1
|
Lee CE, Messer LF, Wattiez R, Matallana-Surget S. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Proteomics 2025:e202400208. [PMID: 39760247 DOI: 10.1002/pmic.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
2
|
Nakano H, Alfonso MB, Phinchan N, Jandang S, Manap MRA, Chavanich S, Viyakarn V, Müller M, Wong C, Bacosa HP, Celik M, Cordova MR, Isobe A. Aquatic microplastics research in the ASEAN region: Analysis of challenges and priorities. MARINE POLLUTION BULLETIN 2025; 210:117342. [PMID: 39613519 DOI: 10.1016/j.marpolbul.2024.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Research on microplastics must be harmonized. Therefore, we thoroughly evaluated in the Association of Southeast Asian Nations (ASEAN) region, addressing challenges and priorities in protocol harmonization and microplastics research promotion. Of the 615 papers searched by the Web of Science, 164 were used for this systematic review. The number of ASEAN research articles has increased over time. Examination of research protocols in various sampling environments revealed several challenges: 1) Disparities in access to sampling locations affect the research extent; 2) Outdated protocols and limited access to technologies such as FTIR (Fourier-transform infrared) spectroscopy result in less harmonized and potentially lower-quality data; and 3) Insufficiently detailed methods and QA/QC information hampers comparability. We offer procedure updates to overcome these limitations and cover environmental microplastic study gaps. Other countries in the Global South may encounter similar challenges, making this review a valuable contribution to advancing global microplastics research and fostering international collaboration.
Collapse
Affiliation(s)
- Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand.
| | - María Belén Alfonso
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand
| | - Nopphawit Phinchan
- Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand
| | - Suppakarn Jandang
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand
| | - M R Abdull Manap
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Changi Wong
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Hernando P Bacosa
- Department of Environmental Science, School of Interdisciplinary Studies, Mindanao State University-Iligan Institute of Technology, Iligan, Philippines
| | - Murat Celik
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Muhammad Reza Cordova
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia; Centre for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia (Pusat Kolaboratif Riset Ekosistem Perairan Indonesia Timur), the Indonesian National Research and Innovation Agency, Ambon, Indonesia
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok, Thailand
| |
Collapse
|
3
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
4
|
Shankar VS, De K, Mandal S, Jacob S, Satyakeerthy TR. Assessment of transboundary macro-litter on the remote island of Andaman and Nicobar: Unveiling the governing factors and risk assessment. MARINE POLLUTION BULLETIN 2024; 209:117145. [PMID: 39461182 DOI: 10.1016/j.marpolbul.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
The increasing occurrence of mismanaged plastic litter along India's coastline and the ominous challenges it poses to biodiversity and ecosystem health is a growing environmental concern. To address this issue, we comprehensively investigated the abundance, composition, and probable sources of marine litter on North Cinque Island, a remote uninhabited island in the Andaman and Nicobar archipelago, Bay of Bengal. This island is a designated wildlife sanctuary and serves as an important nesting site for Green, Hawksbill and Leatherback turtles. A total of 6227 litter items were enumerated, with an average concentration of 0.12 items/m2, representing 20 diverse litter types, with plastic dominating the litter composition (86 %). The cleanliness and environmental hazards of the coast due to the litter were assessed using different indices such as the Clean Coast Index (CCI), Plastic Accumulation Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI). CCI indicates the moderately clean-to-clean status of the surveyed sites. PAI points to low to moderate accumulation of plastic litter. HII of all five coasts fell in category II, suggesting a moderate abundance of hazardous items that can inflict injuries to the foraging turtle and their hatchlings. The CEI articulates the moderately clean to very clean status of the sites. Litter brand audit suggests a considerable amount of stranded litter on the coasts was transboundary and originated from six Indian Ocean Rim Countries (IORC), namely Thailand, Myanmar, Malaysia, Indonesia, Sri Lanka, and UAE. Joint solid waste management by the IORC is the need of the hour to avert litter accumulation on the pristine, remote islands.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, Mahatma Gandhi Government College, Middle & North Andaman, Andaman and Nicobar Islands 744204, India.
