1
|
Xu L, Xu J, Chen W, Xie L. Pressure-centric regulation for efficient anaerobic digestion: State-of-the-art, challenges and prospects. BIORESOURCE TECHNOLOGY 2024; 413:131421. [PMID: 39233186 DOI: 10.1016/j.biortech.2024.131421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Anaerobic digestion (AD) is an environmentally friendly technology that simultaneously stabilizes biowaste and produces biogas. Conventional AD faces challenges such as inadequate substrate degradation and low methane purity. Pressure-centric regulation serves as an AD optimization strategy that can enhance the digestion efficiency and generate higher-energy-value biogas. However, limited reviews have been undertaken to focus on this technology. This review is designed to discuss innovations in ex-situ high-pressure pretreatment and in-situ high-pressure anaerobic digestion (HPAD) processes. Moreover, comprehensive understandings on the intrinsic mechanisms of HPAD are critically examined, including physicochemical reaction principles and microbial responses. The constraints currently curtailing these technologies and potential mitigation strategies are also scrutinized. Additionally, current knowledge gaps and future research directions on mechanisms, model fitting, and engineering practices are presented. Overall, this work highlights the feasibility of pressure-centric regulated AD and provides novel insights to overcome existing technical barriers in its application.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Baransi-Karkaby K, Yanuka-Golub K, Hassanin M, Massalha N, Sabbah I. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects. Biotechnol Bioeng 2024; 121:3471-3483. [PMID: 39036861 DOI: 10.1002/bit.28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.
Collapse
Affiliation(s)
- Katie Baransi-Karkaby
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Keren Yanuka-Golub
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Mahdi Hassanin
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
3
|
Swinbourn R, Li C, Wang F. A Comprehensive Review on Biomethane Production from Biogas Separation and its Techno-Economic Assessments. CHEMSUSCHEM 2024; 17:e202400779. [PMID: 38958605 DOI: 10.1002/cssc.202400779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Biogas offers significant benefits as a renewable energy source, contributing to decarbonization, waste management, and economic development. This comprehensive review examines the historical, technological, economic, and global aspects of biomethane production, focusing on the key players such as China, the European Union, and North America, and associated opportunities and challenges as well as future prospects from an Australia perspective. The review begins with an introduction to biogas, detailing its composition, feedstock sources, historical development, and anaerobic digestion (AD) process. Subsequently, it delves into major biomethane production technologies, including physicochemical absorption, high-pressure water scrubbing (HPWS), amine scrubbing (AS), pressure swing adsorption (PSA), membrane permeation/separation (MP), and other technologies including organic solvent scrubbing and cryogenic separation. The study also discusses general guidelines of techno-economic assessments (TEAs) regarding biomethane production, outlining the methodologies, inventory analysis, environmental life cycle assessment (LCA), and estimated production costs. Challenges and opportunities of biogas utilization in Australia are explored, highlighting and referencing global projections, polarization in production approaches, circularity in waste management, and specific considerations for Australia. The review concludes discussing future perspectives for biomethane, emphasizing the importance of technological advancements, policy support, and investment in realizing its full potential for sustainable energy and waste management solutions.
Collapse
Affiliation(s)
- Ross Swinbourn
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, 3122, Victoria, Australia
- Victorian Hydrogen Hub, Swinburne University of Technology, Melbourne, 3122, Victoria, Australia
- CSIRO Energy, 71 Normandy Road, Clayton North, 3169, Victoria, Australia
| | - Chaoen Li
- CSIRO Energy, 71 Normandy Road, Clayton North, 3169, Victoria, Australia
- Research Institute for Carbon Materials and Hydrogen Technologies, Wenzhou University, Wenzhou, 325206, Zhejiang Province, The PR China
| | - Feng Wang
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, 3122, Victoria, Australia
| |
Collapse
|
4
|
Dhull P, Kumar S, Yadav N, Lohchab RK. A comprehensive review on anaerobic digestion with focus on potential feedstocks, limitations associated and recent advances for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33736-6. [PMID: 38795291 DOI: 10.1007/s11356-024-33736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
With the escalating energy demand to accommodate the growing population and its needs along with the responsibility to mitigate climate change and its consequences, anaerobic digestion (AD) has become the potential approach to sustainably fulfil our demands and tackle environmental issues. Notably, a lot of attention has been drawn in recent years towards the production of biogas around the world in waste-to-energy perspective. Nevertheless, the progress of AD is hindered by several factors such as operating parameters, designing and the performance of AD reactors. Furthermore, the full potential of this approach is not fully realised yet due the dependence on people's acceptance and government policies. This article focuses on the different types of feedstocks and their biogas production potential. The feedstock selection is the basic and most important step for accessing the biogas yield. Furthermore, different stages of the AD process, design and the configuration of the biogas digester/reactors have been discussed to get better insight into process. The important aspect to talk about this process is its limitations associated which have been focused upon in detail. Biogas is considered to attain the sustainable development goals (SDG) proposed by United Nations. Therefore, the huge focus should be drawn towards its improvements to counter the limitation and makes it available to all the rural communities in developing countries and set-up the pilot scale AD plants in both developing and developed countries. In this regard, this article talks about the improvements and futures perspective related to the AD process and biogas enhancement.
