1
|
Barre A, Briand JF, Vaccher V, Briant N, Briand JM, Dormoy B, Boissery P, Bouchoucha M. A comparative biomonitoring study of trace metals and organic compounds bioaccumulation in marine biofilms and caged mussels along the French Mediterranean coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125239. [PMID: 39491582 DOI: 10.1016/j.envpol.2024.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The bioaccumulation potential of contaminants in marine environments was investigated in biofilms and compared with caged mussels for a wide range of both organic and metallic contaminants across a large geographic area. Marine biofilms were sampled after three months of sub-surface immersion at 49 locations along the 1800 km of the French Mediterranean coast. Ten chemical elements (i.e. As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) and 57 organic compounds (i.e., 18 polycyclic aromatic hydrocarbons (PAHs), 8 dioxin-like and 6 non-dioxin-like polychlorinated biphenyls (PCBs) and 25 organochlorine pesticides (OCPs)) were quantified in triplicates, revealing different multi-contaminated profiles depending on sites. Most of contaminants exhibited higher concentrations in biofilms than in mussels. Moreover, a remarkable significant and positive correlation between the concentrations in both biological matrices was observed for PAHs and PCBs, and more contaminant-dependent for OCPs and metals. These results highlighted the potential of biofilms as relevant bioindicators of the marine chemical contamination.
Collapse
Affiliation(s)
- Abel Barre
- Université de Toulon, MAPIEM, Toulon, France
| | | | - Vincent Vaccher
- LUNAM Université, Oniris, USC 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, Nantes, France
| | - J Marine Briand
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse (LER-PAC), CS 20330, F-83507, La Seyne Sur Mer, France
| | - Bruno Dormoy
- Laboratoire d'Analyses de Surveillance et d'Expertise de la Marine (LASEM), Toulon, France
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse - Délégation Paca Corse, F-13001, Marseille, France
| | - Marc Bouchoucha
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse (LER-PAC), CS 20330, F-83507, La Seyne Sur Mer, France
| |
Collapse
|
2
|
Barhoumi B, Metian M, Alonso-Hernández CM, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Insight into the effect of natural aging of polystyrene microplastics on the sorption of legacy and emerging per- and polyfluorinated alkyl substances in seawater. Heliyon 2024; 10:e40490. [PMID: 39654741 PMCID: PMC11626057 DOI: 10.1016/j.heliyon.2024.e40490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with Kd values ranging from 327 L kg-1 for PFOA to 3247 L kg-1 for PFOS in aged PS-MPs. The difference in sorption capacity was mainly attributed to the physical-chemical changes and the adhered biofilm observed in aged PS-MPs. Results also showed that virgin PS-MPs adsorb PFAS mainly through steric hindrance, while the aged PS-MPs may involve more complex sorption mechanisms. This research provides additional insights into the ability of aged MPs as potential carriers of legacy and emerging contaminants in the marine environment.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| |
Collapse
|
3
|
Zhang R, Lu X, Huang W, Liu Y, Zhou Z, Xia Y, Wang J, Fan X. Reflecting the aging behavior of polystyrene nanoplastics in the seawater through Young's modulus by atomic force microscope. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136438. [PMID: 39522214 DOI: 10.1016/j.jhazmat.2024.136438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nanoplastics (NPs), with different physicochemical properties at various aging stages, have severe impacts on human health and the ecological environment. Restricted by the traditional technique, such as time-consuming, sample concentration, and the destructive of the sample, it is hard to precisely determine their aging behavior. Interestingly, we found that the nano-mechanical properties of the NPs were largely influenced by the oxidation and the cross-linking, however, their deep relationship remains lacking. Herein, this study investigates the aging behaviors of commodity plastics, microplastics and NPs in seawater via testing the changes of the physicochemical properties by combination of atomic force microscope. The results indicated that the changing behavior of Young's modulus (YM) for NPs exhibited distinctly with a rapid to a slow growth trend, an initial slow increase followed by an acceleration for microplastics, while there was almost no significant change for commodity plastics. And it was further validated by the changing trend of hydroxyl index and degree of cross-linking of the aged plastics with different sizes, which undoubtedly showed a consistent trend with the YM changes. These findings provide a new perspective for measuring the degree of cross-linking of aged NPs.