| | - Kalyan De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Sourav Mandal
- Ocean Engineering Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Sunil Jacob
- IGNOU Regional Centre, Port Blair, Andaman and Nicobar Islands 744 103, India
| | | |
Collapse
|
5
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
6
|
González-Ortegón E, Demmer J, Robins P, Jenkins S. Floating plastics as a potential dispersal vector for rafting marine non-native species. MARINE POLLUTION BULLETIN 2024; 207:116919. [PMID: 39243468 DOI: 10.1016/j.marpolbul.2024.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Marine species raft on floating litter, including various plastics, potentially spreading non-native species and threatening global marine habitats. Despite limited attention, Didemnum vexillum, an invasive colonial tunicate in Europe, colonised coasts of southwest Scotland (2009) and northeast Ireland (2012), likely transported via rafting. We studied D. vexillum survival and performance on three plastic types (Polyethylene, Polypropylene and Polystyrene) finding high survival rates over 42 days, with colonies thriving best on PS. Using these data, hydrodynamic and particle tracking models simulated dispersal from existing Irish Sea colonies, projecting potential rafting distances of up to ∼150 km for surface particles influenced by tide and wind, and half that for neutrally-buoyant mid-depth particles driven by tidal currents alone. Hence, the modelling supports the potential for dispersion of this species within the Irish Sea via rafting. This study highlights marine plastics as a vector that may facilitate widespread dispersal of non-native species.
Collapse
Affiliation(s)
| | - Jonathan Demmer
- School of Ocean Sciences, Bangor University, LL59 5AB Menai Bridge, United Kingdom; GoBe consultants, Suites B2 & C2, Higher Mill Lane, Buckfastleigh, Devon, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, LL59 5AB Menai Bridge, United Kingdom
| | - Stuart Jenkins
- School of Ocean Sciences, Bangor University, LL59 5AB Menai Bridge, United Kingdom
| |
Collapse
|
7
|
Cordova MR, Kelly MR, Hafizt M, Wibowo SPA, Ulumuddin YI, Purbonegoro T, Yogaswara D, Kaisupy MT, Subandi R, Sani SY, Thompson RC, Jobling S. From riverbank to the sea: An initial assessment of plastic pollution along the Ciliwung River, Indonesia. MARINE POLLUTION BULLETIN 2024; 206:116662. [PMID: 38991608 DOI: 10.1016/j.marpolbul.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This study presents the first comprehensive analysis of anthropogenic debris on the riverbanks of the Ciliwung River, covering upstream to downstream areas. The mean of debris found in each measurement was 32.79 ± 15.38 items/m2 with a weight of 106.00 ± 50.23 g/m2. Plastic debris accounted for over 50 % of all litter items identified and represents 55 % by weight, signifying a significantly high prevalence compared to global studies examining litter along riverbanks. The majority of the plastics found originated from Single-use applications and were predominantly made from Styrofoam. This investigation demonstrated the importance of actions to reduce single use applications and to improve waste management strategies. This can be achieved through proactive initiatives coupled with adaptable approaches, such as implementing effective urban planning and enhancing waste collection capacity.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia.
| | - Max R Kelly
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Muhammad Hafizt
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Susan Jobling
- Environmental Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Partnership for Plastics in Indonesian Societies (PISCES) Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
8
|
Woodford L, Fellows R, White HL, Ormsby MJ, Pow CJ, Quilliam RS. Survival and transfer potential of Salmonella enterica serovar Typhimurium colonising polyethylene microplastics in contaminated agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51353-51363. [PMID: 39107647 PMCID: PMC11374834 DOI: 10.1007/s11356-024-34491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Agricultural environments are becoming increasingly contaminated with plastic pollution. Plastics in the environment can also provide a unique habitat for microbial biofilm, termed the 'plastisphere', which can also support the persistence of human pathogens such as Salmonella. Human enteric Salmonella enterica serovar Typhimurium can enter agricultural environments via flooding or from irrigation with contaminated water. Using soil mesocosms we quantified the ability of S. Typhimurium to persist on microplastic beads in two agriculturally relevant soils, under ambient and repeat flood scenarios. S. Typhimurium persisted in the plastisphere for 35 days in both podzol and loamy soils; while during multiple flood events was able to survive in the plastisphere for up to 21 days. S. Typhimurium could dissociate from the plastisphere during flooding events and migrate through soil in leachate, and importantly could colonise new plastic particles in the soil, suggesting that plastic pollution in agricultural soils can aid S. Typhimurium persistence and facilitate further dissemination within the environment. The potential for increased survival of enteric human pathogens in agricultural and food production environments due to plastic contamination poses a significant public health risk, particularly in potato or root vegetable systems where there is the potential for direct contact with crops.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chloe J Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
9
|
Wootton N, Gillanders BM, Leterme S, Noble W, Wilson SP, Blewitt M, Swearer SE, Reis-Santos P. Research priorities on microplastics in marine and coastal environments: An Australian perspective to advance global action. MARINE POLLUTION BULLETIN 2024; 205:116660. [PMID: 38981192 DOI: 10.1016/j.marpolbul.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Plastic and microplastic contamination in the environment receive global attention, with calls for the synthesis of scientific evidence to inform actionable strategies and policy-relevant practices. We provide a systematic literature review on microplastic research across Australian coastal environments in water, sediment and biota, highlighting the main research foci and gaps in information. At the same time, we conducted surveys and workshops to gather expert opinions from multiple stakeholders (including researchers, industry, and government) to identify critical research directions to meet stakeholder needs across sectors. Through this consultation and engagement process, we created a platform for knowledge exchange and identified three major priorities to support evidence-based policy, regulation, and management. These include a need for (i) method harmonisation in microplastic assessments, (ii) information on the presence, sources, and pathways of plastic pollution, and (iii) advancing our understanding of the risk of harm to individuals and ecosystems.
