1
|
Bispo ECI, Argañaraz ER, Neves FDAR, de Carvalho JL, Saldanha-Araujo F. Immunomodulatory effect of IFN-γ licensed adipose-mesenchymal stromal cells in an in vitro model of inflammation generated by SARS-CoV-2 antigens. Sci Rep 2024; 14:24235. [PMID: 39415027 PMCID: PMC11484699 DOI: 10.1038/s41598-024-75776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
In recent years, clinical studies have shown positive results of the application of Mesenchymal Stromal Cells (MSCs) in severe cases of COVID-19. However, the mechanisms of immunomodulation of IFN-γ licensed MSCs in SARS-CoV-2 infection are only partially understood. In this study, we first tested the effect of IFN-γ licensing in the MSC immunomodulatory profile. Then, we established an in vitro model of inflammation by exposing Calu-3 lung cells to SARS-CoV-2 nucleocapsid and spike (NS) antigens, and determined the toxicity of SARS-CoV-2 NS antigen and/or IFN-γ stimulation to Calu-3. The conditioned medium (iCM) generated by Calu-3 cells exposed to IFN-γ and SARS-CoV-2 NS antigens was used to stimulate T-cells, which were then co-cultured with IFN-γ-licensed MSCs. The exposure to IFN-γ and SARS-CoV-2 NS antigens compromised the viability of Calu-3 cells and induced the expression of the inflammatory mediators ICAM-1, CXCL-10, and IFN-β by these cells. Importantly, despite initially stimulating T-cell activation, IFN-γ-licensed MSCs dramatically reduced IL-6 and IL-10 levels secreted by T-cells exposed to NS antigens and iCM. Moreover, IFN-γ-licensed MSCs were able to significantly inhibit T-cell apoptosis induced by SARS-CoV-2 NS antigens. Taken together, our data show that, in addition to reducing the level of critical cytokines in COVID-19, IFN-γ-licensed MSCs protect T-cells from SARS-CoV-2 antigen-induced apoptosis. Such observations suggest that MSCs may contribute to COVID-19 management by preventing the lymphopenia and immunodeficiency observed in critical cases of the disease.
Collapse
Affiliation(s)
- Elizabete Cristina Iseke Bispo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular NeuroVirology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Bioscience, Faculty of Medicine, University of Brasília, Brasília, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
2
|
Hendriks SH, Heidt S, Reinders ME, Koning F, van Kooten C. Allogenic MSC infusion in kidney transplantation recipients promotes within 4 hours distinct B cell and T cell phenotypes. Front Immunol 2024; 15:1455300. [PMID: 39450174 PMCID: PMC11500071 DOI: 10.3389/fimmu.2024.1455300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Infusion of mesenchymal stromal cells (MSCs) has been proposed as immune-modulatory therapy in solid organ transplantation. The use of allogenic MSCs could improve standardization and allow for direct availability of the product. Method The nonrandomized phase Ib Neptune clinical trial provided safety and feasibility data on the use of allogenic bone-marrow-derived MSCs, infused in 10 patients at week 25 and 26 post kidney transplantation. Here, we performed detailed analysis on the peripheral blood immune cell composition of these patients up to 52 weeks post transplantation. We used a 40 marker antibody panel with mass cytometry to assess potential effects of MSC therapy on the immune system. Results We showed minor changes in major immune lineages at week 27, 34 and 52 post kidney transplantation after MSC infusion at week 25 and week 26, confirming previous data with regular flow cytometry. However, in a direct comparison between pre- and post MSC infusion, as soon as 4 hours after MSC infusion, we observed a significant increase in cell numbers of B cell and T cell subsets that shared a unique expression of CD11b, CD11c, CD38, CD39, and Ki-67. Conclusion Exploring these CD11b+CD11c+CD38+CD39+Ki-67+ B cells and T cells in the context of MSC infusion after kidney transplantation may be a promising avenue to better understand the immunological effects of MSC therapy.