Collapse
Affiliation(s)
- Runzhe Zhang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xinyi Lu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenyi Huang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhikui Zhou
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanyan Xia
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jian Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Zhang YH, Gao RY, Zhu F, Fu LM, Zhang JP. Combined effect of polystyrene nanoparticles and chlorpyrifos to Daphnia magna. CHEMOSPHERE 2024; 369:143765. [PMID: 39580085 DOI: 10.1016/j.chemosphere.2024.143765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Microplastics and nanoplastics (MPs/NPs) are emerging contaminants ubiquitous in the environment. These particles can act as carriers of hydrophobic organic compounds (HOCs), such as chlorpyrifos (CPF), an organophosphorus insecticide. This study investigates the acute toxicity of CPF combined with model polystyrene nanoplastics (PS-NPs) using Daphnia magna as a model organism. The uptake and accumulation of luminescence-labelled 240 nm PS-NPs were visualized and quantified during co-exposure tests. Heart rates were measured using a video-based method, and IC50 values for heart rate were calculated to assess the acute toxicity of CPF. The results demonstrate that PS-NPs alone have no acute toxicity, while CPF exhibits high toxicity, with an IC50 of 50.8 μg/L. However, in the presence of 50 μg/L PS-NPs, the IC50 increased to approximately 400 μg/L, indicating an antagonistic effect of PS-NPs on CPF toxicity. The adsorption of CPF onto PS-NPs can reduce the concentration of free CPF, leading to aggregation and sedimentation of CPF-PS-NP clusters, thereby decreasing the uptake of CPF by D. magna. This interaction between CPF and PS-NPs in D. magna exemplifies the toxicity-attenuating effects and potential load capacity of nanoplastics for HOCs.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Few Zhu
- Intelligent Scientific Systems Co., Beijing, 100085, China
| | - Li-Min Fu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
6
|
Nik Mut NN, Na J, Nam G, Jung J. The biodegradation of polylactic acid microplastic and their toxic effect after biofouling in activate sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125038. [PMID: 39343347 DOI: 10.1016/j.envpol.2024.125038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Biodegradable microplastics (MPs) can form biofilms through interactions with various microorganisms in aquatic system and can be exposed to organisms. This study first investigated biodegradability of polylactic acid (PLA) MPs and the characterization of PLA MPs before/after biofouling (4 weeks) and their toxic effects on the freshwater invertebrate Daphnia magna. The biodegradability rate of PLA MPs was up to 50% over 28 days, suggesting that even biodegradable MPs do not easily decompose under environmental conditions. Furthermore, biofouling of MPs led to an increase in size and, in the process, induced an additional functional peak in the PLA MPs. The exposure of biofouled MPs did not lead to a reduction in survival, reproduction, or growth during chronic exposure, nor did it cause feeding inhibition in juvenile (<4 days old) D. magna. However, pristine MPs significantly reduced survival, reproduction, and growth at concentrations of 5.0 mg L-1. Overall, pristine MPs caused inhibition of reproduction and growth and high mortality in D. magna, while the biofouling process did not induce these effects. Our findings highlight the complex interactions between MPs and biological components in aquatic environments, emphasizing the importance of considering biofouling dynamics when assessing the ecological impacts of biodegradable MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwiwoong Nam
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
8
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
10
|