Collapse
Affiliation(s)
- Nina Wootton
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia.
| | - Bronwyn M Gillanders
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Warwick Noble
- Water Quality, Environment Protection Authority, GPO Box 2607, Adelaide, South Australia 5001, Australia
| | - Scott P Wilson
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia; School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Michelle Blewitt
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia
| | - Stephen E Swearer
- Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Patrick Reis-Santos
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
10
|
Monchanin C, Desmolles M, Rivetta K, Saramul S, Charoenpong C, Mehrotra R. Spatiotemporal variations in marine macro-litter pollution along the shoreline of Koh Mun Nai, an uninhabited island in the Gulf of Thailand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124098. [PMID: 38729512 DOI: 10.1016/j.envpol.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Despite a recent ambitious plan to improve waste management in Thailand, few studies have monitored the impact of these policies on beached marine litter. Here, we assessed weekly the amounts and composition of stranded macro-litter (≥2.5 cm) on five beaches from an uninhabited island in Thailand during one year. A total of 24,407 items (391.86 kg) yielded a mean abundance of 3.18 ± 11.39 items m-2 (52.75 ± 204.68 g m-2), with plastic being the most abundant marine litter (48% of the total number). The overall Clean Coast Index (30.1) classified the beaches as 'extremely dirty', with a Plastic Abundance Index of 9.8 ('very high abundance' of plastics). When assessing the seasonal rates of accumulation, we found a higher flux pre-monsoon (0.05 items m-2 d-1; 0.66 g m-2 d-1) than post-monsoon (0.01 items m-2 d-1; 0.35 g m-2 d-1). Using modeling of the local hydrodynamic conditions, we explored the potential sources of the pollution, and surprisingly found that the closest river appeared not to be the source. Our results denote that the distribution and typology of marine litter were representatives of household and fishing activities, which in turn highlights the need for better regional litter management measures.
Collapse
Affiliation(s)
- Coline Monchanin
- Aow Thai Marine Ecology Center, Love Wildlife Foundation, FREC Bangkok, 77 Nakhon Sawan Road, Wat Sommanat, Pom Prap Sattru Phai, Bangkok, 10100, Thailand.
| | - Matthias Desmolles
- Aow Thai Marine Ecology Center, Love Wildlife Foundation, FREC Bangkok, 77 Nakhon Sawan Road, Wat Sommanat, Pom Prap Sattru Phai, Bangkok, 10100, Thailand
| | - Kilian Rivetta
- Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Suriyan Saramul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rahul Mehrotra
- Aow Thai Marine Ecology Center, Love Wildlife Foundation, FREC Bangkok, 77 Nakhon Sawan Road, Wat Sommanat, Pom Prap Sattru Phai, Bangkok, 10100, Thailand
| |
Collapse
|
11
|
Alfonso MB, Nakano H, Jandang S, Tanaka M, Viyakarn V, Chavanich S, Isobe A. Small microplastic ingestion by the calanoid Centropages furcatus in the Gulf of Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172837. [PMID: 38688360 DOI: 10.1016/j.scitotenv.2024.172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 μm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 μm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.
Collapse
Affiliation(s)
- María B Alfonso
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand.
| | - Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Suppakarn Jandang
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Mie Tanaka
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchana Chavanich
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Anjeli UG, Sartimbul A, Sulistiyati TD, Yona D, Iranawati F, Seftiyawan FO, Aliviyanti D, Lauro FM, Matallana-Surget S, Fanda AM, Winata VA. Microplastics contamination in aquaculture-rich regions: A case study in Gresik, East Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171992. [PMID: 38537826 DOI: 10.1016/j.scitotenv.2024.171992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The widespread use of plastic has resulted in the accumulation of plastic waste across a range of sizes, notably including microplastics (MPs). The introduction of MPs into aquatic ecosystems can lead to the contamination of organisms, mainly fish. This study reports for the first time a quantitative and qualitative analysis conducted on the abundance of MPs encountered in water and sediment of milkfish aquaculture ponds in Gresik, East Java, Indonesia. Water and sediment samples were collected at three stations between February to April 2021. The abundance of MPs was analyzed through the application of one-way ANOVA tests and Pearson's correlation analysis. The results identified four types of MPs: fragments, fibers, films, and pellets. The highest abundance of MPs in both water (10.40 particle/L) and sediment samples (1.15 particle/g) was observed in March. The predominant MPs size in the water samples is 100-500 μm, while it is below 100 μm in the sediment. The color of the MPs varied across eight colors: black, purple, red, blue, yellow, pink, green, and transparent. The identification of MPs polymers was found to be polypropylene (PP), Polyurethane (PU), Polycarbonate (PC), Polyethylene terephthalate (PETE), High-density polyethylene (HDPE), and low-density polyethylene (LDPE). The presence of MPs in the water column and sediments was correlated with human activities around the ponds. Hence, the abundance of MPs is a source of pollution that has the potential to damage the nutritional quality of farmed milkfish. This study provides important information for the local governments to develop waste management policies for a cleaner environment and improved human health.