Collapse
Affiliation(s)
- Sanne H. Hendriks
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marlies E.J. Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
3
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
5
|
Ríos-Ríos WDJ, Sosa-Luis SA, Almaraz-Arreortua A, Vargas-Benitez P, Bernardino-Hernández HU, Vargas-Arzola J, Hernández-Osorio LA, Romero-Tlalolini MDLÁ, Aguilar-Ruiz SR, Torres-Aguilar H. IFN-γ-Preconditioned Human Gingival-Derived Mesenchymal Stromal Cells Inhibit Plasmacytoid Dendritic Cells via Adenosine. Biomolecules 2024; 14:658. [PMID: 38927060 PMCID: PMC11201757 DOI: 10.3390/biom14060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are vital players in antiviral immune responses because of their high levels of IFN-α secretion. However, this attribute has also implicated them as critical factors behind the immunopathogenesis of inflammatory diseases, and no currently available therapy can efficiently inhibit pDCs' aberrant activation. Mesenchymal stromal cells (MSCs) possess stromal immunomodulatory functionality, regulating immune cell activation through several mechanisms, including the adenosinergic (CD39/CD73/adenosine) pathway. The IFN-γ preconditioning of bone marrow MSCs improves their inhibitory properties for therapy applications; however, isolating human gingival tissue-derived MSCs (hGMSCs) is more accessible. These cells have shown better immunomodulatory effects, yet the outcome of IFN-γ preconditioning and its impact on the adenosinergic pathway has not been evaluated. This study first validated the immunoregulatory properties of primary-cultured hGMSCs, and the results showed that IFN-γ preconditioning strengthens CD39/CD73 coexpression, adenosine production, and the regulatory properties of hGMSC, which were confirmed by describing for the first time their ability to reduce pDC activation and their IFN-α secretion and to increase the frequency of CD73+ pDC. In addition, when CD73's enzymatic activity was neutralized in hGMSCs, adenosine production and the IFN-γ preconditioning effect were restrained. This evidence might be applied to design hGMSCs- and adenosine-based immunotherapeutic strategies for treating inflammatory disorders that are associated with pDC overactivation.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Sorely Adelina Sosa-Luis
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Alexia Almaraz-Arreortua
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Patricia Vargas-Benitez
- Dirección General de Asuntos Académicos, Coordinación General de Investigación, Universidad Regional del Sureste, Oaxaca 68150, Mexico;
| | - Héctor Ulises Bernardino-Hernández
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Jaime Vargas-Arzola
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Luis Alberto Hernández-Osorio
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | | | | | - Honorio Torres-Aguilar
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| |
Collapse
|
6
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
9
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
10
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
11
|
Long H, Steimle JD, Grisanti Canozo FJ, Kim JH, Li X, Morikawa Y, Park M, Turaga D, Adachi I, Wythe JD, Samee MAH, Martin JF. Endothelial cells adopt a pro-reparative immune responsive signature during cardiac injury. Life Sci Alliance 2024; 7:e202201870. [PMID: 38012001 PMCID: PMC10681909 DOI: 10.26508/lsa.202201870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.
Collapse
Affiliation(s)
- Hali Long
- https://ror.org/02pttbw34 Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey D Steimle
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jong Hwan Kim
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/00r4vsg44 Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Xiao Li
- https://ror.org/00r4vsg44 Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yuka Morikawa
- https://ror.org/00r4vsg44 Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Minjun Park
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- https://ror.org/02pttbw34 Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Iki Adachi
- https://ror.org/02pttbw34 Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Joshua D Wythe
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Md Abul Hassan Samee
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- https://ror.org/02pttbw34 Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/00r4vsg44 Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Towers R, Trombello L, Fusenig M, Tunger A, Baumann AL, Savoldelli R, Wehner R, Fasslrinner F, Arndt C, Dazzi F, Von Bonin M, Feldmann A, Bachmann MP, Wobus M, Schmitz M, Bornhäuser M. Bone marrow-derived mesenchymal stromal cells obstruct AML-targeting CD8 + clonal effector and CAR T-cell function while promoting a senescence-associated phenotype. Cancer Immunol Immunother 2024; 73:8. [PMID: 38231344 PMCID: PMC10794426 DOI: 10.1007/s00262-023-03594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2023] [Indexed: 01/18/2024]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.
Collapse
Affiliation(s)
- Russell Towers
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
| | - Lidia Trombello
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- University of Pisa, Lungarno Antonio Pacinotti 43, 56126, Pisa, Italy
| | - Maximilian Fusenig
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Antje Tunger
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anna-Lena Baumann
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Roberto Savoldelli
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK
| | - Rebekka Wehner
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Frederick Fasslrinner
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Francesco Dazzi
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK
| | - Malte Von Bonin
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
| | - Michael P Bachmann
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
| | - Manja Wobus
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Marc Schmitz
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Bornhäuser
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany.
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK.