Baysal A, Saygin H, Soyocak A. A Comparative Study on the Interaction Between Protein and PET Micro/Nanoplastics: Structural and Surface Characteristics of Particles and Impacts on Lung Carcinoma Cells (A549) and Staphylococcus aureus. ENVIRONMENTAL TOXICOLOGY 2024; 39:4899-4926. [PMID: 38923375 DOI: 10.1002/tox.24366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The interaction between particles and proteins is a key factor determining the toxicity responses of particles. Therefore, this study aimed to examine the interaction between the emerging pollutant polyethylene terephthalate micro/nanoplastics from water bottles with bovine serum albumin. The physicochemical characteristics of micro/nanoplastics were investigated using nuclear magnetic resonance, x-ray diffraction, Fourier transform infrared, dynamic light scattering, and x-ray energy dispersive spectroscopy after exposure to various concentrations and durations of protein. Furthermore, the impact of protein-treated micro/nanoplastics on biological activities was examined using the mitochondrial activity and membrane integrity of A549 cells and the activity and biofilm production of Staphylococcus aureus. The structural characteristics of micro/nanoplastics revealed an interaction with protein. For instance, the assignment of protein-related new proton signals (e.g., CH2, methylene protons of CH2O), changes in available protons s (e.g., CH and CH3), crystallinity, functional groups, elemental ratios, zeta potentials (-11.3 ± 1.3 to -12.4 ± 1.7 to 25.5 ± 2.3 mV), and particle size (395 ± 76 to 496 ± 60 to 866 ± 82 nm) of micro/nanoplastics were significantly observed after protein treatment. In addition, the loading (0.012-0.027 mM) and releasing (0.008-0.013 mM) of protein also showed similar responses with structural characteristics. Moreover, the cell-based responses were changed regarding the structural and surface characteristics of micro/nanoplastics and the loading efficiencies of protein. For example, insignificant mitochondrial activity (2%-10%) and significant membrane integrity (12%-28%) of A549 cells increased compared with control, and reductions in bacterial activity (5%-40%) in many cases and biofilm production specifically at low dose of all treatment stages (13%-46% reduction) were observed.
Collapse
Affiliation(s)
- Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
11
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Cho Y, Seo EU, Hwang KS, Kim H, Choi J, Kim HN. Evaluation of size-dependent uptake, transport and cytotoxicity of polystyrene microplastic in a blood-brain barrier (BBB) model. NANO CONVERGENCE 2024; 11:40. [PMID: 39406944 PMCID: PMC11480280 DOI: 10.1186/s40580-024-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Microplastics, particularly those in the micrometer scale, have been shown to enter the human body through ingestion, inhalation, and dermal contact. Recent research indicates that microplastics can potentially impact the central nervous system (CNS) by crossing the blood-brain barrier (BBB). However, the exact mechanisms of their transport, uptake, and subsequent toxicity at BBB remain unclear. In this study, we evaluated the size-dependent uptake and cytotoxicity of polystyrene microparticles using an engineered BBB model. Our findings demonstrate that 0.2 μm polystyrene microparticles exhibit significantly higher uptake and transendothelial transport compared to 1.0 μm polystyrene microparticles, leading to increased permeability and cellular damage. After 24 h of exposure, permeability increased by 15.6-fold for the 0.2 μm particles and 2-fold for the 1.0 μm particles compared to the control. After 72 h of exposure, permeability further increased by 27.3-fold for the 0.2 μm particles and a 4.5-fold for the 1.0 μm particles compared to the control. Notably, microplastics administration following TNF-α treatment resulted in enhanced absorption and greater BBB damage compared to non-stimulated conditions. Additionally, the size-dependent toxicity observed differently between 2D cultured cells and 3D BBB models, highlighting the importance of testing models in evaluating environmental toxicity.
Collapse
Affiliation(s)
- Yeongseon Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyelim Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- University of Science and Technology, Seoul, 02792, Republic of Korea.