Collapse
Affiliation(s)
- Ulfa Gita Anjeli
- Magister Program of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Jalan Veteran 10-11, 65145 Malang, East Java, Indonesia
| | - Aida Sartimbul
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA), Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia.
| | - Titik Dwi Sulistiyati
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia
| | - Defri Yona
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA), Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia
| | - Feni Iranawati
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA), Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia
| | - Fahreza Okta Seftiyawan
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia
| | - Dian Aliviyanti
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 10-11, Malang 65145, East Java, Indonesia
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Cleantech ONE, 1 Cleantech Loop, 637141, Singapore
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Aigan Mubiena Fanda
- Magister Program of Built Environment Architecture, Faculty of Engineering, Universitas Brawijaya, Jalan M.T. Haryono 167, Malang 65145, Indonesia
| | - Victor Adi Winata
- Magister Program of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Jalan Veteran 10-11, 65145 Malang, East Java, Indonesia
| |
Collapse
|
13
|
Phuong NN, Duong TT, Pham QT, Ngo TXT, Nguyen TMD, Phuong NA, Le TPQ, Duong TN, Dhivert E, Zalouk-Vergnoux A, Poirier L, Gasperi J. Anthropogenic particle abundance and characteristics in seawater and intertidal sediments of the Tonkin Bay Coast (North Vietnam). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:514. [PMID: 38709331 DOI: 10.1007/s10661-024-12674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs, plastic items from 1 µm to 5 mm in size) are present in all environmental compartments. The evaluation of their concentration, fate, and spatial distribution is still a challenge for the scientific community. This concern is just debuting in developing countries, (i.e., Asia, South America, and Africa). This study deals with the MP contamination in the abiotic marine compartments of Northern Vietnam: seawater and intertidal sediments. Four sites located in the intertidal zone or near the coastline in Tonkin Bay, Vietnam were studied. A total of 16 samples (eight for each compartment) were collected in July 2020 (rainy season) and January 2021 (dry season). Anthropogenic particles (total observed fibers and fragments) were found at levels ranging from 3 to 303 particles/m3 in seawater and from 63 to 955 particles/kg dry weight in sediments. Most of these were fibers less than 300-µm long. Higher levels of seawater at the Nam Dinh site were found in the rainy season compared to the dry one. As the river flow was estimated six times higher during the rainy season than during the dry season, these results suggest the river discharge is a potential source of contamination for the coastal zone. The temporal variability was lower for the sediments than for the seawater, suggesting the long-term integration of the anthropogenic particles in this compartment. A small portion of sorted particles were analyzed by µFTIR (8.35%), and this sub-sample was only composed of fragments. Still, fragments were mostly composed of polypropylene (PP, 82%), polyethylene (PE, 9%), and polystyrene (PS, 9%). The fragment size was similar in the two studied compartments, but it was dependent on polymer types since PS fragments (140 ± 17 µm) were smaller than those made of PE (622 ± 123 µm) and PP (869 ± 905 µm). Future works should investigate the smallest fraction of MP (even nanoplastics) as well as find solutions in order to mitigate MP contamination in the marine environment.
Collapse
Affiliation(s)
- Ngoc Nam Phuong
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, 290000, Vietnam.
| | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
| | - Quoc Tuan Pham
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, 290000, Vietnam
| | - Thi Xuan Thinh Ngo
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, 290000, Vietnam
| | - Thi Minh Diep Nguyen
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, 290000, Vietnam
| | - Ngoc Anh Phuong
- Vietnam National Lung Hospital, 463 Hoang Hoa Tham, Ba Dinh, Hanoi, Vietnam
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh Nghi Duong
- Institute of Marine Environment and Resources, 246 Da Nang Street, Ngo Quyen, Hai Phong, Vietnam
| | - Elie Dhivert
- EA 6293 GéoHydrosystèmes Continentaux, University of Tours, F-37200, Tours, France
| | - Aurore Zalouk-Vergnoux
- Institut Des Substances Et Organismes de La Mer, ISOMer, Nantes Université, UR 2160, F-44000, Nantes, France
| | - Laurence Poirier
- Institut Des Substances Et Organismes de La Mer, ISOMer, Nantes Université, UR 2160, F-44000, Nantes, France
| | - Johnny Gasperi
- GERS-LEE Université Gustave Eiffel, IFSTTAR, 44344, Bouguenais, France
| |
Collapse
|
14
|
Soe KK, Maae S, Jaafar Z, Chuaduangpui P, Jantarat S, Hajisamae S. Plastic ingestion by three species of Scylla (Brachyura) from the coastal areas of Thailand. MARINE POLLUTION BULLETIN 2024; 198:115914. [PMID: 38101055 DOI: 10.1016/j.marpolbul.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
This study marked the first investigation into the presence of plastic particles in the stomachs of three mud crab species (Scylla olivacea, S. paramamosain and S. tranquebarica) collected across the Andaman Sea and the Gulf of Thailand. The highest number of plastic particles in the stomach of crab samples was polyethylene (PE) that contributed 88.5 %; while green was the predominant colour (60.3 %). Ingested particles recovered from the stomachs of crabs differed significantly between species and sites (p < 0.001). The average number of plastic particles per individual was 2.3 ± 8.6 in Scylla olivacea, 7.2 ± 16.9 in S. paramamosain, and 13.5 ± 48.9 in S. tranquebarica. Satun, revealed the highest number of plastic particles recovered from mud crabs, while the lowest number of plastic particles were from Pattani. To conclude, species of crab and site of collection plays a crucial factor in the propensity of plastic particles ingested by the genus Scylla mud crabs.
Collapse
Affiliation(s)
- Kay Khine Soe
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Sofiyudin Maae
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand; Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Pornpimon Chuaduangpui
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Sukree Hajisamae
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| |
Collapse
|
15
|
Cappa P, Walton MEM, Paler MKO, Taboada EB, Hiddink JG, Skov MW. Impact of mangrove forest structure and landscape on macroplastics capture. MARINE POLLUTION BULLETIN 2023; 194:115434. [PMID: 37634347 DOI: 10.1016/j.marpolbul.2023.115434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Complex networks of above-ground roots and trunks make mangrove forests trap plastic litter. We tested how macroplastics relate to tree biomass, root abundance, mangrove geomorphology and river mouth proximity, surveying landward and seaward margins of seven forests in the Philippines, a global hotspot for marine plastic pollution. Macroplastics were abundant (mean ± s.e.: 1.1 ± 0.22 items m-2; range: 0.05 ± 0.05 to 3.79 ± 1.91), greatest at the landward zone (mean ± s.e.: 1.60 ± 0.41 m-2) and dominated by land-derived items (sachets, bags). Plastic abundance and weight increased with proximity to river mouths, with root abundance predicting plastic litter surface area (i.e., the cumulative sum of all the surface areas of each plastic element per plot). The study confirms rivers are a major pathway for marine plastic pollution, with mangrove roots are the biological attribute that regulate litter retention. The results suggest land-based waste management that prevent plastics entering rivers will reduce marine plastic pollution in Southeast Asia.
Collapse
Affiliation(s)
- Paolo Cappa
- School of Ocean Sciences, Bangor University, Isle of Anglesey LL595AB, UK.
| | - Mark E M Walton
- School of Ocean Sciences, Bangor University, Isle of Anglesey LL595AB, UK
| | | | - Evelyn B Taboada
- School of Engineering, University of San Carlos, Talamban, Cebu City 6000, Philippines
| | - Jan G Hiddink
- School of Ocean Sciences, Bangor University, Isle of Anglesey LL595AB, UK
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Isle of Anglesey LL595AB, UK
| |
Collapse
|
16
|
Rahmawati, Krisanti M, Riani E, Cordova MR. Microplastic contamination in the digestive tract of sea urchins (Echinodermata: Echinoidea) in Kepulauan Seribu, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1103. [PMID: 37642784 DOI: 10.1007/s10661-023-11655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
The accumulation of microplastics on sediment surfaces contributed to the digestive tract of sea urchins contamination during foraging. Therefore, the aim of this study was to investigate the potential relationship between the accumulation of microplastics on sediment surfaces and the contamination of sea urchins' digestive tracts during their foraging activities. Sediment and sea urchins' samples were collected from Pari and Harapan Islands, in Kepulauan Seribu, DKI Jakarta, Indonesia. Microplastics were extracted and observed in sediment and the digestive tract of sea urchins' samples. Fourier transform infrared (FTIR) spectroscopy identified microplastic polymers. The average microplastic concentration on Pari Island was 160 ± 158.75 particles/kg dry weight sediment and 3.93 ± 2.25 particles/g dry weight in the digestive tract of sea urchins. Correspondingly, on Harapan Island, the values were 113 ± 41.63 particles/kg dry weight and 0.27 ± 0.28 particles/g dry weight. Fragment-type microplastics (75%) were predominantly detected in the digestive tract of sea urchins, while fiber-type microplastics (59%) were more common in sediments on Pari Island. Conversely, on Harapan Island fragment types were more prevalent (53%). Microplastics larger than 1000 µm were identified in both sediment and the digestive tract of sea urchins. The observed plastic polymers, such as polyethylene, polyester, and polypropylene were dominant at both study sites. This study postulated that microplastics in sediments may be ingested during sea urchins digestion, supported by a significant correlation of 0.016. Consequently, the presence of microplastics in sea urchins from Pari Island and Harapan Island in Kepulauan Seribu was confirmed. Future investigations should explore the toxic effects of absorbed microplastics on sea urchins' physiology, requiring further analysis.
