1
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Wang B, Wu Y, Li W. An assessment of the levels of emerging and traditional organophosphate ester flame retardants in dairy products in China and their combined dietary risks. Food Chem Toxicol 2025; 195:115121. [PMID: 39571717 DOI: 10.1016/j.fct.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
A comprehensive survey was conducted by investigating 25 emerging and traditional organophosphate esters (OPEs) in 182 dairy products collected in China. The concentrations of total OPEs (ΣOPEs) ranged from 0.0261 to 1178 ng/g wet weight (ww) in all the dairy samples. The major contaminants were triethyl phosphate (proportion: 94 %) and tris(1-chloro-2-isopropyl) phosphate (proportion: 2 %). Among types of dairy products, the concentrations of ΣOPEs decreased in the following order: milk powder (mean: 80.8 ng/g ww, proportion: 86 %) > cheese (9.43 ng/g ww, 10 %) > milk tablets (2.72 ng/g ww, 3 %) > liquid dairy (1.05 ng/g ww, 1 %). The significant correlation between emerging and traditional OPEs suggests that they likely share similar sources or are used together in commercial applications. OPEs contamination was related to the OPEs properties, local OPEs production and application, and dairy types. For the general Chinese population, the average and high estimated daily intakes of ΣOPEs via dairy products were 31.5 and 83.6 ng/kg bw/day, respectively. Dairy exposure in toddlers and children were higher than other age groups. Although the high-exposure risk of ΣOPEs was 3.50 × 10-3, potentially toxic tris(1-chloro-2-isopropyl) phosphate accounted for 38 % of the total hazard quotients.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yantao Wu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Wei Li
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
2
|
Fernández-Arribas J, Callejas-Martos S, Balasch A, Moreno T, Eljarrat E. Simultaneous analysis of several plasticizer classes in different matrices by on-line turbulent flow chromatography-LC-MS/MS. Anal Bioanal Chem 2024; 416:6957-6972. [PMID: 39425761 PMCID: PMC11579108 DOI: 10.1007/s00216-024-05593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The development of methodologies for the determination of plasticizers is essential for assessing the environmental and human impact resulting from the use of plastics. A fast analytical method with on-line purification based on turbulent flow chromatography (TFC) coupled to tandem mass spectrometry (MS-MS) has been developed for the analysis of ten phthalates, four alternative plasticizers (including adipates and citrates), and 20 organophosphate esters (OPEs). The method has been validated for the determination of plasticizers across different matrices. Analytical parameters showed acceptable recoveries ranging between 50 and 125%, RSDs lower than 20%, and mLODs of 0.001-2.08 ng g-1 wet weight (ww), 0.002-0.30 ng g-1, and 0.001-0.93 ng m-3 for foodstuffs, face masks, and ambient air, respectively. These methodologies were applied to foodstuff samples purchased in grocery stores, reusable and self-filtering masks, and indoor air measured in different locations. Plasticizers were detected in all the analyzed samples, with values up to 22.0 μg g-1 ww, 6.78 μg g-1, and 572 ng m-3 for foodstuffs, face masks, and indoor air, respectively. The contribution of each family to the total plasticizer content varied between 1.3 and 87%, 0.5 and 98%, and 0.5 and 65% for phthalates, alternative plasticizers, and OPEs, respectively. These findings highlighted the need for analytical methodologies capable of simultaneously assessing a wide number of plasticizers with minimal extraction steps. This capability is crucial in order to obtain more conclusive insights into the impact of these pollutants on both the environment and human health, arising from different sources of exposure such as foodstuffs, plastic materials, and atmospheric air.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Sandra Callejas-Martos
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Aleix Balasch
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Lueth AJ, Bommarito PA, Stevens DR, Welch BM, Cantonwine DE, Ospina M, Calafat AM, Meeker JD, McElrath TF, Ferguson KK. Exposure to organophosphate ester flame retardants and plasticizers and associations with preeclampsia and blood pressure in pregnancy. ENVIRONMENTAL RESEARCH 2024; 262:119910. [PMID: 39233027 PMCID: PMC11568915 DOI: 10.1016/j.envres.2024.119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs), flame retardants and plasticizers found widely in consumer products, may impact vascularization processes in pregnancy. Yet, the association between maternal exposure to OPEs and both preeclampsia and blood pressure during pregnancy remains understudied. METHODS Within the LIFECODES Fetal Growth Study (N = 900), we quantified 8 OPE metabolites from