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Yonsei-Korea Institute of Science and Technology Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Zhang L, Lu G, Ling X, Yan Z, Liu J, Ding K. Toxicokinetics of microplastics in Macrobrachium nipponense and their impact on the bioavailability of loaded pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135610. [PMID: 39178771 DOI: 10.1016/j.jhazmat.2024.135610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Microplastics (MPs) have unique toxicokinetic (TK) processes that differ from those of soluble pollutants. This study investigated the ingestion, migration, accumulation, and clearance of environmental aging MPs in the Japanese swamp shrimp (Macrobrachium nipponense). The concentrations of plastic additives and personal care products adsorbed onto MPs in natural river water were determined, and TK models for MPs and MPs-loaded pollutants were developed. Results showed that the formation of surface biofilms and alterations in the distribution of MPs in waters caused by environmental aging affect MPs bioavailability, which is mainly related to the feeding habits of shrimp. The decrease in MPs particle size caused by biological digestion and the increase in the number of oxygen-containing functional groups caused by environmental aging affect the TK process of MPs. The TK model of MPs-loaded pollutants revealed the cleaning effect of shrimp on pollutants adsorbed onto MPs during swallowing and spitting MPs. This cleaning effect significantly increases the bioavailability of MPs-associated pollutants in aquatic environments. This study provides a new perspective for understanding the interactions between environmental MPs and their associated pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| |
Collapse
|
14
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
15
|
Battulga B, Munkhbat D, Matsueda M, Atarashi-Andoh M, Oyuntsetseg B, Koarashi J, Kawahigashi M. Uncovering the characteristics of plastic-associated biofilm from the inland river system of Mongolia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124427. [PMID: 38914199 DOI: 10.1016/j.envpol.2024.124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
The occurrence and characteristics of plastic debris in aquatic and terrestrial environments have been extensively studied. However, limited information exists on the properties and dynamic behavior of plastic-associated biofilms in the environment. In this study, we collected plastic samples from an inland river system in Mongolia and extracted biofilms to uncover their characteristics using spectroscopic, isotopic, and thermogravimetric techniques. Mixtures of organic and mineral particles were detected in the extracted biofilms, revealing plastic as a carrier for exogenous substances, including contaminants, in the river ecosystem. Thermogravimetric analysis (TGA) indicated the predominant contribution of minerals primarily comprising aluminosilicate and calcite, representing approximately 80 wt% of the biofilms. Differential thermal analysis (DTA) coupled with Fourier transform infrared (FTIR) spectrometry operated at 25°C-600 °C enabled the detection of gaseous decomposition products, such as CO2, H2O, CO, and functional groups (O-H, C-H, C-O, CO, CC, and C-C), released from biopolymers in the extracted biofilms. Dehydration, dehydroxylation, and decarboxylation reactions explain the thermal properties of biofilms. The stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of the biofilms demonstrated variable signatures ranging from -24.1‰ to -27.0‰ and 3.1‰-12.3‰, respectively. A significant difference in the δ13C value (p < 0.05) among the upstream, middle, and downstream research sites could be characterized by available organic carbon sources in the river environment, depending on the research sites. This study provides insights into the characteristics and environmental behavior of biofilms which are useful to elucidate the impact of plastic-associated biofilms on organic matter and material cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan; Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| | - Dolgormaa Munkhbat
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Makoto Matsueda
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency, Fukushima, 963-7700, Japan
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Bolormaa Oyuntsetseg
- Department of Chemistry, National University of Mongolia, Ikh Surguuliin Gudamj-1, Ulaanbaatar, 14201, Mongolia
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Masayuki Kawahigashi
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
16
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Yan P, Zhuang S, Li M, Zhang J, Wu S, Xie H, Wu H. Combined environmental pressure induces unique assembly patterns of micro-plastisphere biofilm microbial communities in constructed wetlands. WATER RESEARCH 2024; 260:121958. [PMID: 38896886 DOI: 10.1016/j.watres.2024.121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
The characteristics and dynamics of micro-plastisphere biofilm on the surface of microplastics (MPs) within artificial ecosystems, such as constructed wetlands (CWs), remain unclear, despite these ecosystems' potential to serve as sinks for MPs. This study investigates the dynamic evolution of micro-plastisphere biofilm in CWs, utilizing simulated wastewater containing sulfamethoxazole and humic acid, through physicochemical characterization and metagenomic analysis. Two different types of commercial plastics, including non-degradable polyethylene and degradable polylactic acid, were shredded into MPs and studied. The findings reveal that the types, shape and incubation time of MPs, along with humic acid content in wastewater, affected the quantity and quality of biofilms, such as the biofilm composition, spatial structure and microbial communities. After just 15 days into incubation, numerous microbials were observed on MP samples, with increases in biofilms content and enhanced humification of extracellular polymeric substances over time. Additionally, microbial communities on polylactic acid MPs, or those incubated for longer time, exhibit higher diversity, connectivity and stability, along with reduced vulnerability. Conversely, biofilms on polyethylene MPs were thicker, with higher potential for greenhouse gas emission and increased risk of antibiotic resistance genes. The addition of humic acid demonstrated opposite effects on biofilms across environmental interfaces, possibly due to its dual potential to produce light-induced free radicals and serve as a carbon source. Binning analysis further uncovered a unique assembly pattern of nutrients cycle genes and antibiotic resistance genes, significantly correlated within micro-plastisphere microbial communities, under the combined stress of nutrition and sulfamethoxazole. These results emphasize the shaping of micro-plastisphere biofilm characteristics by unique environmental conditions in artificial ecosystems, and the need to understand how DOM and other pollutants covary with MP pollution.