Collapse
Affiliation(s)
- Paramjeet Dhull
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
| | - Nisha Yadav
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
| | - Rajesh Kumar Lohchab
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India.
| |
Collapse
|
5
|
He W, Liu H, Fu B, Chen C, Zhang C, Li J. CO 2 sequestration in microbial electrolytic cell-anaerobic digestion system combined with mineral carbonation for sludge hydrolysate treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:331-338. [PMID: 38430747 DOI: 10.1016/j.wasman.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.
Collapse
Affiliation(s)
- Wanying He
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chao Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Li Y, Zhang Z, Tang J, Ruan W, Shi W, Huang Z, Zhao M. In-situ methane enrichment in anaerobic digestion of food waste slurry by nano zero-valent iron: Long-term performance and microbial community succession. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120733. [PMID: 38531140 DOI: 10.1016/j.jenvman.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
In this work, nano zero-valent iron (nZVI) was added to a lab-scale continuous stirring tank reactor (CSTR) for food waste slurry treatment, and the effect of dosing rate and dosage of nZVI were attempted to be changed. The results showed that anaerobic digestion (AD) efficiency and biomethanation stability were optimum under the daily dosing and dosage of 0.48 g/gTCOD. The average daily methane (CH4) yield reached 495.38 mL/gTCOD, which was 43.65% higher than that at control stage, and the maximum CH4 content reached 95%. However, under single dosing rate conditions, high nZVI concentrations caused microbial cell rupture and loosely bound extracellular polymeric substances (LB-EPS) precipitation degradation. The daily dosing rate promoted the hydrogenotrophic methanogenesis pathway, and the activity of coenzyme F420 increased by 400.29%. The microbial analysis indicated that daily addition of nZVI could promote the growth of acid-producing bacteria (Firmicutes and Bacteroidetes) and methanogens (Methanothrix).
Collapse
Affiliation(s)
- Yong Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhou Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jieyu Tang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Xiao Y, Zhangzhong L, Tan S, Song P, Zheng W, Li Y. Effect of nanobubble concentrations on fouling control capacity in biogas slurry wastewater distribution systems. BIORESOURCE TECHNOLOGY 2024; 396:130455. [PMID: 38360221 DOI: 10.1016/j.biortech.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Nanobubble (NB) represents a promising practice for mitigating fouling in biogas slurry distribution systems. However, its anti-fouling effectiveness and optimal use dosage are unknown. This study investigated the NB anti-fouling capacity at six concentrations (0 %-100 %, denoting the ratio of maximum NB-infused water; particle concentrations in 0 % and 100 % ratios were 1.08 × 107 and 1.19 × 109 particles mL-1, respectively). Results showed that NB effectively mitigated multiple fouling at 50 %-100 % ratios, whereas low NB concentration exacerbated fouling. NB functioned both as an activator and a bactericide for microorganisms, significantly promoting biofouling at 5 %-25 %, and inhibiting biofouling at 50 %-100 %. Owing to an enhanced biofilm biomineralization ability, low NB concentration aggravated precipitate fouling, whereas high NB doses effectively mitigated precipitates. Additionally, higher NB concentrations demonstrated superior control efficiency against particulate fouling. This study contributes insights into NB effectiveness in controlling various fouling types within wastewater distribution systems.