maternal urine collected at up to 3 time points during pregnancy and created within-subject geometric means. Outcomes included diagnosis of preeclampsia and longitudinal systolic (SBP) and diastolic (DBP) blood pressure measurements (mean = 14 per participant). Cox proportional hazards models were used to estimate associations between OPE metabolites and preeclampsia. Associations between average OPE metabolite concentrations and repeated blood pressure measurements were estimated using generalized estimating equations. RESULTS Five OPE metabolites were detected in at least 60% of samples; 3 metabolites detected less frequently (5-39%) were examined in an exploratory analysis as ever vs. never detectable in pregnancy. There were 46 cases of preeclampsia in our study population. Associations between OPE metabolites and preeclampsia were null. We noted several divergent associations between OPE metabolites and longitudinal blood pressure measurements. An interquartile range (IQR) difference in average bis(2-chloroethyl) phosphate concentrations was associated with a decrease in SBP (-0.81 mmHg, 95% confidence interval [CI]: -1.62, 0.00), and, conversely, bis(1-chloro-2-propyl) phosphate was associated with a slight increase in SBP (0.94 mmHg, 95% CI: 0.28, 1.61). We also noted a decrease in SBP in association with several metabolites with low detection frequency. CONCLUSIONS We observed null associations between OPE metabolites and preeclampsia, but some positive and some inverse associations with blood pressure in pregnancy. While our study was well-designed to assess associations with blood pressure, future studies with a larger number of preeclampsia cases may be better poised to investigate the association between OPE metabolites and phenotypes of this heterogenous hypertensive disorder of pregnancy.
Collapse
Affiliation(s)
- Amir J Lueth
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John D Meeker
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
4
|
Zhang Q, Wang L. Affecting factors and health risks of organophosphate esters in urban soil and surface dust in a typical river valley city based on local bivariate Moran's I and Monte-Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136534. [PMID: 39561543 DOI: 10.1016/j.jhazmat.2024.136534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
A total of 102 urban soil and surface dust samples were collected from Lanzhou of China to clarify the occurrences, sources, affecting factors, and health risks of 13 organophosphate esters (OPEs). The total concentration of 13 OPEs (Ʃ13OPEs) in urban soil and surface dust ranged from 80.1 to 749 and 244 to 4905 ng/g, dominated by chlorinated OPEs (39.9 % and 65.1 %). The Ʃ13OPEs in the two media was higher in the central and eastern of Lanzhou due to local topography and wind direction. OPEs in the two media originated from industrial, traffic and commercial activities (37-53.4 %), atmospheric depositions (24.3-31.3 %), and OPEs-containing material emissions (14.5-31.7 %). Transport station number, residential/commercial area distribution, and road length were positively correlated with Ʃ13OPEs in the two media, suggesting that traffic activities are the main factors influencing the distribution of OPEs. Probabilistic non-cancer (< 1) and cancer (< 1 × 10-6) risks of human exposed to OPEs were low, mainly attributed to OPEs-containing material emissions (47.5-62.0 %) in urban soil and industrial/traffic activities (57.8-92.2 %) in surface dust. Reducing the frequency of human exposed to the two media and controlling the release of OPEs from pollution sources may mitigate population exposure risks.
Collapse
Affiliation(s)
- Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Li W, Chen J, Bie Q, Chen X, Huang Y, Zhang K, Qian S. Exploring organophosphate ester contamination and distribution in food: A meta-analysis. Food Chem 2024; 456:140035. [PMID: 38870824 DOI: 10.1016/j.foodchem.2024.140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
This study examines the food safety risk of organophosphate esters (OPEs) by analyzing data from 23 studies with 14,915 data points. We found EDP contamination highest in cereals, dairy, and meats, and TEHP most prevalent in vegetables and fruits, with contamination levels reaching 4.54 ng/g and 1.46 ng/g, respectively. Food processing influences OPE contamination through complex and multifaceted, akin to a "double-edged sword.", as meta-analysis and Principal Component Analysis (PCA) revealed. Estimated Dietary Intakes (EDI) identified vegetables and cereals as primary OPE sources, contributing 33.3% and 23.8% of total intake, with EDI values of 44.74 ng/kg bw/day and 32.25 ng/kg bw/day, respectively. Current exposure levels are within U.S. EPA safety thresholds (HQ < < 1), but the heightened risk to infants and children necessitates revising safety standards and ongoing monitoring.