Collapse
Affiliation(s)
- Peihao Yan
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuzhen Zhuang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Mingjun Li
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266247, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
18
|
Huang J, Gu P, Cao X, Miao H, Wang Z. Mechanistic study on the increase of Microcystin-LR synthesis and release in Microcystis aeruginosa by amino-modified nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134767. [PMID: 38820757 DOI: 10.1016/j.jhazmat.2024.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM). However, the influencing mechanism of MPs and NPs exposure on MC-LR synthesis and release have still not been clearly evaluated. In this work, under both acute (4d) and long-term exposure (10d), only high-concentration (10 mg/L) exposure of amino-modified polystyrene NPs (PS-NH2-NPs) promoted MC-LR synthesis (32.94 % and 42.42 %) and release (27.35 % and 31.52 %), respectively. Mechanistically, PS-NH2-NPs inhibited algae cell density, interrupted pigment synthesis, weakened photosynthesis efficiency, and induced oxidative stress, with subsequent enhancing the MC-LR synthesis. Additionally, PS-NH2-NPs exposure up-regulated MC-LR synthesis pathway genes (mcyA, mcyB, mcyD, and mcyG) combined with significantly increased metabolomics (Leucine and Arginine), thereby enhancing MC-LR synthesis. PS-NH2-NPs exposure enhanced the MC-LR release from M. aeruginosa via up-regulated MC-LR transport pathway genes (mcyH) and the shrinkage of plasma membrane. Our results provide new insights into the long-time coexistence of NPs with algae in freshwater systems might pose a potential threat to aquatic environments and human health.
Collapse
Affiliation(s)
- Jinjie Huang
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
19
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
20
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
21
|
Guo T, Geng X, Zhang Y, Hou L, Lu H, Xing M, Wang Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult Sci 2024; 103:103674. [PMID: 38583309 PMCID: PMC11004413 DOI: 10.1016/j.psj.2024.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Microplastics biological toxicity, environmental persistence and biological chemicals have been paid widespread attention. Microplastics exposed to chicken spleen injury of the specific mechanism is unclear. Thus, we randomly assigned chickens to 4 groups: C (normal diet), L-MPs (1 mg/L), M-MPs (10 mg/L), and H-MPs (100 mg/L), and assessed spleen damage after 42 d of exposure. Morphologically, the boundary between the red and white pulp of the spleen was blurred, along with the expansion of the white pulp. It was further speculated that microplastics induced mitochondrial dynamic homeostasis (Drp1 upgraded, Mfn1, Mfn2, and OPA1 reduced), and provoked the mitochondrial apoptotic pathway (Bcl-2/Bax decreased, cytc, caspase3, and caspase9 raised), resulting in redox imbalance and lipid peroxide accumulation (MDA increased, CAT, GSH, and T-AOC plummeted), and further stimulated ferroptosis (FTH1, GPX4, and SLC7A11 decreased). Here we explored the impact of polystyrene microplastics on the spleen, as well as the programmed death (apoptosis and ferroptosis) involved, and the regulative role of mitochondria in this process. This could be of significant importance in bridging the gap in laboratory research on microplastics-induced spleen injury in chicken.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
22
|
Wu X, Lin L, Lin Z, Deng X, Li W, He T, Zhang J, Wang Y, Chen L, Lei Z, Liu C, Xu Z. Influencing mechanisms of microplastics existence on soil heavy metals accumulated by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171878. [PMID: 38537832 DOI: 10.1016/j.scitotenv.2024.171878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.
