Giannici F, Guagliardi A, Masciocchi N. Forcing Twisted 1,7-Dibromoperylene Diimides to Flatten in the Solid State: What a Difference an Atom Makes. Angew Chem Int Ed Engl 2023; 62:e202310445. [PMID: 37743252 DOI: 10.1002/anie.202310445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Perylene diimides (PDI) are workhorses in the field of organic electronics, owing to their appealing n-semiconducting properties. Optimization of their performances is widely pursued by bay-atom substitution and diverse imide functionalization. Bulk solids and thin-films of these species crystallize in a variety of stacking configurations, depending on the geometry of the stable conformation of the polyaromatic core. We here demonstrate that 1,7-dibromo-substituted perylene diimides, PDI(H2 Br2 ), possessing a heavily twisted conformation in the gas phase, in solution and in the solids, can be easily flattened in the solid state into centrosymmetric molecules if the polyaromatic cores form π-π stabilized chains. This is achieved by using axial residues with low stereochemical hindrance, as guaranteed by a single CH2 /NH spacer directly linked to the imide function. Structural powder diffraction and DFT calculations on four newly designed species of the PDI(H2 Br2 ) class coherently show that, thanks to the flexibility of the N-X-Ar link (X=CH2 /NH), flat cores are indeed obtained by overcoming the interconversion barrier between twisted atropoisomers, of only 26.5 kJ mol-1 . This strategy may then be useful to induce "anomalously flat" polyaromatic cores of different kinds (substituted acenes/rylenes) in the solid state, towards suitable crystal packing and orbital interactions for improved electronic performances.
Collapse
Affiliation(s)
- Konstantis F Konidaris
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marco Zambra
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed.17, 90128, Palermo, Italy
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, C.N.R., National Research Council, via Valleggio 11, 22100, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
11
|
Zheng Q, Li Q, Tao Y, Gong J, Shi J, Yan Y, Guo X, Yang H. Efficient removal of copper and silver ions in electroplating wastewater by magnetic-MOF-based hydrogel and a reuse case for photocatalytic application. CHEMOSPHERE 2023; 340:139885. [PMID: 37604344 DOI: 10.1016/j.chemosphere.2023.139885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Direct discharge of electroplating wastewater containing hazardous metal ions such as Cu2+ and Ag + results in environmental pollution. In this study, we rationally prepare a magnetic composite hydrogel consisted of Fe3O4, UiO-66-NH2, chitosan (CTS) and polyethyleneimine (PEI), namely Fe3O4@UiO-66-NH2/CTS-PEI. Thanks to the strong attraction between the amino group and metal cations, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel shows the maximum adsorption capacities of 321.67 mg g-1 for Cu2+ ions and 226.88 mg g-1 for Ag + ions within 120 min. As real scenario, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel exhibits excellent removal efficiencies for metallic ions even in the complicated media of actual electroplating wastewater. In addition, we explore the competitive adsorption order of metal cations by using experimental characterization and theoretical calculations. The optimal configuration of CTS-PEI is also discovered with the density functional theory, and the water retention within hydrogel is simulated through molecular dynamics modeling. We find that the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel could be reused and after 5 cycles of adsorption-desorption, removal efficiency could maintain 80%. Finally, the Ag+ accumulated by hydrogel are reduced to generate a photocatalyst for efficient degradation of Rhodamine B. The novel magnetic hydrogel paves a promising path for efficient removal of heavy metal ions in wastewater and further resource utilization as photocatalysts.
Collapse
Affiliation(s)
- Qiangting Zheng
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinyi Li
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Tao
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiamin Gong
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiangli Shi
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Yan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
12
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Shi K, Zhou M, Wang F, Li X, Huang W, Lu K, Yang K, Yu C. Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction: Efficient photocatalytic degradation of tetracycline hydrochloride. CHEMOSPHERE 2023; 329:138617. [PMID: 37037355 DOI: 10.1016/j.chemosphere.2023.138617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of an all-organic Z-scheme heterojunction photocatalyst with the matched band structure, efficient electron transfer and excellent photocatalytic performance is valuable for a sustainable future. A novel perylene diimide/phthalocyanine iron (PDI/FePc) heterojunctions with strong π-π interaction were synthesized by a self-assembled method, which exhibited strong visible-light-driven photocatalytic degradation activities of tetracycline hydrochloride (TC). The TC removal rate over PDI/FePc was achieved three times and 87.5 times higher than that of PDI and FePc. PDI/FePc (131.1 mv·dec-1) presented a lower Taffel slope than that of PDI (228.6 mv·dec-1) for the oxidation. This may be due to the strong π-π interactions between PDI and FePc, which can reduce the layer spacing of the supramolecular structure and facilitate the separation and transfer of photogenerated carriers in the built-in electric field. In addition, radical quenching tests revealed that superoxide radicals (•O2-) acted as a dominant role in photocatalytic oxidation. An increscent specific surface area of PDI decorated by FePc also gave the rapid pathway for charge transfer and enhanced the adsorption ability. This provides a new idea for the formation of heterojunction to improve the photocatalytic activity of organic supramolecular materials.