Collapse
Affiliation(s)
- Rahmawati
- Aquatic Resources Management Study Program, Graduate School, IPB University, Bogor, 16680, Indonesia
| | - Majariana Krisanti
- Department of Aquatic Resources Management, Study Program of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, 16680, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Study Program of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, 16680, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography National Research and Innovation Agency, BRIN Jakarta Ancol Area Jl, Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia.
| |
Collapse
|
17
|
Omeyer LCM, Duncan EM, Abreo NAS, Acebes JMV, AngSinco-Jimenez LA, Anuar ST, Aragones LV, Araujo G, Carrasco LR, Chua MAH, Cordova MR, Dewanti LP, Espiritu EQ, Garay JB, Germanov ES, Getliff J, Horcajo-Berna E, Ibrahim YS, Jaafar Z, Janairo JIB, Gyi TK, Kreb D, Lim CL, Lyons Y, Mustika PLK, Neo ML, Ng SZH, Pasaribu B, Pariatamby A, Peter C, Porter L, Purba NP, Santa Cruz ET, Shams S, Thompson KF, Torres DS, Westerlaken R, Wongtawan T, Godley BJ. Interactions between marine megafauna and plastic pollution in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162502. [PMID: 36868274 DOI: 10.1016/j.scitotenv.2023.162502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.
Collapse
Affiliation(s)
- Lucy C M Omeyer
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Emily M Duncan
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Institute of Marine Sciences-Okeanos, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.
| | - Neil Angelo S Abreo
- AI and Robotics Laboratory-Environmental Studies, University of the Philippines, Mindanao, Philippines
| | - Jo Marie V Acebes
- BALYENA.ORG, Jagna, Bohol, Philippines; Zoology Division, The National Museum of the Philippines, Padre Burgos Avenue, Manila, Philippines
| | - Lea A AngSinco-Jimenez
- Regional Integrated Coastal Resource Management Center (RIC-XI), hosted by Davao Oriental State University (DOrSU), City of Mati, Davao Oriental, Philippines
| | - Sabiqah T Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Lemnuel V Aragones
- Marine Mammal Research & Conservation Laboratory, Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Gonzalo Araujo
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, United Kingdom; Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Luis R Carrasco
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Marcus A H Chua
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Muhammad R Cordova
- Research Centre for Oceanography, The Indonesian National Research and Innovation Agency (BRIN), BRIN Kawasan Jakarta Ancol Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Lantun P Dewanti
- Fishery Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, 40600 Bandung, Indonesia
| | - Emilyn Q Espiritu
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108 Quezon City, Philippines
| | - Jovanie B Garay
- Davao Oriental State University (DOrSU), San Isidro Extension Campus, San Isidro, Davao Oriental, Philippines
| | - Elitza S Germanov
- Marine Megafauna Foundation, West Palm Beach, FL, United States of America; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia; Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Jade Getliff
- Roctopus ecoTrust, Roctopus Dive, Sairee Beach, Koh Tao 84360, Thailand
| | | | - Yusof S Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Jose Isagani B Janairo
- Department of Biology, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Thanda Ko Gyi
- Myanmar Ocean Project, 24 Myaing Hay Wun Housing, Yangon 11061, Myanmar
| | - Danielle Kreb
- Yayasan Konservasi RASI/Laboratory of Hydro-Oceanography, Faculty of Fisheries, Mulawarman University, Samarinda, Indonesia
| | - Cheng Ling Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Youna Lyons
- Centre for International Law, National University of Singapore, Bukit Timah Campus, 259770, Singapore
| | - Putu L K Mustika
- College of Business, Law and Governance, James Cook University, Townsville, Australia; Cetacean Sirenian Indonesia, Jakarta, Indonesia; Whale Stranding Indonesia, Jakarta, Indonesia
| | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Sirius Z H Ng
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Buntora Pasaribu
- Marine Science Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, 40600 Bandung, Indonesia
| | - Agamuthu Pariatamby
- Jeffrey Sachs Centre on Sustainable Development, Sunway University, Selangor Darul Ehsan 47500, Malaysia
| | - Cindy Peter
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Lindsay Porter
- The Institute of Marine Ecology and Conservation (IMEC), National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Noir P Purba
- Marine Science Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, 40600 Bandung, Indonesia
| | - Ernesto T Santa Cruz
- Consultant on Environmental Affairs, Independent Researcher, Davao City, Philippines
| | - Shahriar Shams