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Romo-Rodríguez R, Zamora-Herrera G, López-Blanco JA, López-García L, Rosas-Cruz A, Alfaro-Hernández L, Trejo-Pichardo CO, Alberto-Aguilar DR, Casique-Aguirre D, Vilchis-Ordoñez A, Solis-Poblano JC, García-Stivalet LA, Terán-Cerqueda V, Luna-Silva NC, Garrido-Hernández MÁ, Cano-Cuapio LS, Ayala-Contreras K, Domínguez F, del Campo-Martínez MDLÁ, Juárez-Avendaño G, Balandrán JC, Pérez-Tapia SM, Fernández-Giménez C, Zárate-Rodríguez PA, López-Aguilar E, Treviño-García A, Duque-Molina C, Bonifaz LC, Núñez-Enríquez JC, Cárdenas-González M, Álvarez-Buylla ER, Ramírez-Ramírez D, Pelayo R. Subclassification of B-acute lymphoblastic leukemia according to age, immunophenotype and microenvironment, predicts MRD risk in Mexican children from vulnerable regions. Front Oncol 2024; 13:1304662. [PMID: 38250553 PMCID: PMC10796993 DOI: 10.3389/fonc.2023.1304662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The decisive key to disease-free survival in B-cell precursor acute lymphoblastic leukemia in children, is the combination of diagnostic timeliness and treatment efficacy, guided by accurate patient risk stratification. Implementation of standardized and high-precision diagnostic/prognostic systems is particularly important in the most marginalized geographic areas in Mexico, where high numbers of the pediatric population resides and the highest relapse and early death rates due to acute leukemias are recorded even in those cases diagnosed as standard risk. Methods By using a multidimensional and integrated analysis of the immunophenotype of leukemic cells, the immunological context and the tumor microenvironment, this study aim to capture the snapshot of acute leukemia at disease debut of a cohort of Mexican children from vulnerable regions in Puebla, Oaxaca and Tlaxcala and its potential use in risk stratification. Results and discussion Our findings highlight the existence of a distinct profile of ProB-ALL in children older than 10 years, which is associated with a six-fold increase in the risk of developing measurable residual disease (MRD). Along with the absence of CD34+ seminal cells for normal hematopoiesis, this ProB-ALL subtype exhibited several characteristics related to poor prognosis, including the high expression level of myeloid lineage markers such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20 and nuTdT. In contrast, it showed a trend towards decreased expression of CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal stromal cell compartment constituting their leukemic niche in the bone marrow, displayed characteristics of potential suppressive microenvironment, such as the expression of Gal9 and IDO1, and the absence of the chemokine CXCL11. Accordingly, adaptive immunity components were poorly represented. Taken together, our results suggest, for the first time, that a biologically distinct subtype of ProB-ALL emerges in vulnerable adolescents, with a high risk of developing MRD. Rigorous research on potential enhancing factors, environmental or lifestyle, is crucial for its detection and prevention. The use of the reported profile for early risk stratification is suggested.
Collapse
Affiliation(s)
- Rubí Romo-Rodríguez
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriela Zamora-Herrera
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jebea A. López-Blanco
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lucero López-García
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Arely Rosas-Cruz
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Laura Alfaro-Hernández
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - César Omar Trejo-Pichardo
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Dulce Rosario Alberto-Aguilar
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Armando Vilchis-Ordoñez
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Hospital Infantil de México ‘Federico Gómez’, Secretaría de Salud, Mexico City, Mexico
| | - Juan Carlos Solis-Poblano
- Servicio de Hematología, Unidad Médica de Alta Especialidad, Hospital de Especialidades “Manuel Avila Camacho”, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lilia Adela García-Stivalet
- Servicio de Hematología, Unidad Médica de Alta Especialidad, Hospital de Especialidades “Manuel Avila Camacho”, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Vanessa Terán-Cerqueda
- Servicio de Hematología, Unidad Médica de Alta Especialidad, Hospital de Especialidades “Manuel Avila Camacho”, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | | | | | - Karen Ayala-Contreras
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | | | - Juan Carlos Balandrán
- Department of Pathology, New York University (NYU) School of Medicine, New York, NY, United States
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos Fernández-Giménez
- Cancer Research Center-Instituto de Biología Molecular y Celular del Cáncer-Universidad de Salamanca-Centro Superior de Investigaciones Científicas (IBMCC-USAL-CSIC), Department of Medicine and Cytometry Service-Nucleus Platform, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - Enrique López-Aguilar
- Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Treviño-García
- Organo de Operación Administrativa Desconcentrada, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Célida Duque-Molina
- Dirección de Prestaciones Médicas, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C. Bonifaz
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - Dalia Ramírez-Ramírez
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rosana Pelayo
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Unidad de Educación e Investigación, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
14
|
Fang YH, Wang SPH, Liao IC, Tsai KJ, Huang PH, Yang PJ, Yen CJ, Liu PY, Shan YS, Liu YW. HLA-E high /HLA-G high /HLA-II low Human iPSC-Derived Cardiomyocytes Exhibit Low Immunogenicity for Heart Regeneration. Adv Healthc Mater 2023; 12:e2301186. [PMID: 37672681 DOI: 10.1002/adhm.202301186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Although human pluripotent stem cells (hPSCs)-derived cardiomyocytes (hPSC-CMs) can remuscularize infarcted hearts and restore post-infarct cardiac function, post-transplant rejection resulting from human leukocyte antigen (HLA) mismatching is an enormous obstacle. It is crucial to identify hypoimmunogenic hPSCs for allogeneic cell therapy. This study is conducted to demonstrate the immune privilege of HLA-Ehigh /HLA-Ghigh /HLA-IIlow human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs). Ischemia-reperfusion surgery is done to create transmural myocardial infarction in rats. At post-infarct 4 days, hPSC-CMs (1.0×107 cells per kg), including human embryonic stem cell-derived cardiomyocytes (hESC-CMs), HLA-Elow/HLA-Glow/HLA-IIhigh hiPSC-CMs, and HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs, are injected into the infarcted myocardium. Under the treatment of very low dose cyclosporine A (CsA), only HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs survive in vivo and improved post-infarct cardiac function with infarct size reduction. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs activate the SHP-1 signaling pathway of natural killer (NK) cells and cytotoxic T cells to evade attack by NK cells and cytotoxic T cells. Herein, it is demonstrated that using a clinically relevant CsA dose, HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs repair the infarcted myocardium and restore the post-infarct heart function. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSCs are less immunogenic and may serve as platforms for regeneration medicine.