Collapse
Affiliation(s)
- Yang Xiao
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Zhangzhong
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Siyuan Tan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Wengang Zheng
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Lee ES, Park SY, Kim CG. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:133-145. [PMID: 38194798 DOI: 10.1016/j.wasman.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
To identify an economically viable waste management system for bioplastics, thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) were anaerobically digested under hydrogen (H2)/carbon dioxide (CO2) and nitrogen (N2) gas-purged conditions to compare methane (CH4) production and biodegradation. Regardless of the type of bioplastics, CH4 production was consistently higher with H2/CO2 than with N2. The highest amount of CH4 was produced at 307.74 mL CH4/g volatile solids when TPS digested with H2/CO2. A stepwise increased in CH4 yield was observed, with a nominal initial increment followed by accelerated methanogenesis conversion as H2 was depleted. This may be attributed to a substantial shift in the microbial structure from hydrogenotrophic methanogen (Methanobacteriales and Methanomicrobiales) to heterotrophs (Spirochaetia). In contrast, no significant change was observed with PBAT, regardless of the type of purged gas. TPS was broken down into numerous derivatives, including volatile fatty acids. TPS produced more byproducts with H2/CO2 (i.e., 430) than with N2 (i.e., 320). In contrast, differential scanning calorimetry analysis on PBAT revealed an increase in crystallinity from 10.20 % to 12.31 % and 11.36 % in the H2/CO2- and N2-purged conditions, respectively, after 65 days of testing. PBAT surface modifications were characterized via Fourier transform infrared spectroscopy and scanning electron microscopy. The results suggest that the addition of H2/CO2 can enhance the CH4 yield and increase the breakdown rate of TPS more than that of PBAT. This study provides novel insights into the CH4 production potential of two bioplastics with different biodegradabilities in H2/CO2-mediated anaerobic digestion systems.
Collapse
Affiliation(s)
- Eun Seo Lee
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea
| | - Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon 22212, Republic of Korea
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
Thapa A, Jo H, Han U, Cho SK. Ex-situ biomethanation for CO 2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnol Adv 2023; 68:108218. [PMID: 37481094 DOI: 10.1016/j.biotechadv.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hongmok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Shang G, Yu J, Cai W, Cui K, Shen X, Jin P, Guo K. Comparison of in-situ and ex-situ electrolytic H 2 supply for microbial methane production from CO 2. BIORESOURCE TECHNOLOGY 2023; 388:129728. [PMID: 37683710 DOI: 10.1016/j.biortech.2023.129728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Both in-situ and ex-situ electrolytic H2 supply have been used for biomethane production from CO2. However, the pros and cons of them have not been systematically compared. The present study makes this comparison using a 20 L continuous stirred-tank reactor equipped with external and internal electrolyzers. Compared to the ex-situ H2 supply, the in-situ electrolytic H2 bubbles were one order of magnitude smaller, which resulted in improved H2 mass transfer and biomass growth. Consequently, the methane production rate and the coulombic efficiency of the in-situ H2 supply (0.51 L·L-1·d-1, 96%) were higher than those of the ex-situ H2 supply (0.30 L·L-1·d-1, 56%). However, due to high internal resistance, the energy consumption for the in-situ electrolysis was 2.54 times higher than the ex-situ electrolysis. Therefore, the in-situ electrolytic H2 supply appears to be more promising, but reducing energy consumption is the key to the success of this technology.