Collapse
Affiliation(s)
- Wenjun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Junlong Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qianqian Bie
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Xianggui Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Yukun Huang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Kaihui Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Shan Qian
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
6
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
7
|
Wang Y, Li X, Chen S, Yang J, Fang B, Chen H, Yao Y, Sun H. Structure-Dependent Distribution, Metabolism, and Toxicity Effects of Alkyl Organophosphate Esters in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17441-17453. [PMID: 39298521 DOI: 10.1021/acs.est.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study provides a comprehensive investigation into the structure-dependent uptake, distribution, biotransformation, and potential toxicity effects of alkyl organophosphate esters (OPEs) in hydroponic lettuce (Lactuca sativa L.). Trimethyl, triethyl, and tripropyl phosphates were readily absorbed and acropetally translocated, while tributyl, tripentyl, and trihexyl phosphates accumulated mainly in lateral roots. The acropetal translocation potential was negatively associated with log Kow values. Trimethyl and triethyl phosphates are less prone to biotransformation, while a total of 14 novel hydrolysis, hydroxylated, and conjugated metabolites were identified for other OPEs using nontarget analysis. The extent of hydroxylation decreases from tripropyl phosphate to trihexyl phosphate, but multiple hydroxylations occurred more frequently on longer chain OPEs. Further comparative toxicity test revealed that hydrolyzed and hydroxylated metabolites have stronger toxic effects on Ca2+-dependent protein kinases (CDPK) than their parent OPEs. Dibutyl 3-hydroxybutyl phosphate particularly induces upregulation of CDPK in lateral roots of lettuce, probably associated with adenine reduction that may play an important role in the self-defense and detoxification processes. This study contributes to understanding the uptake and transformation behaviors of alkyl OPEs as well as their associations with a toxic effect on lettuce. This emphasizes the necessary evaluation of the environmental risk of the use of OPEs, particularly focusing on their hydroxylated metabolites.
Collapse
Affiliation(s)
- Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Gong S, Huang J, Wang J, Lv M, Deng Y, Su G. Seasonal variations of organophosphate esters (OPEs) in atmospheric deposition, and their contribution to soil loading. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134845. [PMID: 38876016 DOI: 10.1016/j.jhazmat.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in surface soil, and atmospheric deposition is considered to be the major pollution source. However, the research on the environmental transport behaviors of OPEs between atmospheric deposition and soil is very limited. In this study, we investigated the contamination levels and seasonal variations of OPEs in atmospheric deposition samples (n = 33) collected from an area of South China every month between February 2021 and January 2022, and evaluated the contribution of OPEs in atmospheric deposition to soil. The concentrations of ∑21target-OPEs ranged from 3670 to 18,600 ng/g dry weight (dw), with a mean of 8200 ng/g dw (median: 7600 ng/g dw). ∑21target-OPEs concentrations in all atmospheric deposition samples exhibited significant seasonal differences (p < 0.05) with higher concentrations observed in winter and lower concentrations in summer. Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was the most dominant target OPE in atmospheric deposition (4870 ng/g dw), and its seasonal variation trend was consistent with ∑21OPEs (p < 0.05). Simultaneously, in order to further explore the effect of atmospheric deposition on the levels of OPEs in soil of the study region, input fluxes and accumulation increments were estimated. Ten OPEs (including seven target OPEs and three suspect OPEs) exhibited high input flux means and accumulation increments, indicating that these compounds are prone to accumulate in soil via atmospheric deposition. It is noteworthy that the non-target phosphonate analyte bis(2,4-di-tert-butylphenyl) dibutyl ethane-1,2-diylbis(phosphonate) (BDTBPDEDBP) was detected at highest median concentration (8960 ng/g dw) in atmospheric deposition. Correspondingly, the average input flux and accumulation increment of BDTBPDEDBP were higher than those of all target and suspect OPEs. Collectively, this study quantifies the environmental transport behavior of OPEs between atmospheric deposition and soil, and provides new evidences for the fact that atmospheric deposition is the important pollution source of OPEs in soil.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Mingchao Lv