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Kirsten F Thompson
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Daniel S Torres
- Independent Marine Megafauna Researcher, Quezon City, Philippines
| | - Rodney Westerlaken
- Westerlaken Foundation, Yayasan Bali Bersih, Indonesia; Hotel Management School, NHL Stenden University, Leeuwarden, the Netherlands; Faculty of Environmental Science, Udayana University, Indonesia
| | - Tuempong Wongtawan
- Marine Animal Research and Rescue Centre, Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence for Coastal Resource Management with Communal Participation, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
18
|
Cellulose/Grape-Seed-Extract Composite Films with High Transparency and Ultraviolet Shielding Performance Fabricated from Old Cotton Textiles. Polymers (Basel) 2023; 15:polym15061451. [PMID: 36987229 PMCID: PMC10053784 DOI: 10.3390/polym15061451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on our ecology system. Thus, exploiting renewable and biodegradable materials to substitute or replace these traditional petroleum-derived plastics is an urgent and important task. In this work, renewable and biodegradable all-biomass cellulose/grape-seed-extract (GSEs) composite films with high transparency and anti-ultraviolet performance were fabricated successfully from pretreated old cotton textiles (P-OCTs) using a relatively simple, green, yet cost-effective, approach. It is proved that the obtained cellulose/GSEs composite films exhibit good ultraviolet shielding performance without sacrificing their transparency, and their UV-A and UV-B blocking values can reach as high as nearly 100%, indicating the good UV-blocking performance of GSEs. Meanwhile, the cellulose/GSEs film show higher thermal stability and water vapor transmission rate (WVTR) than most common plastics. Moreover, the mechanical property of the cellulose/GSEs film can be adjusted by the addition of a plasticizer. Briefly, the transparent all-biomass cellulose/grape-seed-extracts composite films with high anti-ultraviolet capacity were manufactured successfully and they can be used as potential materials in the packaging field.
Collapse
|
19
|
De K, Sautya S, Dora GU, Gaikwad S, Katke D, Salvi A. Mangroves in the "Plasticene": High exposure of coastal mangroves to anthropogenic litter pollution along the Central-West coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160071. [PMID: 36356762 DOI: 10.1016/j.scitotenv.2022.160071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic litter is a ubiquitous stressor in the global ocean, and poses ominous threats to oceanic biodiversity and ecosystem functioning. At the terrestrial-ocean interface, tropical mangrove forests are subject to substantial exposure to mismanaged litter from inland and marine sources. While the effects of litter in different marine ecosystems are well-documented, research on the ecological consequences of litter pollution on mangroves remain nascent stage. Here, we investigated anthropogenic litter concentration, composition, probable sources, and impact on coastal mangroves along the Central West coast of India. The mean concentration of trapped litter was measured 8.5 ± 1.9 items/m2 (ranged 1.4 ̶ 26.9 items/m2), and 10.6 ± 0.5 items/tree (ranged 0 ̶ 85 items/tree) on the mangrove floor and mangrove canopy, respectively. Plastic dominated 83.02 % of all litter deposited on the mangrove forest floor and 93.4 % of all entangled litter on mangrove canopy. Most litter comprised single-use plastic products across all surveyed locations. Mangrove floor cleanliness was assessed using several indices, such as Clean Coast Index, General Index, Hazardous Items Index, and Pollution Load Index, reiterating an inferior cleanliness status. The pollution load index indicates "Hazard level I" plastic pollution risk across the mangroves. Litter concentration differed markedly across all sites. However, a significantly higher concentration of stranded litter was detected in the densely populated urban agglomeration and rural areas with inadequate solid waste management. Probable sources of litter indicate land-based (local) and sea-originated (fishing). Supportive information on the transport and accumulation of marine litter is examined based on the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) model version 2 reanalysis of surface wind and current pattern across the Arabian Sea followed by MIKE simulated tide-induced coastal current. Mangrove pneumatophores and branches were found to be damaged by entangled plastics. Hence, determining litter quantum and their probable input source is pivotal in mitigating anthropogenic litter impact on mangrove ecosystems and fostering mangrove conservation. Overall, results envisage that stringent enforcement, implementation of an integrated solid waste management framework, and general behavioral change of the public are crucial to mitigate litter/plastic pollution.