Collapse
Affiliation(s)
- Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Saprina P H Wang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - I-Chuang Liao
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Po-Hsien Huang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Jung Yang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Chia-Jui Yen
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Yen-Wen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| |
Collapse
|
15
|
Galgaro BC, Beckenkamp LR, Naasani LIS, Wink MR. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Hum Cell 2023; 36:2247-2258. [PMID: 37535223 DOI: 10.1007/s13577-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have unique biological properties and play important functions, which make them attractive tools for cell-based therapies. The basic mechanisms of these cells are not fully understood. However, the adenosinergic pathway contributes to the main effects attributed to MSCs. Adenosine is a highly immunosuppressive molecule and exerts a central role in inflammation by neutralizing the proinflammatory ATP influence. This nucleoside is produced by purinergic signaling, an important physiological pathway for MSCs, which involves proliferation, migration, differentiation, and apoptosis. Therefore, in this study, we analyzed the extracellular AMP hydrolysis and consequent adenosine production, as well as the expression of CD73 and adenosine receptors on the cell surface of MSCs isolated from different human tissues: dermis (D-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). All cells confirmed their multipotent capacity by adipogenic, osteogenic, and chondrogenic differentiation, as well as the expression of cell surface markers including CD44 + , CD105 + , and CD90 + . All MSCs expressed similar levels of CD73 and CD26 without a statistical difference among the different tissues, whereas ADA expression was lower in AD-MSCs. In addition, A1R and A3R mRNA levels were higher in D-MSCs and AD-MSCs, respectively. Enzymatic assay showed that AD-MSCs have the highest hydrolysis rate of AMP, leading to increased amount of adenosine production. Moreover, despite all MSCs completely hydrolyze extracellular AMP generating adenosine, the pattern of nucleosides metabolism was different. Therefore, although MSCs share certain characteristics as the multilineage potential and immunophenotype, they show different adenosinergic profiles according to tissue origin.
Collapse
Affiliation(s)
- Bruna Campos Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liliana I Sous Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
16
|
Lenz LS, Wink MR. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Hum Cell 2023; 36:1593-1603. [PMID: 37341871 DOI: 10.1007/s13577-023-00925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Mesenchymal stromal cells (MSC) are promising options to cellular therapy to several clinical disorders, mainly because of its ability to immunomodulate and differentiate into different cell types. Even though MSC can be isolated from different sources, a major challenge to understanding the biological effects is that the primary cells undergo replicative senescence after a limited number of cell divisions in culture, requiring time-consuming and technically challenging approaches to get a sufficient cell number for clinical applications. Therefore, a new isolation, characterization, and expansion is necessary every time, which increases the variability and is time-consuming. Immortalization is a strategy that can overcome these challenges. Therefore, here, we review the different methodologies available to cellular immortalization, and discuss the literature regarding MSC immortalization and the broader biological consequences that extend beyond the mere increase in proliferation potential.