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Mu T, Wang B, Liu T. Contamination of dairy products with tris(2,4-di-tert-butylphenyl) phosphite and implications for human exposure. Food Chem 2024; 448:139144. [PMID: 38579559 DOI: 10.1016/j.foodchem.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Tris(2,4-di-tert-butylphenyl) phosphite (AO168), an organophosphite antioxidant, can be oxidized to tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) during the production, processing, and application of plastics. AO168 = O can be further transformed to bis(2,4-di-tert-butylphenyl) phosphate and 2,4-di-tert-butylphenol. Here, we discovered the contamination of AO168 and its transformation products in dairy products for the first time. More samples contained AO168 (mean concentration: 8.78 ng/g wet weight [ww]), bis(2,4-di-tert-butylphenyl) phosphate (mean:11.1 ng/g ww) and 2,4-di-tert-butylphenol (mean: 46.8 ng/g ww) than AO168 = O (mean: 40.2 ng/g ww). The concentrations of AO168 and its transformation products were significantly correlated, and differed with the packaging material and storage conditions of the product. Estimated daily intakes (EDIs) of AO168 and its transformation products were calculated. Although the overall dietary risks were below one, transformation products accounted for 96.7% of the total hazard quotients. The high-exposure EDIs of total AO168 were above the threshold of toxicological concern (300 ng/kg bw/day), and deserve continual monitoring.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Tongna Mu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ting Liu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
10
|
Zhou R, Geng J, Jiang J, Shao B, Wang B, Wang Y, Li M. Emerging organophosphite and organophosphate esters in takeaway food and the implications for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32588-32598. [PMID: 38656716 DOI: 10.1007/s11356-024-33413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Takeaway food has become a prominent component of the diet in urban areas of China, especially for young people. Although dietary intake is a major pathway to contaminants for human exposure, studies on emerging organophosphite antioxidants (OPAs) and organophosphate esters (OPEs) in food are scarce. Here, we investigated four OPAs and 19 OPEs in takeaway foods (n = 99) and paired takeaway food packaging (n = 50) in China. AO168=O (mean: 14.9 ng/g ww), TPPO (mean: 1.05 ng/g ww), and TCIPP (mean: 0.579 ng/g ww) were dominant in the takeaway food. Some OPEs had significant correlations in takeaway food. Emerging OPAs and OPEs in takeaway food varied significantly depending on the packaging materials and food types. AO168 and AO168=O were widespread in the paired takeaway food packaging. The migration efficiencies of emerging OPAs and OPEs were low in takeaway food packaged in aluminum foil. Although the actual contamination of emerging OPAs and OPEs in takeaway food significantly differed from those of in food simulants migrated from paired takeaway food packaging, the results imply that food itself and takeaway food packaging are potential contamination sources of emerging OPAs and OPEs in takeaway food. The average estimated dietary intakes of emerging OPAs and OPEs were 465 ng/kg body weight (bw)/day and 91.9 ng/kg bw/day, respectively. The exposure risk of emerging OPAs and OPEs through takeaway food intake is low in China.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yu Wang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Minggang Li
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
11
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
12
|