Collapse
Affiliation(s)
- Gaoyuan Shang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinpeng Yu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenfang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Shen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
11
|
Kumar V, Vangnai AS, Sharma N, Kaur K, Chakraborty P, Umesh M, Singhal B, Utreja D, Carrasco EU, Andler R, Awasthi MK, Taherzadeh MJ. Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment. CHEMOSPHERE 2023; 319:138005. [PMID: 36731660 DOI: 10.1016/j.chemosphere.2023.138005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The inevitable need for waste valorisation and management has revolutionized the way in which the waste is visualised as a potential biorefinery for various product development rather than offensive trash. Biowaste has emerged as a potential feedstock to produce several value-added products. Bioenergy generation is one of the potential applications originating from the valorisation of biowaste. Bioenergy production requires analysis and optimization of various parameters such as biowaste composition and conversion potential to develop innovative and sustainable technologies for most effective utilization of biowaste with enhanced bioenergy production. In this context, feedstocks, such as food, agriculture, beverage, and municipal solid waste act as promising resources to produce renewable energy. Similarly, the concept of microbial fuel cells employing biowaste has clearly gained research focus in the past few decades. Despite of these potential benefits, the area of bioenergy generation still is in infancy and requires more interdisciplinary research to be sustainable alternatives. This review is aimed at analysing the bioconversion potential of biowaste to renewable energy. The possibility of valorising underutilized biowaste substrates is elaborately presented. In addition, the application and efficiency of microbial fuel cells in utilizing biowaste are described in detail taking into consideration of its great scope. Furthermore, the review addresses the significance bioreactor development for energy production along with major challenges and future prospects in bioenergy production. Based on this review it can be concluded that bioenergy production utilizing biowaste can clearly open new avenues in the field of waste valorisation and energy research. Systematic and strategic developments considering the techno economic feasibilities of this excellent energy generation process will make them a true sustainable alternative for conventional energy sources.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed to Be) University, Whitefield, Bangalore-66, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de Los Recursos Naturales (Cenbio), Universidad Católica Del Maule, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | | |
Collapse
|
12
|
Amo-Duodu G, Rathilal S, Chollom MN, Tetteh EK. Effects of synthesized AlFe 2O 4 and MgFe 2O 4 nanoparticles on biogas production from anaerobically digested sugar refinery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25613-25619. [PMID: 36525189 DOI: 10.1007/s11356-022-24655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The application of magnetic nanoparticles (MNPs) toward sustainable water economy and bioenergy production has become a subject of great interest. Anaerobic digestion (AD) has been widely exploited in wastewater treatment settings, whereby utilization of MNP additives by microorganism response for degradation of organics into biogas is seen to be eco-friendly and economically viable. The present study investigated the impact of two synthesized MNPs such as aluminum ferrite (AlFe2O4) and magnesium ferrite (MgFe2O4) on biogas production via biochemical methane potential (BMP) tests. A BMP set-up of three (3) bioreactors was tested with a working volume of 0.8 L which comprises 0.5 L wastewater (WW) and 0.3 L activated sludge (AS) with 1.5 g of the MNPs and a control system without MNPs. The degradation of chemical oxygen demand (COD) was increased with set-ups that contained MNPs as compared to the control system, MgFe2O4 (93.96%) > AlFe2O4 (85.95%) > control (68.83%). In terms of biogas production, the methane yield was also recorded as MgFe2O4 (85.7%) > AlFe2O4 (84.3%) > control (65.7%). The physical and chemical stability of MNPs makes them more advantageous for application in biogas production. In the prospects of biogas enhancement and biodegradability, integrating MNPs in an anaerobic digestion system will result in a more efficient anaerobic process performance for biogas production.
Collapse
Affiliation(s)
- Gloria Amo-Duodu
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Durban, 4001, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Durban, 4001, South Africa
| | - Martha Noro Chollom
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Durban, 4001, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
13
|
Yellezuome D, Zhu X, Liu X, Liu X, Liu R, Wang Z, Li Y, Sun C, Hemida Abd-Alla M, Rasmey AHM. Integration of two-stage anaerobic digestion process with in situ biogas upgrading. BIORESOURCE TECHNOLOGY 2023; 369:128475. [PMID: 36509302 DOI: 10.1016/j.biortech.2022.128475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.
Collapse
Affiliation(s)
- Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuwei Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yingkai Li
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez 43721, Egypt
| |
Collapse
|
14
|
Zhao J, Li Y, Zhang Z. Hydraulic retention time and pressure affect anaerobic digestion process treating synthetic glucose wastewater. BIORESOURCE TECHNOLOGY 2023; 370:128531. [PMID: 36574891 DOI: 10.1016/j.biortech.2022.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
High-pressure anaerobic digestion (HPAD) can directly upgrade biogas (CH4 content to 90 %) within a reactor. Understanding of how HPAD-related microbiomes are constructed by operational parameters (hydraulic retention time (HRT) and pressure) and their interactions within the biochemical process remain underexplored. In this study, an HPAD reactor was operated at five different HRT (from 40 to 13 d), with pressure around 10-13 bar. In HPAD, pressure was the driving force behind CH4 content. Low HRTs (13-20 d) for HPAD led to volatile fatty acids accumulation, which occurred earlier than that in normal-pressure digestion. HRT mainly affected the archaeal community, whereas pressure mostly affected the bacterial community. Hydrogenotrophic methanogen Methanobacterium prevailed at low HRTs (13-20 d). When operating continuous HPAD, attention should be paid to HRT optimization, as low HRTs (e.g., 13 d) impaired the activity of CH4-synthesizing enzyme Methyl-coenzyme M reductase.