Collapse
Affiliation(s)
- Kaiyang Shi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Man Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fulin Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Xiangwei Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Weiya Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kangqiang Lu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
14
|
Abumelha HM, Alharbi H, Abualnaja MM, Alsharief HH, Ashour GR, Saad FA, El-Metwaly NM. Preparation of fluorescent ink using perylene-encapsulated silica nanoparticles toward authentication of documents. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Zhao Y, Liu T, Gao J, Zhang Q, Liao M, Cheng H, Tian J, Yao Z. Nanoassemblies Based on a Cationic Perylene Diimide Derivative and Sodium Dodecyl Sulfate: A Simple Fluorescent Platform for Efficient Analysis of Aflatoxin B 1. Anal Chem 2023; 95:8250-8257. [PMID: 37186575 DOI: 10.1021/acs.analchem.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a kind of potently carcinogenic fungal metabolite in food threatening human health, and it is crucial and challenging to develop advanced nonimmune approaches for AFB1 determination. Addressing this challenge, we successfully constructed a nanoassembly (PdE-PDI/SDS) by noncovalently coupling a cationic perylene diimide derivative (PdE-PDI) and sodium dodecyl sulfate (SDS), exhibiting high-density charges and a specific surface area for rapid sensing of AFB1. The large electronic conjugate structure and rigid plane of PdE-PDI enable it to form more stable σ-π, π-π coordination, and hydrogen bonds with AFB1. Additionally, the introduction of SDS significantly amplifies noncovalent interactions and enhances the quenching efficiency of PdE-PDI toward AFB1. The proposed PdE-PDI/SDS exhibited excellent specificity to AFB1 and showed dosage-sensitive detection with detection limit as low as 0.74 ng mL-1. Finally, the PdE-PDI/SDS was successfully applied in cereal samples with good recoveries from 94.61 to 109.92%. To our knowledge, this is the first time a fluorescent strategy from the point of self-assembly for AFB1 determination is reported, which holds great promise for wide applications of perylene diimide derivative in food safety.
Collapse
Affiliation(s)
- Yijian Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyue Liu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinghui Gao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengyu Liao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - He Cheng
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingsheng Tian
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Liu J, Peng Q, Yang R, Wang B, Zhang X, Wang R, Zhu X, Cheng M, Xu H, Li H. Incorporating Fe, Co co-doped graphene with PDI supermolecular for promoted photocatalytic activity: A story of electron transfer. J Colloid Interface Sci 2023; 637:94-103. [PMID: 36689801 DOI: 10.1016/j.jcis.2022.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Iron-cobalt dual single-atom anchoring on nitrogen-doped graphene (FexCoy-NG) improves the efficiency of migration and separation of photo-generated carriers. In this work, the perylene diimide (PDI) is self-assembled on the FexCoy-NG to form the FexCoy-NG/PDI composites by π-π interaction, which is reported for the first time. The bisphenol A (BPA) degradation of optimized 20% Fe0.2Co0.8-NG/PDI are nearly 100%, and the degradation rate is 1.5 and 12.7 times that of the self-assembled PDI and commercial-grade PDI. The high degradation performance by FexCoy-NG/PDI are mainly due to: (i) regulating the proportion of Fe-Co dual active sites content, so that it can achieve the synergistic interaction to facilitate the transfer of electrons in the catalytic reaction. (ii) PDI is uniformly dispersed by adding the FexCoy-NG, which increases the specific surface area of composites to adsorb more pollutants. Free radical trapping experiments and electron spin-resonance spectroscopy characterization confirmed that the O2-, OH, 1O2 and h+ are the main reactive species (RSs) for BPA degradation. Under the attack of RSs, BPA completes the processes of hydroxylation, demethylation, aromatization, ring-opening, and finally complete mineralization into CO2 and H2O. These results revealed that Fe0.2Co0.8-NG/PDI photocatalysts may be efficiently applied for the remediation of phenol contaminated natural waters.