Collapse
Affiliation(s)
- Luana Suéling Lenz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
17
|
Xue XM, Liu YY, Chen XM, Tao BY, Liu P, Zhou HW, Zhang C, Wang L, Jiang YK, Ding ZW, Shen WD, Zhang J, Yang SM, Wang FY. Pan-cancer analysis identifies NT5E as a novel prognostic biomarker on cancer-associated fibroblasts associated with unique tumor microenvironment. Front Pharmacol 2022; 13:1064032. [PMID: 36569293 PMCID: PMC9768042 DOI: 10.3389/fphar.2022.1064032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Ecto-5'-nucleotidase (NT5E) encodes the cluster of differentiation 73 (CD73), whose overexpression contributes to the formation of immunosuppressive tumor microenvironment and is related to exacerbated prognosis, increased risk of metastasis and resistance to immunotherapy of various tumors. However, the prognostic significance of NT5E in pan-cancer is obscure so far. Methods: We explored the expression level of NT5E in cancers and adjacent tissues and revealed the relationship between the NT5E expression level and clinical outcomes in pan-cancer by utilizing the UCSC Xena database. Then, correlation analyses were performed to evaluate the relationship between NT5E expression and immune infiltration level via EPIC, MCP-counter and CIBERSORT methods, and the enrichment analysis were employed to identify NT5E-interacting molecules and functional pathways. Furthermore, we conducted single-cell analysis to explore the potential role of NT5E on single-cell level based on the CancerSEA database. Meanwhile, gene set enrichment analysis (GSEA) in single-cell level was also conducted in TISCH database and single-cell signature explorer was utilized to evaluate the epithelial-mesenchymal transition (EMT) level in each cell type. Results: The expression level of NT5E was aberrant in almost all cancer types, and was correlated with worse prognosis in several cancers. Notably, NT5E overexpression was related to worse overall survival (OS) in pancreatic adenocarcinoma (PAAD), head and neck squamous cell carcinoma (HNSC), mesothelioma (MESO), stomach adenocarcinoma (STAD), uveal melanoma (UVM) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) (p < 0.01). NT5E-related immune microenvironment analysis revealed that NT5E is associated positively with the degree of infiltration of cancer-associated fibroblasts (CAFs) and endothelial cells in most cancers. Enrichment analysis of cellular component (CC) demonstrated the critical part of NT5E played in cell-substrate junction, cell-substrate adherens junction, focal adhesion and external side of plasma membrane. Finally, single-cell analysis of NT5E illuminated that EMT function of CAFs was elevated in basal cell carcinoma (BCC), skin cutaneous melanoma (SKCM), HNSC and PAAD. Conclusion: NT5E could serve as a potential prognostic biomarker for cancers. The potential mechanism may be related to the upregulated EMT function of CAFs, which provides novel inspiration for immunotherapy by targeting CAFs with high NT5E expression.
Collapse
Affiliation(s)
- Xin-miao Xue
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu-yang Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xue-min Chen
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Bing-yan Tao
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Peng Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Han-wen Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Chi Zhang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,The Zhantansi Outpatient Department of Central Medical Branch of People’s Liberation Army (PLA) General Hospital Beijing, China
| | - Li Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu-ke Jiang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Zhi-wei Ding
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Wei-dong Shen
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| | - Fang-yuan Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| |
Collapse
|
18
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Dos Santos A, Lyu N, Balayan A, Knight R, Zhuo KS, Sun Y, Xu J, Funderburgh ML, Funderburgh JL, Deng SX. Generation of Functional Immortalized Human Corneal Stromal Stem Cells. Int J Mol Sci 2022; 23:13399. [PMID: 36362184 PMCID: PMC9657819 DOI: 10.3390/ijms232113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/04/2024] Open
Abstract
In addition to their therapeutic potential in regenerative medicine, human corneal stromal stem cells (CSSCs) could serve as a powerful tool for drug discovery and development. Variations from different donors, their isolation method, and their limited life span in culture hinder the utility of primary human CSSCs. To address these limitations, this study aims to establish and characterize immortalized CSSC lines (imCSSC) generated from primary human CSSCs. Primary CSSCs (pCSSC), isolated from human adult corneoscleral tissue, were transduced with ectopic expression of hTERT, c-MYC, or the large T antigen of the Simian virus 40 (SV40T) to generate imCSSC. Cellular morphology, proliferation capacity, and expression of CSSCs specific surface markers were investigated in all cell lines, including TNFAIP6 gene expression levels in vitro, a known biomarker of in vivo anti-inflammatory efficacy. SV40T-overexpressing imCSSC successfully extended the lifespan of pCSSC while retaining a similar morphology, proliferative capacity, multilineage differentiation potential, and anti-inflammatory properties. The current study serves as a proof-of-concept that immortalization of CSSCs could enable a large-scale source of CSSC for use in regenerative medicine.
Collapse
Affiliation(s)
- Aurelie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Lyu
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | - Alis Balayan
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine Sun Zhuo
- Human Biology Society, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuzhao Sun
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | | | | | - Sophie X. Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AES. Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells. eLife 2022; 11:76622. [PMID: 35920626 PMCID: PMC9371602 DOI: 10.7554/elife.76622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.
Collapse
Affiliation(s)
- Anna Leabourn Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tayla J Wickman
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Jo L James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
22
|
Kay AG, Fox JM, Hewitson JP, Stone AP, Robertson S, James S, Wang XN, Kapasa E, Yang XB, Genever PG. CD317-Positive Immune Stromal Cells in Human "Mesenchymal Stem Cell" Populations. Front Immunol 2022; 13:903796. [PMID: 35734183 PMCID: PMC9207511 DOI: 10.3389/fimmu.2022.903796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity of bone marrow mesenchymal stromal cells (MSCs, frequently referred to as "mesenchymal stem cells") clouds biological understanding and hampers their clinical development. In MSC cultures most commonly used in research and therapy, we have identified an MSC subtype characterized by CD317 expression (CD317pos (29.77 ± 3.00% of the total MSC population), comprising CD317dim (28.10 ± 4.60%) and CD317bright (1.67 ± 0.58%) MSCs) and a constitutive interferon signature linked to human disease. We demonstrate that CD317pos MSCs induced cutaneous tissue damage when applied a skin explant model of inflammation, whereas CD317neg MSCs had no effect. Only CD317neg MSCs were able to suppress proliferative cycles of activated human T cells in vitro, whilst CD317pos MSCs increased polarization towards pro-inflammatory Th1 cells and CD317neg cell lines did not. Using an in vivo peritonitis model, we found that CD317neg and CD317pos MSCs suppressed leukocyte recruitment but only CD317neg MSCs suppressed macrophage numbers. Using MSC-loaded scaffolds implanted subcutaneously in immunocompromised mice we were able to observe tissue generation and blood vessel formation with CD317neg MSC lines, but not CD317pos MSC lines. Our evidence is consistent with the identification of an immune stromal cell, which is likely to contribute to specific physiological and pathological functions and influence clinical outcome of therapeutic MSCs.