Collapse
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Hollas CE, Rodrigues HC, Bolsan AC, Venturin B, Bortoli M, Antes FG, Steinmetz RLR, Kunz A. Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159494. [PMID: 36257411 DOI: 10.1016/j.scitotenv.2022.159494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion has been employed as a technology capable of adding value to waste coupled with environmental impact mitigation. However, many issues need to be elucidated to ensure the systems viability based on this technology. In this sense, the present study evaluated technically, environmentally, and economically, four configurations of swine waste treatment systems focused on the promotion of decarbonization and circularity of the swine chain. For this, a reference plant, based on a compact treatment process named SISTRATES® (Portuguese acronym for swine effluent treatment system) was adopted to serve as a model for comparison and validation. The results showed the importance of prioritization of the energy recuperation routes through anaerobic digestion, providing increased economic benefits and minimizing environmental damage. Thus, the SISTRATES® configuration was the one that presented the best designs in a circular context, maximizing the recovery of energy and nutrients, along with the reduction of greenhouse gas emissions, ensuring the sustainability of the pig production chain.
Collapse
Affiliation(s)
- C E Hollas
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - H C Rodrigues
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - A C Bolsan
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - B Venturin
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - M Bortoli
- Universidade Tecnológica Federal do Paraná, 85601-970 Francisco Beltrão, PR, Brazil
| | - F G Antes
- Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil
| | | | - A Kunz
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
16
|
Biogas Upgrading by CO2 Methanation with Ni-, Ni–Fe-, and Ru-Based Catalysts. Catalysts 2022. [DOI: 10.3390/catal12121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This piece of work dealt with the concept of ‘biogas upgrading’ or enrichment of the CH4 contained in a sweetened biogas to proportions and features comparable to those of synthetic natural gas (SNG). For this, the behavior of three lab made catalysts (Ni/Al2O3, Ru/Al2O3, and Ni–Fe/Al2O3) was tested in a CO2 methanation reaction (Sabatier reaction) under different feeding conditions (with and without methane). In the first set of experiments (without methane), the good catalytic behavior of the solids was validated. All three catalysts offered similar and increasing CO2 conversions with increasing temperature (range studied from 250 to 400 °C) at a constant WHSV of 30 × 103 STPmL·gcat−1·h−1. The CH4 selectivity remained close to one in all cases. Considering their total metallic load, the Ru (3.7 wt%)-based catalyst stood out remarkably, with TOF values that reached up to 5.1 min−1, this being six or three times higher, than those obtained with the Ni (10.3 wt%) and Ni–Fe (7.4–2.1 wt%) catalysts, respectively. In the second set (cofeeding methane), and also for the three catalysts, a high correspondence between the conversions (and selectivities) obtained with both types of feeds was observed. This indicated that the addition of CH4 to the system did not severely modify the reaction mechanism, resulting in the possibility of taking advantage of the ‘biogas upgrading’ process by using H2 produced off-peak by electrolysis. In order to maximize the CH4 yield, temperatures in the range from 350–375 °C and a H2:CO2 molar ratio of 6:1 were determined as the optimal reaction conditions.