Collapse
Affiliation(s)
- Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanli Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao He
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan 442000, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou 510656, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lili Chen
- Business School, Central South University of Forestry and Technology, Changsha 410004, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zexiang Lei
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
23
|
Chen CY, Lin Z. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles. ENVIRONMENT INTERNATIONAL 2024; 186:108617. [PMID: 38599027 DOI: 10.1016/j.envint.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States.
| |
Collapse
|
24
|
Wang Y, Wang Y, Shao T, Wang R, Dong Z, Xing B. Antibiotics and microplastics in manure and surrounding soil of farms in the Loess Plateau: Occurrence and correlation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133434. [PMID: 38198861 DOI: 10.1016/j.jhazmat.2024.133434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The wide use of animal manure in farmland operations is a source of soil nutrients. However, the return of manure affected antibiotics and microplastics in the soil, thus the potential ecological risks cannot be overlooked. This study investigated the distribution of different antibiotics and microplastics and their correlation. It was found that multiple classes of veterinary antibiotics and microplastics could be detected simultaneously in most manure and soil. In manure, the average concentration of tetracycline antibiotics was higher than fluoroquinolones and sulfonamides. A much lower concentration of antibiotics was found in the soil samples relative to manure. The abundance of microplastics ranged from 21,333 to 88,333 n/kg in manure, and the average abundance was 50,583 ± 24,318 n/kg. The average abundance was 3056 ± 1746 n/kg in the soil. It confirmed that applying organic fertilizer to agricultural soil and the application of plastic mulch in farmlands introduced microplastics. Moreover, microplastics were found to be significantly correlated with antibiotics (r = 0.698, p < 0.001). The correlation between microplastics and antibiotics in soil was significantly weaker than that in manure. Farms could be the hotspot for the co-spread of microplastics and antibiotics. These findings highlighted the co-occurrence of antibiotics and microplastics in agricultural environments.
Collapse
Affiliation(s)
- Yuting Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; Ordos Road Maintenance Service Center, Ordos Transportation Bureau, Ordos 017200, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ruiyuan Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhibao Dong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
25
|
Awan MMA, Malkoske T, Almuhtaram H, Andrews RC. Microplastic removal in batch and dynamic coagulation-flocculation-sedimentation systems is controlled by floc size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168631. [PMID: 37977391 DOI: 10.1016/j.scitotenv.2023.168631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Most studies examining the removal of microplastics (MPs) during controlled bench-scale trials have applied high coagulant dosages, which are characteristic of sweep flocculation. As such the impact of other typical operating conditions remains largely unknown. The use of bench-scale jar testing is ubiquitous in the literature, however the hydrodynamics of a batch-type approach bear little resemblance to full-scale treatment processes. In this study, a range of microplastics sizes and types were employed to assess their removal via conventional jar tests as well as to compare results to a continuous-flow bench-scale system. Jar tests were performed to identify pH values and alum dosages that are optimal for MP reduction when considering a range of coagulation conditions. The production of large and readily settling aluminum hydroxide (Al(OH)3) floc represented the dominant condition driving MPs removal. However, total MP removal was observed to be lower during continuous-flow trials when compared to jar tests, suggesting that direct extrapolation of results from jar tests may overpredict performance observed at full-scale. Irrespective of microplastic type and size, strong correlations were observed between MP concentration and turbidity reduction, indicating that turbidity may potentially serve as a very useful surrogate. Significant correlations were observed when comparing both floc size, especially 90th percentile floc diameter, and concentration of floc >100 μm to the reduction of MPs.
Collapse
Affiliation(s)
- Malik M A Awan
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Tyler Malkoske
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| |
Collapse
|