Collapse
Affiliation(s)
- Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Qichang Peng
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ruizhe Yang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaolin Zhang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Rong Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Ming Cheng
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
17
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
18
|
Mohamed AL, Khattab TA, Hassabo AG. Color-tunable encapsulated perylene-labeled silica fluorescent hybrid nanoparticles. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
19
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
20
|
Wu L, Song Y, Xing S, Li Y, Xu H, Yang Q, Li Y. Advances in electrospun nanofibrous membrane sensors for ion detection. RSC Adv 2022; 12:34866-34891. [PMID: 36540220 PMCID: PMC9724217 DOI: 10.1039/d2ra04911b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Harmful metal ions and toxic anions produced in industrial processes cause serious damage to the environment and human health. Chemical sensors are used as an efficient and convenient detection method for harmful ions. Electrospun fiber membranes are widely used in the field of solid-state chemical sensors due to high specific surface area, high porosity, and strong adsorption. This paper reviews the solid-state chemical sensors based on electrospinning technology for the detection of harmful heavy metal ions and toxic anions in water over the past decade. These electrospun fiber sensors have different preparation methods, sensing mechanisms, and sensing properties. The preparation method can be completed by physical doping, chemical modification, copolymerization, surface adsorption and self-assembly combined with electrospinning, and the material can also be combined with organic fluorescent molecules, biological matrix materials and precious metal materials. Sensing performance aspects can also be manifested as changes in color and fluorescence. By comparing the literature, we summarize the advantages and disadvantages of electrospinning technology in the field of ion sensing, and discuss the opportunities and challenges of electrospun fiber sensor research. We hope that this review can provide inspiration for the development of electrospun fiber sensors.
Collapse
Affiliation(s)
- Liangqiang Wu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yan Song
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology Jilin 132022 P. R. China
| | - Shuo Xing
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yapeng Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Hai Xu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Qingbiao Yang
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yaoxian Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| |
Collapse
|
21
|
Mohan B, Xing T, Kumar S, Kumar S, Ma S, Sun F, Xing D, Ren P. A chemosensing approach for the colorimetric and spectroscopic detection of Cr 3+, Cu 2+, Fe 3+, and Gd 3+ metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157242. [PMID: 35820525 DOI: 10.1016/j.scitotenv.2022.157242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal cations are present in domestic and industrial wastewater and have adverse effects on human and aqueous life. The present study describes the development of the molecular probe 9-anthracen-9-ylmethylene)hydrazineylidene)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (AMHMPQ) to detect Cr3+, Cu2+, Fe3+, and Gd3+ ions by using UV-visible, fluorescence, colorimetric and excitation-emission matrix (EEM) spectroscopy techniques. The interaction of Cr3+, Cu2+, Fe3+, and Gd3+ can be observed by the absorption maxima shift, turn-off, colour changes, and EEM shifts. In addition, fluorescence limits of detection 17.66 × 10-6 M, 6.44 × 10-9 M, 28.87 × 10-8 M, and 12.49 × 10-6 M in wide linear ranges, low limits of quantifications, high values of Stern-Volmer constant, Job's plot and Benesi-Hildebrand plot justify the 1:1 association affinity with association constants of 1.46 × 104 M-1, 1.86 × 107 M-1, 2.69 × 105 M-1, 2.13 × 104 M-1 for AMHMPQ-metal ions (Cr3+, Cu2+, Fe3+, and Gd3+ ions), respectively. Paper- and mask-based kits are developed to explore the utility of the designed chemosensor. Additionally, AMHMPQ acts as a reusable sensor for two, seven, two, and zero cycles for Cr3+, Cu2+, Fe3+, and Gd3+ ions, respectively, when checked with EDTA.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiantian Xing
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Shixuan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dingyu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
22
|
Morphology engineering and photothermal effect derived from perylene diimide based derivative for boosting photocatalytic hydrogen evolution of ZnIn 2S 4. J Colloid Interface Sci 2022; 628:701-711. [PMID: 36027780 DOI: 10.1016/j.jcis.2022.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
The construction of excellent photocatalysts for splitting water into hydrogen is highly desirable to realize carbon neutralization. In this work, an innovative and well-designed S-scheme photocatalyst composed of ultrathin ZnIn2S4 (ZIS) nanosheets uniformly anchored on the surface of organic semiconductor PDIIM is successfully fabricated. Within the heterojunction, perylene diimide with an imidazole group (PDIIM) is strategically applied as a structure template, which plays a crucial role in optimizing the morphology, increasing the active sites of sulfur vacancies, providing the additional photothermal effect, and promoting photogenerated charge separation of the catalyst. The photocatalytic H2 generation rate of the ZIS/PDIIM heterojunction with an optimized mass ratio reaches up to 13.04 mmol/g/h, which is 2.64 times and 14.02 times higher than that of pristine ZIS and PDIIM, respectively. The outstanding photocatalytic activity is attributed to the synergistic effect of the above advantages. Importantly, the photothermal effect induced by PDIIM belonging to the perylene diimide-based derivative was discovered to accelerate photocatalytic H2 generation for the first time. This work provides valuable insight into the utilization of perylene diimide-based derivatives in the construction of multi-effect enhancement photocatalysts and their application in photothermal-assisted photocatalytic hydrogen evolution.