Collapse
|
17
|
Sun ZF, Zhao L, Wu KK, Wang ZH, Wu JT, Chen C, Yang SS, Wang AJ, Ren NQ. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157824. [PMID: 35931172 DOI: 10.1016/j.scitotenv.2022.157824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of renewable and sustainable energy, biogas upgrading for producing high-quality biomethane as an alternative to natural gas has attracted worldwide attention. This paper comprehensively reviews the current state of biogas upgrading technologies. The advances in physicochemical, photosynthetic autotrophic, and chemical autotrophic biogas upgrading technologies are briefly described with particular attention to the key challenges. New chemical autotrophic biogas upgrading strategies, such as direct and indirect exogenous hydrogen supply, for overcoming barriers to biogas upgrading and realizing highly efficient bioconversion of carbon dioxide are summarized. For each approach to exogenous hydrogen supply for biogas upgrading, the key findings and technical limitations are summarized and critically analyzed. Finally, future developments are also discussed to provide a reference for the development of biogas upgrading technology that can address the global energy crisis and climate change issues related to the application of biogas.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kai-Kai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B, Khoshnevisan B. Integrating electrocoagulation process with up-flow anaerobic sludge blanket for in-situ biomethanation and performance improvement. BIORESOURCE TECHNOLOGY 2022; 360:127536. [PMID: 35772719 DOI: 10.1016/j.biortech.2022.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, the integration of the electrocoagulation (EC) process with anaerobic digestion as a novel in-situ biomethanation approach was considered for the first time. As a result of this integration (iron electrodes, current density of 1.5 mA/cm2 and an exposure mode of 10-min-ON/ 30-min-OFF), the carbon dioxide content of biogas reached below 2%. Also, the methane production rate improved by 18.0 ± 0.4%, whereas the removal efficiencies of chemical oxygen demand, turbidity, phosphate, and sulfate increased by 12.0 ± 1.5%, 30.7 ± 1.7%, > 99%, and 75.7%, respectively. Anaerobic granular sludge characteristics were also improved. Moreover, the EC process stimulated growth and quantity of functional microorganisms, especially Acinetobacter in bacterial and Methanobacterium in archaeal community. Methane concentration, however decreased due to possible excess hydrogen production. The application of the biogas as bio-hythane, and the optimization of the hybrid bioreactor to decrease hydrogen production, are possible avenues for further research.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Benyamin Khoshnevisan
- Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Anaerobic Digested Wastewater CO2 Sequestration Using a Biophotocatalytic System with a Magnetized Photocatalyst (Fe-TiO2). Molecules 2022; 27:molecules27165213. [PMID: 36014454 PMCID: PMC9416098 DOI: 10.3390/molecules27165213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
This study presents a biophotocatalytic system as a sustainable technology for the recovery of clean water and renewable energy from wastewater, thereby providing a unique opportunity to drive industrialization and global sustainable development throughputs. Herein, inhouse magnetized photocatalyst (Fe-TiO2) with surface area 62.73 m2/g synthesized via co-precipitation, was hypothesized to hasten an up-flow anaerobic sludge blanket (UASB) reactor for the treatment of local South Africa municipality wastewater with the benefit of high-quality biogas production. A lab scale UASB process with a working volume of 5 L coupled with two UV-lights (T8 blacklight-blue tube, 365 nm, 18 W) was operated batchwise under mesophilic conditions for the period of 30 days with a constant organic load charge of 2.76 kg COD/m3. d. This biophotocatalytic system performance was investigated and compared with and without the Fe-TiO2 charge (2–6 g) with respect to effluent quality, biogas production and CO2 methanation. Using chemical oxygen demand (COD) measured as the degree of degradation of the pollutants, the best efficiency of 93% COD removal was achieved by a 4 g Fe-TiO2 charge at 14 days and pH of 7.13, as compared to zero charge where only 49.6% degradation was achieved. Under the same charge, cumulative biogas and methane content of 1500 mL/g COD.d and 85% were respectively attained as compared with the control with 400 mL/g COD.d and 65% methane content. Also, the energy produced can be used to offset the energy utilized by the UV-light for the wastewater abatement and other limitations of photocatalysis. The BP system was found to be an eco-friendly and cost-effective technology to be explored in water treatment settings.
Collapse
|
20
|
Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) emissions from fossil fuels have led industries to seek cheaper carbon abatement technologies to mitigate environmental pollution. Herein, the effect of a magnetic photocatalyst (Fe-TiO2) on biogas production in anaerobic digestion (AD) of wastewater was investigated with three bioreactors coupled with UV-light (18 W). Three experimental setups defined as the control (AD system with no Fe-TiO2), biophotoreactor (BP), and biophotomagnetic (BPM) systems were operated at a mesophilic temperature (35 ± 5 °C) for a hydraulic retention time (HRT) of 30 days. The control system (ADs) had no Fe-TiO2 additives. The BPMs with 2 g Fe-TiO2 were exposed to a magnetic field, whereas the BPs were not. The removal rate of the chemical oxygen demand (COD), volatile solids (VS), and total solids (TS), together with biogas production and composition were monitored for each reactor. The degree of degradation of 75% COD was observed for the BPMs at a pH of 6.5 followed by the BPs (65% COD) and the ADs (45% COD). The results showed that the rate of degradation of COD had a direct correlation with the cumulative biogas production of the BPMs (1330 mL/d) > BPs (1125 mL/d) > AD (625 mL/d). This finding supports the use of biophotomagnetic systems (BPMs) in wastewater treatment for resource recovery and CO2 reduction (0.64 kg CO2/L) as an eco-friendly technology.