Ji X, Liu J, Liang J, Feng X, Liu X, Wang Y, Chen X, Qu G, Yan B, Liu R. The hidden diet: Synthetic antioxidants in packaged food and their impact on human exposure and health. ENVIRONMENT INTERNATIONAL 2024; 186:108613. [PMID: 38555663 DOI: 10.1016/j.envint.2024.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Synthetic antioxidants (AOs) are commonly used in everyday items and industrial products to inhibit oxidative deterioration. However, the presence of AOs in food packaging and packaged foods has not been thoroughly documented. Moreover, studies on human exposure to AOs through skin contact with packaging or ingesting packaged foods are limited. In this study, we analyzed twenty-three AOs-including synthetic phenolic antioxidants (SPAs) and organophosphite antioxidants (OPAs)-along with six transformation products in various food samples and their packaging materials. We found AOs in food products at concentrations ranging from 1.30 × 103 to 1.77 × 105 ng/g, which exceeded the levels in both outer packaging (6.05 × 102-3.07 × 104 ng/g) and inner packaging (2.27 × 102-1.09 × 105 ng/g). The most common AOs detected in foodstuffs were tris(2,4-di-tert-butylphenyl) phosphate (AO168O), butylated hydroxytoluene (BHT), and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (AO1076), together constituting 95.7 % of the total AOs found. Our preliminary exposure assessment revealed that dietary exposure-estimated at a median of 2.55 × 104 ng/kg body weight/day for children and 1.24 × 104 ng/kg body weight/day for adults-is a more significant exposure route than dermal contact with packaging. Notably, four AOs were identified in food for the first time, with BHT making up 76.8 % and 67.6 % of the total BHT intake for children and adults, respectively. These findings suggest that food consumption is a significant source of BHT exposure. The estimated daily intakes of AOs via consumption of foodstuffs were compared with the recommended acceptable daily intake to assess the risks. This systematic investigation into AOs contributes to understanding potential exposure and health risks associated with AOs in packaged foods. It emphasizes the need for further evaluation of human exposure to these substances.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiale Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Liu C, Zhang Z, Li B, Huang K, Zhang Y, Li M, Letcher RJ. Lipid Metabolic Disorders Induced by Organophosphate Esters in Silver Carp from the Middle Reaches of the Yangtze River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4904-4913. [PMID: 38437168 DOI: 10.1021/acs.est.3c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.
Collapse
Affiliation(s)
- Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6 Ontario, Canada
| |
Collapse
|
14
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Su Y, Luan M, Huang W, Chen H, Chen Y, Miao M. Determinants of organophosphate esters exposure in pregnant women from East China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122767. [PMID: 37863257 DOI: 10.1016/j.envpol.2023.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Organophosphate esters (OPEs) have been broadly used in various industrial and consumer products, resulting in global distribution and human exposure. Gestational exposure to OPEs may adversely affect the health of both pregnant women and their offspring. To better understand OPE exposure in pregnant women, our study determined eight urinary metabolites of major OPEs in pregnant women (n = 733) recruited at 12-16 weeks of gestation from Shanghai, China, and explored the determinants of OPE exposure among various sociodemographic characteristics, lifestyles, and dietary factors. Urinary metabolites of OPEs, including bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), bis (1-chloro-2-propyl) phosphate (BCIPP), dicresyl phosphate (DCP), diphenyl phosphate (DPP), dibutyl phosphate (DBP), bis (2-ethylhexyl) phosphate (BEHP), and bis (2-butoxyethyl) phosphate (BBOEP), exhibited a detection rate ranging from 69.30% to 99.32%. Multivariate linear regression models indicated that pregnant women who were multiparous, had a higher family income per capita, worked in white-collar jobs, and took nutritional supplements such as milk powder and fish oil tended to have higher urinary OPE metabolite concentrations. Besides, independent of sociodemographic characteristics and lifestyle factors, consumption of more aquatic products, soy products, pork, and puffed food, as well as drinking of purified tap water versus tap water, were associated with increased urinary OPEs metabolite concentrations. Our study demonstrated that OPE exposure was ubiquitous in pregnant women from Shanghai, and provided new insights into the potential factors influencing OPE exposure during pregnancy.