Collapse
Affiliation(s)
- Alasdair G. Kay
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom,*Correspondence: Paul G. Genever, ; Alasdair G. Kay,
| | - James M. Fox
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - James P. Hewitson
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Andrew P. Stone
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Sophie Robertson
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Sally James
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Xiao-nong Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Elizabeth Kapasa
- Department of Oral Biology, School of Dentistry, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Xuebin B. Yang
- Department of Oral Biology, School of Dentistry, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Paul G. Genever
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom,*Correspondence: Paul G. Genever, ; Alasdair G. Kay,
| |
Collapse
|
23
|
Chae HK, Suh N, Jang MJ, Kim YS, Kim BH, Aum J, Shin HC, You D, Hong B, Park HK, Kim CS. Efficacy and Safety of Human Bone Marrow-Derived Mesenchymal Stem Cells according to Injection Route and Dose in a Chronic Kidney Disease Rat Model. Int J Stem Cells 2022; 16:66-77. [PMID: 35483715 PMCID: PMC9978839 DOI: 10.15283/ijsc21146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/21/2022] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives We compared the efficacy and safety of human bone marrow-derived mesenchymal stem cells (hBMSC), delivered at different doses and via different injection routes in an animal model of chronic kidney disease. Methods and Results A total of ninety 12-week-old rats underwent 5/6 nephrectomy and randomized among nine groups: sham, renal artery control (RA-C), tail vein control (TV-C), renal artery low dose (RA-LD) (0.5×106 cells), renal artery moderate dose (RA-MD) (1.0×106 cells), renal artery high dose (RA-HD) (2.0×106 cells), tail vein low dose (TV-LD) (0.5×106 cells), tail vein moderate dose (TV-MD) (1.0×106 cells), and tail vein high dose (TV-HD) (2.0×106 cells). Renal function and mortality of rats were evaluated after hBMSC injection. Serum blood urea nitrogen was significantly lower in the TV-HD group at 2 weeks (p<0.01), 16 weeks (p<0.05), and 24 weeks (p<0.01) than in the TV-C group, as determined by one-way ANOVA. Serum creatinine was significantly lower in the TV-HD group at 24 weeks (p<0.05). At 8 weeks, creatinine clearance was significantly higher in the TV-MD and TV-HD groups (p<0.01, p<0.05) than in the TV-C group. In the safety evaluation, we observed no significant difference among the groups. Conclusions Our findings confirm the efficacy and safety of high dose (2×106 cells) injection of hBMSC via the tail vein.
Collapse
Affiliation(s)
- Han Kyu Chae
- Department of Urology, Gangneung Asan Medical Center, University of Ulsan College of Medicine, Gangneung, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences and Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Myong Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yu Seon Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Hyun Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bumsik Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Keun Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Correspondence to Choung-Soo Kim, Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea, Tel: +82-2-3010-3734, Fax: +82-2-477-8928, E-mail:
| |
Collapse
|
24
|
Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:839844. [PMID: 35371003 PMCID: PMC8973075 DOI: 10.3389/fimmu.2022.839844] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, All Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
26
|
Mesenchymal stromal cells in the bone marrow niche consist of multi-populations with distinct transcriptional and epigenetic properties. Sci Rep 2021; 11:15811. [PMID: 34349154 PMCID: PMC8338933 DOI: 10.1038/s41598-021-94186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles. We then separately obtained the seven populations based on candidate marker genes, and specified their gene expression properties and epigenetic landscape by ATAC-seq. Our findings will enable to elucidate the stem cell niche signal in the bone marrow microenvironment, reconstitute bone marrow in vitro, and shed light on the potentially important role of identified subpopulation in various clinical applications to the treatment of bone- and bone marrow-related diseases.