Collapse
|
21
|
Hafuka A, Fujino S, Kimura K, Oshita K, Konakahara N, Takahashi S. In-situ biogas upgrading with H 2 addition in an anaerobic membrane bioreactor (AnMBR) digesting waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154573. [PMID: 35302028 DOI: 10.1016/j.scitotenv.2022.154573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Biological in-situ biogas upgrading is a promising approach for sustainable energy-powered technologies. This method increases the CH4 content in biogas via hydrogenotrophic methanogenesis with an external H2 supply. In this study, an anaerobic membrane bioreactor (AnMBR) was employed for in-situ biogas upgrading. The AnMBR was operated in semi-batch mode using waste activated sludge as the substrate. Pulsed H2 addition into the reactor and biogas recirculation effectively increased the CH4 content in the biogas. The addition of 4 equivalents of H2 relative to CO2 did not lead to appreciable biogas upgrading, although the acetate concentration increased significantly. When 11 equivalents of H2 were introduced, the biogas was successfully upgraded, and the CH4 content increased to 92%. The CH4 yield and CH4 production rate were 0.31 L/g-VSinput and 0.086 L/L/d, respectively. In this phase of the process, H2 addition increased the acetate concentration and the pH because of CO2 depletion. Compared with a continuously-stirred tank reactor, the AnMBR system attained higher CH4 content, even without the addition of H2. The longer solid retention time (100 d) in the AnMBR led to greater degradation of volatile solids. Severe membrane fouling was not observed, and the transmembrane pressure remained stable under 10 kPa for 117 d of continuous filtration without cleaning of the membrane. The AnMBR could be a promising reactor configuration to achieve in-situ biogas upgrading during sludge digestion.
Collapse
Affiliation(s)
- Akira Hafuka
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan.
| | - Sota Fujino
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura C1-3, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Naoya Konakahara
- Technology Center, Takuma Co., Ltd., 2-2-33 Kinrakuji-cho, Amagasaki 660-0806, Japan
| | - Shigetoshi Takahashi
- Technology Center, Takuma Co., Ltd., 2-2-33 Kinrakuji-cho, Amagasaki 660-0806, Japan
| |
Collapse
|
22
|
Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes (Basel) 2022. [DOI: 10.3390/pr10061202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The United Kingdom (UK) has a decarbonisation strategy that includes energy from both hydrogen and biomethane. The latter comes from the growing anaerobic digestion (AD) market, which in 2020 produced 23.3 TWh of energy in the form of biogas. According to the strategy, this must be upgraded to biomethane by removal of carbon dioxide (CO2): a goal that could also be fulfilled through CO2 biomethanisation, alleviating the need for carbon capture and storage. Results are presented from a survey of publicly available datasets coupled with modelling to identify potential scale and knowledge gaps. Literature data were used to estimate maximum biomethane concentrations by feedstock type: these ranged from 79% for food wastes to 93% for livestock manures. Data from various government sources were used to estimate the overall potential for CO2 biomethanisation with current AD infrastructure. Values for the uplift in biomethane production ranged from 57% to 61%, but the need for more consistent data collection methodologies was highlighted. On average, however, if CO2 biomethanisation was applied in all currently operating UK AD plants an energy production uplift of 12,954 GWh could be achieved based on 2020 figures. This is sufficient to justify the inclusion of CO2 biomethanisation in decarbonisation strategies, in the UK and worldwide.
Collapse
|
23
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
24
|
Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14063686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biogas is one of the most important sources of renewable energy and hydrogen production, which needs upgrading to be functional. In this study, two methods of biogas upgrading from organic parts of municipal waste were investigated. For biogas upgrading, this article used a 3E analysis and simulated cryogenic separation and chemical scrubbing. The primary goal was to compare thermoeconomic indices and create hydrogen by reforming biomethane. The exergy analysis revealed that the compressor of the refrigerant and recovery column of MEA contributed the most exergy loss in the cryogenic separation and chemical scrubbing. The total exergy efficiency of cryogenic separation and chemical scrubbing was 85% and 84%. The energy analysis revealed a 2.07% lower energy efficiency for chemical scrubbing. The capital, energy, and total annual costs of chemical absorption were 56.51, 26.33, and 54.44 percent lower than those of cryogenic separation, respectively, indicating that this technology is more economically feasible. Moreover, because the thermodynamic efficiencies of the two methods were comparable, the chemical absorption method was adopted for hydrogen production. The biomethane steam reforming was simulated, and the results indicated that this method required an energy consumption of 90.48 MJkgH2. The hydrogen production intensity equaled 1.98 kmoleH2kmolebiogas via a 79.92% methane conversion.