Collapse
Affiliation(s)
- Yingqian Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Luan
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China
| |
Collapse
|
16
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
17
|
Chen X, Liang X, Yang J, Yuan Y, Xiao Q, Su Z, Chen Y, Lu S, Wang L. High-resolution mass spectrometry-based screening and dietary intake assessment of organophosphate esters in foodstuffs from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167169. [PMID: 37730029 DOI: 10.1016/j.scitotenv.2023.167169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Organophosphate esters (OPEs) are a group of emerging contaminants with widespread environmental occurrence, yet research on their occurrence in foodstuffs is limited. We collected 100 foodstuff samples in South China using a market basket method, and analyzed food extracts for the presence of OPEs and organophosphite antioxidants (OPAs) by suspect and nontarget screening through high-resolution mass spectrometry. Our analysis resulted in the identification of 30 OPEs, comprised of 25 OPEs with a confidence level (CL) of 1 (unequivocal identification using standards) and five OPEs with CL = 2b (probable structure based on diagnostic evidence). Interestingly, 11 of these identified OPEs had not been previously reported in food. No OPA was identified. The occurrence of identified OPEs within the food samples was further investigated. The highest median concentration of OPEs in all food samples was reached by tris(2-chloroisopropyl) phosphate (TCPP) (1.55 ng/g ww, range < 0.74-12.0 ng/g wet weight (ww)). Cereals demonstrated the highest median concentration of the cumulative 30 OPEs. Tris(2-chloroethyl) phosphate (TCEP), TCPP, and triethyl phosphate (TEP) predominantly contributed to OPEs contamination in most food categories. Eight OPEs, namely TEP, tris(2-ethylhexyl) phosphate (TEHP), TCEP, triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), bis(2-ethylhexyl) phenyl phosphate (BEHPP), resorcinol bis(diphenyl phosphate) (RDP), and methyl diphenyl phosphate (MDPP) exhibited significantly higher concentrations in the processed group as compared to non-processed group, suggesting that food processing may result in contamination of these OPEs. The median sum of estimated dietary intake (ΣEDI) of all OPEs was determined to be 161 ng/kg body weight/day. Cereals (38.5 %) and vegetables (23.5 %) were the predominant food categories contributing to ΣEDI, and TEP (29.0 %), TCEP (20.2 %), and TCPP (18.3 %) were three major OPEs contributing to ΣEDI. This study for the first time offered a comprehensive overview of OPE species and revealed their occurrence in foodstuffs from South China.
Collapse
Affiliation(s)
- Xiwei Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinhan Liang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Junyu Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yinqian Yuan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
18
|
Lin W, Wang H, Wu Z, Zhang W, Lin ME. Associations between exposure to organophosphate esters and overactive bladder in U.S. adults: a cross-sectional study. Front Public Health 2023; 11:1186848. [PMID: 38026372 PMCID: PMC10666646 DOI: 10.3389/fpubh.2023.1186848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The relationship between exposure to organophosphate esters (OPEs) and the risk of developing overactive bladder (OAB) is uncertain. The purpose of this study is to examine the potential link between urinary metabolites of organophosphate esters and OAB. Method Data from the National Health and Nutrition Examination Survey (NHANES) database of the 2011-2016 cycles were utilized. Four urinary metabolites of organophosphate esters: diphenyl phosphate (DPHP), bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) were included in the study. Multivariate logistic regression and restricted cubic spline (RCS) were used to evaluate the relationship between urinary OPEs metabolites and OAB. Interaction analysis was conducted on subgroups to confirm the findings. Results A total of 3,443 United States (US) adults aged 20 years or older were included in the study, of whom 597 participants were considered to have OAB. After adjusting for potential confounding factors, we found a positive association between DPHP and the risk of overactive bladder. The risk of overactive bladder increased with increasing DPHP concentrations compared with quartile 1 (quartile 2, OR = 1.19, 95% CI, 0.82-1.73, P = 0.34; quartile 3, OR = 1.67, 95% CI, 1.10-2.53, P = 0.02; Q4, OR = 1.75, 95% CI, 1.26-2.43, P = 0.002). However, after dividing the participants by gender, only the female group retained consistent results. Additionally, restricted cubic spline analysis revealed a nonlinear dose-response correlation between DPHP and OAB in female participants. In the subgroup analysis based on age, race, body mass index (BMI), recreational activity, smoking status, drinking status, hypertension, diabetes, and stroke, the interaction analysis revealed that the findings were uniform. Conclusion Our findings indicate that exposure to DPHP could elevate the risk of OAB in US adult females. Further experimental studies are needed to explore the underlying mechanism in the future.