Collapse
|
27
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
28
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
29
|
Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2021; 16:776-791. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- L R Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - D M S da Fontoura
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - V G Korb
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - R P de Campos
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G R Onzi
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - I C Iser
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - A P S Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - J Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC, G1V 4G2, Canada
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
30
|
Yang R, Elsaadi S, Misund K, Abdollahi P, Vandsemb EN, Moen SH, Kusnierczyk A, Slupphaug G, Standal T, Waage A, Slørdahl TS, Rø TB, Rustad E, Sundan A, Hay C, Cooper Z, Schuller AG, Woessner R, Borodovsky A, Menu E, Børset M, Sponaas AM. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J Immunother Cancer 2021; 8:jitc-2020-000610. [PMID: 32409420 PMCID: PMC7239696 DOI: 10.1136/jitc-2020-000610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an
incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune
checkpoints such as extracellular adenosine and its immunosuppressive receptor should be
considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell
effector functions via the adenosine receptor A2A (A2AR). We set out to investigate
whether blocking the adenosine pathway could be a therapy for MM. Methods Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were
determined by flow cytometry and adenosine production by Liquid chromatograpy-mass
spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells
from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM
myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in
mice in vivo. Results Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from
patients expressed CD39, and high gene expression indicated reduced survival. CD73 was
found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an
anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in
vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo
with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR
antagonist AZD4635 activated immune cells, increased interferon gamma production, and
reduced the tumor load in a murine model of MM. Conclusions Our data suggest that the adenosine pathway can be successfully targeted in MM and
blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other
hematological cancers. Inhibitors of the adenosine pathway are available. Some are in
clinical trials and they could thus reach MM patients fairly rapidly.
Collapse
Affiliation(s)
- Rui Yang
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samah Elsaadi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Misund
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pegah Abdollahi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Esten Nymoen Vandsemb
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv Helen Moen
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anna Kusnierczyk
- PROMEC, Department for Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Geir Slupphaug
- PROMEC, Department for Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Therese Standal
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Anders Waage
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein Baade Rø
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Even Rustad
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders Sundan
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Carl Hay
- Oncology R&D, AstraZeneca Medimmune, Gaithersburg, Maryland, USA
| | - Zachary Cooper
- Oncology R&D, AstraZeneca Medimmune, Gaithersburg, Maryland, USA
| | | | | | | | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussel, Massachusetts, Belgium
| | - Magne Børset
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Marit Sponaas
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
31
|
Abstract
An unfortunate emergence of a new virus SARS-CoV-2, causing a disease known as COVID-19, has spread all around the globe and has caused a pandemic. It primarily affects the respiratory tract and lungs in some cases causing severe organ damage and pneumonia due to overwhelming immune responses. Clinical reports show that the most commons symptoms are fever, dry cough, and shortness of breath, along with several other symptoms. It is thought that an immense cytokine dysregulation in COVID-19 patients is caused following the virus infection. Notably, if patients present with pre-existing specific comorbidities like diabetes or high blood pressure, rates of COVID-19 induced complications and deaths are escalated. Mesenchymal stem cell (MSC) therapy has been shown to alleviate pneumonia and acute respiratory syndrome (ARDS) symptoms, through their immunomodulatory activities in COVID-19 patients. Although more research studies and clinical trial results are needed to elucidate the exact mechanism by which MSCs provide relief to COVID-19 infected patients. Results from clinical trials are encouraging as patients treated with MSCs, regain lung functions and have restored levels of cytokines and trophic factors underscoring the fact that stem cell therapy can be, at least, a complementary therapy to alleviate sufferings in COVID-19 patients. This review discusses the possible therapeutic uses of MSCs for treating COVID-19. Graphical Abstract.
Collapse
|
32
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Tumor-resident adenosine-producing mesenchymal stem cells as a potential target for cancer treatment. Clin Exp Med 2021; 21:205-213. [PMID: 33484380 DOI: 10.1007/s10238-020-00674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
The development of new therapies based on tumor biology is one of the main topics in cancer treatment. In this regard, investigating the microenvironment and cellular composition of the tumor is of particular interest. Mesenchymal stem cells (MSCs) are a major group of cells in the tumor tissue and play a critical role in tumor growth and development. Investigating the mechanisms by which MSCs influence tumor growth and progression is very useful in establishing new therapeutic approaches. MSCs have some immunological capacities, including anti-inflammatory, immune-regulatory, and immune-suppressive abilities, which help the tumor growth in the inflammatory condition. They can suppress the proliferation and activation of CD4 + T cells and direct them toward the regulatory phenotype through the release of some factors such as indoleamine 2,3-dioxygenase, prostaglandin E2, and HO-1, PD-1 ligands (PD-L1 and PD-L2) and promote tolerance and apoptosis. Besides, these cells are able to produce adenosine. Adenosine has a key role in controlling the immune system by signaling through receptors located on the surface of immune cells. It plays a very essential role in tumor growth and progression. In the present review, we investigate and introduce adenosine-producing mesenchymal stem cells as a potential target for cancer treatment.