Collapse
|
25
|
Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering (Basel) 2022; 9:bioengineering9030095. [PMID: 35324784 PMCID: PMC8945768 DOI: 10.3390/bioengineering9030095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
The continuous combustion of fossil fuels and industrial wastewater pollution undermines global environmental and socio-economic sustainability. Addressing this necessitates a techno-scientific revolution to recover the renewable energy potential of wastewater towards a circular economy. Herein, a developed biophotocatalytic (BP) system was examined with an engineered Fe-TiO2 to ascertain its degradability efficiency and biogas production from industrial wastewater. The response surface methodology (RSM) based on a modified Box-Behnken designed experiment was used to optimize and maximize the BP system’s desirability. The parameters investigated included catalyst dosage of 2−6 g and hydraulic retention time (HRT) of 1−31 d at a constant temperature of 37.5 °C and organic loading rate of 2.38 kgCOD/Ld. The modified RSM-BBD predicted 100% desirability at an optimal catalyst load of 4 g and HRT of 21 d. This represented 267 mL/d of biogas and >98% COD, color, and turbidity removal. The experimental validity was in good agreement with the model predicted results at a high regression (R2 > 0.98) and 95% confidence level. This finding provides an insight into RSM modeling and optimization with the potential of integrating the BP system into wastewater settings for the treatment of industrial wastewater and biogas production.
Collapse
|
26
|
Biophotocatalytic Reduction of CO2 in Anaerobic Biogas Produced from Wastewater Treatment Using an Integrated System. Catalysts 2022. [DOI: 10.3390/catal12010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study presents the bio-photocatalytic upgrading of biogas utilising carbon dioxide (CO2) as a potential option for beginning fossil fuel depletion and the associated environmental risks in the pursuit of sustainable development. Herein, magnetite photocatalyst (Fe-TiO2) was employed with an integrated anaerobic-photomagnetic system for the decontamination of municipality wastewater for biogas production. The Fe-TiO2 photocatalyst used, manufactured via a co-precipitation technique, had a specific surface area of 62.73 m2/g, micropore volume of 0.017 cm3/g and pore size of 1.337 nm. The results showed that using the ultraviolet-visible (UV-Vis) photomagnetic system as a post-treatment to the anaerobic digestion (AD) process was very effective with over 85% reduction in colour, chemical oxygen demand (COD) and turbidity. With an organic loading rate (OLR) of 0.394 kg COD/L·d and hydraulic retention time (HTR) of 21 days, a 92% degradation of the organic content (1.64 kgCOD/L) was attained. This maximised the bioenergy production to 5.52 kWh/m3 with over 10% excess energy to offset the energy demand of the UV-Vis lamp. Assuming 33% of the bioenergy produced was used as electricity to power the UV-Vis lamp, the CO2 emission reduction was 1.74 kg CO2 e/m3, with good potential for environmental conservation.
Collapse
|
27
|
Yuan T, Zhang Z, Lei Z, Shimizu K, Lee DJ. A review on biogas upgrading in anaerobic digestion systems treating organic solids and wastewaters via biogas recirculation. BIORESOURCE TECHNOLOGY 2022; 344:126412. [PMID: 34838626 DOI: 10.1016/j.biortech.2021.126412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Biogas upgrading is an essential process for efficient and safe utilization of biogas produced from anaerobic digestion (AD), a cost-effective and environmentally friendly technology for bioenergy recovery from organic wastes. Biogas recirculation in AD reactors has been recently reported as a cost-effective and promising method to enhance methane content in biogas. This review aimed to summarize the state-of-the-art of biogas recirculation-based AD systems to better understand the possible mechanisms and main factors relating to in-situ biogas upgrading. It shows that biogas recirculation in the AD reactor can not only enhance methane content via both physicochemical and biological effects, but also help establish a robust AD system with high buffering capacity for highly efficient treatment of various organic wastes. More research works are demanding for a better understanding of the mechanisms and the optimization of the whole AD system, targeting its further development for high-calorie bioenergy production.
Collapse
Affiliation(s)
- Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| |
Collapse
|