Collapse
Affiliation(s)
- Weilong Lin
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, Guangdong, China
| | - Haoxu Wang
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, Guangdong, China
| | - Zesong Wu
- Clinical Medicine Science, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Zhang
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, Guangdong, China
- The First Affiliated Hospital of Shantou University Medical College Hao Jiang Hospital, Shantou, Guangdong, China
| | - Ming-En Lin
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, Guangdong, China
| |
Collapse
|
19
|
Bi R, Meng W, Su G. Organophosphate esters (OPEs) in plastic food packaging: non-target recognition, and migration behavior assessment. ENVIRONMENT INTERNATIONAL 2023; 177:108010. [PMID: 37307603 DOI: 10.1016/j.envint.2023.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are widely used as plasticizers in plastic food packaging; however, the migration of OPEs from plastic to food is largely unstudied. We do not even know the specific number of OPEs that exist in the plastic food packaging. Herein, an integrated target, suspect, and nontarget strategy for screening OPEs was optimized using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). The strategy was used to analyze 106 samples of plastic food packaging collected in Nanjing city, China, in 2020. HRMS allowed full or tentative identification of 42 OPEs, of which seven were reported for the first time. Further, oxidation products of bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (AO626) in plastics were identified, implying that the oxidation of organophosphite antioxidants (OPAs) could be an important indirect source of OPEs in plastics. The migration of OPEs was examined with four simulated foods. Twenty-six out of 42 OPEs were detected in at least one of the four simulants, particularly isooctane, in which diverse OPEs were detected at elevated concentrations. Overall, the study supplements the list of OPEs that humans could ingest as well as provides essential information regarding the migration of OPEs from plastic food packaging to food.
Collapse
Affiliation(s)
- Ruifeng Bi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
20
|
Fernández-Arribas J, Moreno T, Eljarrat E. Human exposure to organophosphate esters in water and packed beverages. ENVIRONMENT INTERNATIONAL 2023; 175:107936. [PMID: 37088006 DOI: 10.1016/j.envint.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Drinks are an essential part of human diet, which makes them a source of human exposure to plasticizers such as organophosphate esters (OPEs). The current study provides new information about sixteen OPE levels in 75 different samples (tap water, packed water, cola drinks, juice, wine and hot drinks). Tap water mean levels (40.9 ng/L) were statistically higher than packed water mean levels (4.82 ng/L), mainly due to the contribution of tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-butoxyethyl) phosphate (TBOEP) that may come from PVC water pipes. Over 90% of samples presented at least one OPE, where regular cola drinks had the highest mean concentrations (2876 ng/L). There was a significantly higher presence of OPEs in added sugar beverages than sugar free drinks, especially for 2-ethylhexyl diphenyl phosphate (EHDPP), which might be related not only to packaging materials but to the added sugar content. Estimated daily intakes (EDIs) in normal and high-exposure scenarios were 2.52 ng/kg bw/day and 7.43 ng/kg bw/day, respectively. Human risk associated with beverages ingestion showed regular cola drinks, juice and tap water as the groups with the highest hazard quotients (HQs). Although OPE exposure was below to safety limits, it should be noted that EHDPP values for regular cola group must be cause of concern, and other routes of exposure such as food ingestion or air inhalation should be also considered.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Dang Y, Tang K, Wang Z, Cui H, Lei J, Wang D, Liu N, Zhang X. Organophosphate Esters (OPEs) Flame Retardants in Water: A Review of Photocatalysis, Adsorption, and Biological Degradation. Molecules 2023; 28:molecules28072983. [PMID: 37049746 PMCID: PMC10096410 DOI: 10.3390/molecules28072983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
As a substitute for banned brominated flame retardants (BFRs), the use of organophosphate esters (OPEs) increased year by year with the increase in industrial production and living demand. It was inevitable that OPEs would be discharged into wastewater in excess, which posed a great threat to the health of human beings and aquatic organisms. In the past few decades, people used various methods to remove refractory OPEs. This paper reviewed the photocatalysis method, the adsorption method with wide applicability, and the biological method mainly relying on enzymolysis and hydrolysis to degrade OPEs in water. All three of these methods had the advantages of high removal efficiency and environmental protection for various organic pollutants. The degradation efficiency of OPEs, degradation mechanisms, and conversion products of OPEs by three methods were discussed and summarized. Finally, the development prospects and challenges of OPEs’ degradation technology were discussed.
Collapse
|