Collapse
|
23
|
Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, Li X, Yang G, Yu S, Chen Y. A perylenediimide modified SiO 2@TiO 2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H 2O 2 and sarcosine sensing. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129321. [PMID: 35739809 DOI: 10.1016/j.jhazmat.2022.129321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although light-responsive nanozyme have been widely used in colorimetric sensing, some limitations such as poor catalytic activity, low detection efficiency, and unclear structure-activity relationships remain unresolved. Herein, we prepared an excellent light-responsive peroxidase (POD) mimic, perylenediimide (PDI-OH) modified SiO2 @TiO2 yolk-shell spheres (SiO2 @TiO2/PDI-OH), based on DFT-assisted design. The experiment and DFT calculation revealed that the enhanced POD-like activity was mainly attributed to a suitable built-in electric field among adjacent PDI-OH molecules on the surface of the SiO2 @TiO2 and the unique yolk-shell structure with more reaction sites of SiO2 @TiO2. Consequently, the highly selective and ultrasensitive detection of H2O2 is achieved with a detection limit (LOD) of 7.6 × 10-8M. Further, the selective detection of sarcosine with LOD of 1.2 × 10-7 M was also achieved by introducing sarcosine oxidase (SOx). This colorimetric assay is successfully applied to selectively detect H2O2 and sarcosine levels in real samples. Controlled response time, anti-interference, and the robustness of the developed colorimetric sensor are the key advantages. And the present work firstly clarifies the effect of PDIs substituents on the POD-like activity of light-responsive nanozymes and provided new guidelines to develop high-performance nanozymes for hazardous substances detection.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Chuanwang Xing
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wen Gao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266580, Shandong, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
24
|
Thaichana P, Summart R, Dejkriengkraikul P, Meepowpan P, Lee TR, Tuntiwechapikul W. Hydrosoluble Perylene Monoimide-Based Telomerase Inhibitors with Diminished Cytotoxicity. ACS OMEGA 2022; 7:16746-16756. [PMID: 35601338 PMCID: PMC9118414 DOI: 10.1021/acsomega.2c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Telomerase is essential for the immortality characteristics of most cancers. Telomerase-specific inhibitors should render cancer cells to replicative senescence without acute cytotoxicity. Perylene-based G-quadruplex (G4) ligands are widely studied as telomerase inhibitors. Most reported perylene-based G4 ligands are perylene diimides (PDIs), which often suffer from self-aggregation in aqueous solutions. Previously, we found that PM2, a perylene monoimide (PMI), exhibited better solubility, G4 binding affinity, and telomerase inhibition than PIPER, the prototypic PDI. However, the acute cytotoxicity of PM2 was about 20-30 times more than PIPER in cancer cells. In this report, we replaced the piperazine side chain of PM2 with ethylenediamine to yield PM3 and replaced the N,N-diethylethylenediamine side chain of PM2 with the 1-(2-aminoethyl) piperidine to yield PM5. We found that asymmetric PMIs with two basic side chains (PM2, PM3, and PM5) performed better than PIPER (the prototypic PDI), in terms of hydrosolubility, G4 binding, in vitro telomerase inhibition, and suppression of human telomerase reverse transcriptase (hTERT) expression and telomerase activity in A549 cells. However, PM5 was 7-10 times less toxic than PM2 and PM3 in three cancer cell lines. We conclude that replacing the N,N-diethylethylenediamine side chain with the 2-aminoethylpiperidine on PMIs reduces the cytotoxicity in cancer cells without impacting G4 binding and telomerase inhibition. This study paves the way for synthesizing new PMIs with drug-like properties for selective telomerase inhibition.