Collapse
Affiliation(s)
- Kalyan De
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - Sabyasachi Sautya
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - G Udhaba Dora
- Physical Oceanography Division, CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Santosh Gaikwad
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Dinesh Katke
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Aditya Salvi
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| |
Collapse
|
20
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
21
|
The ecological impact of plastic pollution in a changing climate. Emerg Top Life Sci 2022; 6:389-402. [PMID: 36398707 DOI: 10.1042/etls20220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.
Collapse
|
22
|
Cordova MR, Iskandar MR, Muhtadi A, Saville R, Riani E. Spatio-temporal variation and seasonal dynamics of stranded beach anthropogenic debris on Indonesian beach from the results of nationwide monitoring. MARINE POLLUTION BULLETIN 2022; 182:114035. [PMID: 35973247 DOI: 10.1016/j.marpolbul.2022.114035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The first stranded macrodebris study on a national scale in Indonesia was conducted on 18 beaches from February 2018 to December 2019. The average weight and abundance of beach debris were higher between October and February (rainy season). The highest stranded macrodebris was located in Ambon, Manado, Takalar, and Padang. Plastic (46.38 %) was the most prevalent type of debris across all macrodebris categories, with single-use plastics such as plastic sachets, plastic bags, and plastic bottles being the dominant macroplastic debris (64.64 %). Based on CCI, HII, and BGI, 18 beaches are "moderately clean," with few hazardous items observed, and "Good." This anthropogenic macrodebris is thought to be more localized (55 %) than transboundary macrodebris. Litter control and environmental quality of this Indonesian coastal region should be improved through a proactive and flexible approach. Finally, extensive stranded beach debris monitoring is recommended to better understand the distribution of macrodebris in the region.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency (BRIN) Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jalan Pasir Putih I, Ancol Timur, Jakarta 14430, Indonesia.
| | - Mochamad Riza Iskandar
- Research Center for Oceanography, National Research and Innovation Agency (BRIN) Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jalan Pasir Putih I, Ancol Timur, Jakarta 14430, Indonesia.
| | - Ahmad Muhtadi
- Department of Aquatic Resources Management, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Prof. A. Sofyan No. 3, Medan 20215, Indonesia.
| | - Ramadhona Saville
- Laboratory of Management Informatics, Tokyo University of Agriculture, Setagaya Campus 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | - Etty Riani
- Department of Aquatic Resources Management, Bogor Agricultural University, Jl. Agatis Kampus IPB Darmaga, Bogor, Jawa Barat 16680, Indonesia.
| |
Collapse
|
23
|
Cordova MR, Ulumuddin YI, Purbonegoro T, Puspitasari R, Afianti NF, Rositasari R, Yogaswara D, Hafizt M, Iswari MY, Fitriya N, Widyastuti E, Kampono I, Kaisupy MT, Wibowo SPA, Subandi R, Sani SY, Sulistyowati L, Muhtadi A, Riani E, Cragg SM. Seasonal heterogeneity and a link to precipitation in the release of microplastic during COVID-19 outbreak from the Greater Jakarta area to Jakarta Bay, Indonesia. MARINE POLLUTION BULLETIN 2022; 181:113926. [PMID: 35841674 PMCID: PMC9288859 DOI: 10.1016/j.marpolbul.2022.113926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/19/2023]
Abstract
To reduce microplastic contamination in the environment, we need to better understand its sources and transit, especially from land to sea. This study examines microplastic contamination in Jakarta's nine river outlets. Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m-3. The trend of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion due to their widespread use in normal daily life and industrial applications. Our research observed an increase in microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste and microplastic shift in our study area. More research is needed to establish how and where microplastics enter rivers.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia.
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Rachma Puspitasari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Nur Fitriah Afianti
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Ricky Rositasari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Hafizt
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Marindah Yulia Iswari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Hydrodynamics Technology, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Mlati Jln. Grafika No.2 Sekip, Yogyakarta, Indonesia
| | - Nurul Fitriya
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Ernawati Widyastuti
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Irfan Kampono
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Lilik Sulistyowati
- Environmental Studies Graduate Program, Universitas Terbuka, Jl. Cabe Raya, Pondok Cabe, Pamulang Tangerang Selatan 15418, Indonesia
| | - Ahmad Muhtadi
- Department of Aquatic Resources Management, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Prof. A. Sofyan No. 3, Medan 20222, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, Bogor Agricultural University, Jl. Agatis Gedung Fakultas Perikanan dan Ilmu Kelautan, Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Blue Governance, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|