Collapse
Affiliation(s)
- Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Wang Y, Cui X, Gao H, Lu R, Zhou W. A fluorescent organic nanoparticles-based sensor synthesized through hydrothermal process and its application in sensing Hg 2+ of real samples and fast visual detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120833. [PMID: 34999359 DOI: 10.1016/j.saa.2021.120833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The fluorescent organic nanoparticles (FONs)-based sensor has been attracting great attention in recent years. There are still big challenges in the preparation and application of FONs-based sensor. In this study, a FONs-based sensor was designed and developed through facile hydrothermal process using 3-perylenecarboxaldehyde (PlCA) as the fluorophore and L-methionine (Met) as the recognition site for mercury ions. According to the experimental results, the fluorescence intensity of the as-prepared PlCA-M would decrease when adding Hg2+ and the mechanism was extrapolated to be photoinduced electron transfer inducing by specific coordination interaction. The acquired PlCA-M-based sensor was used to monitor Hg2+ in several real samples (environmental water, tea, and apple) with the limit of detection being 60 nM. Remarkably, a visual detection device based on FONs, SDS-PAAG (sodium dodecyl sulfate polyacrylamide gel) @PlCA-M was firstly constructed and successfully used to Hg2+ semi-quantitation by naked eyes. In addition, the acquired FONs was applied into imaging tool for security information detection and identified as solid-state luminescent material for the first time.
Collapse
Affiliation(s)
- Yujiao Wang
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Xiaoyan Cui
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Haixiang Gao
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Runhua Lu
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China.
| |
Collapse
|
26
|
Negrin-Yuvero H, Mukazhanova A, Freixas VM, Tretiak S, Sharifzadeh S, Fernandez-Alberti S. Vibronic Photoexcitation Dynamics of Perylene Diimide: Computational Insights. J Phys Chem A 2022; 126:733-741. [PMID: 35084863 DOI: 10.1021/acs.jpca.1c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.
Collapse
Affiliation(s)
- Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Aliya Mukazhanova
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
27
|
Perylene diimide supermolecule (PDI) as a novel and highly efficient cocatalyst for photocatalytic degradation of tetracycline in water: A case study of PDI decorated graphitic carbon nitride/bismuth tungstate composite. J Colloid Interface Sci 2022; 615:849-864. [PMID: 35182855 DOI: 10.1016/j.jcis.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Employing perylene diimide supermolecule (PDI) as metal-free cocatalyst, a novel PDI/g-C3N4/Bi2WO6 (PCB) photocatalyst was constructed for the effective degradation of antibiotics. Both the photocatalytic activity and photostability of g-C3N4/Bi2WO6 (gCB) were further improved after loading PDI. Under simulated sunlight illumination, the apparent rate constant of tetracycline (TC) degradation by PCB reached 2.6 times that of gCB. The photocatalytic activity of PCB still kept over 80% after 4 cycle experiments, while gCB only remained around 21%. The superior activity of PCB was ascribed to the synergism between the extended visible light absorption range through the participation of PDI cocatalyst and facilitated gCB-to-PDI photoelectron transfer. TC would finally be transformed into non-toxic ring opening products and mineralized. This work demonstrated that PDI was an excellent metal-free cocatalyst and exhibited great potential to boost the activity of photocatalysts.
Collapse
|
28
|
Kwon NY, Kim Y, Kataria M, Park SH, Cho S, Harit AK, Woo HY, Cho MJ, Park S, Choi DH. Donor-σ-Acceptor Dyad-Based Polymers for Portable Sensors: Controlling Photoinduced Electron Transfer via Tuning the Frontier Molecular Orbital Energies of Acceptors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Youngseo Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Meenal Kataria
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seunguk Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
29
|
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Li L, Wang Y, Sun Y, Yang W, Yin X, Chen Y, Liu Y. Novel and green hydroxyperylene imide based fluorescent polymer for calcium sulfate scale inhibition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Banerjee M, Bhosle AA, Chatterjee A, Saha S. Mechanochemical Synthesis of Organic Dyes and Fluorophores. J Org Chem 2021; 86:13911-13923. [PMID: 34398612 DOI: 10.1021/acs.joc.1c01540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of dyes and fluorophores have significant commercial importance. In recent years, mechanochemistry has emerged as a green and sustainable alternative for the synthesis of conventional dyes, new fluorophores, and also synthetic modification of known dyes for their use as chemosensors. The dyestuffs based on BODIPYs, rhodamine, fluorescein, perylenedimides, coumarins, benzothiazoles, etc. were synthesized or derivatized by grinding or milling. The synopsis aims to pay key attention to their synthesis and the applications as chemosensors will be briefly covered.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Soumik Saha
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| |
Collapse
|
32
|
Werner D, Alexander T, Winkler D, Apaydin DH, Loerting T, Portenkirchner E. Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon‐Based Electrodes with Potential Application for Organic Na‐Ion Batteries. Isr J Chem 2021. [DOI: 10.1002/ijch.202100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Werner
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Thöny Alexander
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Daniel Winkler
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | | | - Thomas Loerting
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | | |
Collapse
|
33
|
|