Collapse
|
34
|
Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, Tobin NP, Blake E, Seitz C, Thomas R, Wagner AK, Andersson J, de Boniface J, Bergh J, Murray S, Alici E, Childs R, Johansson M, Westerberg LS, Haglund F, Hartman J, Lundqvist A. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest 2020; 130:1185-1198. [PMID: 31770109 DOI: 10.1172/jci128895] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
High levels of ecto-5'-nucleotidase (CD73) have been implicated in immune suppression and tumor progression, and have also been observed in cancer patients who progress on anti-PD-1 immunotherapy. Although regulatory T cells can express CD73 and inhibit T cell responses via the production of adenosine, less is known about CD73 expression in other immune cell populations. We found that tumor-infiltrating NK cells upregulate CD73 expression and the frequency of these CD73-positive NK cells correlated with larger tumor size in breast cancer patients. In addition, the expression of multiple alternative immune checkpoint receptors including LAG-3, VISTA, PD-1, and PD-L1 was significantly higher in CD73-positive NK cells than in CD73-negative NK cells. Mechanistically, NK cells transport CD73 in intracellular vesicles to the cell surface and the extracellular space via actin polymerization-dependent exocytosis upon engagement of 4-1BBL on tumor cells. These CD73-positive NK cells undergo transcriptional reprogramming and upregulate IL-10 production via STAT3 transcriptional activity, suppressing CD4-positive T cell proliferation and IFN-γ production. Taken together, our results support the notion that tumors can hijack NK cells as a means to escape immunity and that CD73 expression defines an inducible population of NK cells with immunoregulatory properties within the tumor microenvironment.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emily Blake
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Ron Thomas
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | | - Jana de Boniface
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Surgery, Capio St. Goran's Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shannon Murray
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington, USA
| | | | - Richard Childs
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Lisa S Westerberg
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Laboratory, Södersjukhuset, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Ringdén O, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells in Pediatric Hematopoietic Cell Transplantation a Review and a Pilot Study in Children Treated With Decidua Stromal Cells for Acute Graft-versus-Host Disease. Front Immunol 2020; 11:567210. [PMID: 33193339 PMCID: PMC7604265 DOI: 10.3389/fimmu.2020.567210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are rare precursors in all organs of the body. MSCs have profound anti-inflammatory effects and reduce alloreactivity in vitro and in vivo. In pediatric allogeneic hematopoietic cell transplantation (HCT), MSCs have mainly been used to treat acute graft-versus-host disease (GVHD). MSCs are commercially available for this indication in Canada, Japan, and New Zeeland. More rare indications for MSCs in pediatric patients include graft failure and chronic GVHD. MSCs from bone marrow, adipose tissue, umbilical cord, Wharton's jelly, placenta tissue, and decidua have been used, but the optimal clinical stromal cell source has not been compared in clinical trials. More experimental clinical indications using MSCs, such as sepsis, acute respiratory distress syndrome, hemorrhages, pneumo-mediastinum, and neuroinflammation have primarily been explored in animal models or adult HCT patients. MSCs have almost no if any side-effects. In this pilot study we report the outcome of six children treated with decidua stromal cells (DSCs) for steroid refractory acute GVHD. At 6 months, complete response was seen in four patients and partial response in two patients. One child with high-risk ALL died from relapse and a boy with sickle cell disease died from a cerebral hemorrhage. Five-year survival was 67% and all survivors showed a Lansky score of 100%. To conclude, MSCs from various organs are well-tolerated and have shown an encouraging outcome for acute GVHD in pediatric patients.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Akkoc T. Mesenchymal Stem Cells in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:101-108. [PMID: 31802444 DOI: 10.1007/5584_2019_460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asthma is one of the worldwide respiratory health problem that affect children and adult. Current treatment strategies such as conventional and allergen immunotherapy still fall behind. Mesenchymal stem cells (MSCs) have wide regenerative capacity and immunoregulatory activity with their wide range of secretions and contact dependent manner. In this review, we focus on the current treatment strategies for asthma and MSCs as a new therapeutic tool.
Collapse
Affiliation(s)
- Tunc Akkoc
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.
| |
Collapse
|
37
|
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11:1563. [PMID: 32719683 PMCID: PMC7347794 DOI: 10.3389/fimmu.2020.01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
- Molecular Pharmacology Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
| | - Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia, Brazil
| |
Collapse
|
38
|
Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:cells9071578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignancies to block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
|
39
|
Walter SG, Randau TM, Hilgers C, Haddouti EM, Masson W, Gravius S, Burger C, Wirtz DC, Schildberg FA. Molecular and Functional Phenotypes of Human Bone Marrow-Derived Mesenchymal Stromal Cells Depend on Harvesting Techniques. Int J Mol Sci 2020; 21:ijms21124382. [PMID: 32575596 PMCID: PMC7352273 DOI: 10.3390/ijms21124382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) harvested in different tissues from the same donor exhibit different phenotypes. Each phenotype is not only characterized by a certain pattern of cell surface markers, but also different cellular functionalities. Only recently were different harvesting and processing techniques found to contribute to this phenomenon as well. This study was therefore set up to investigate proteomic and functional properties of human bone marrow-derived MSCs (hBM-MSC). These were taken from the same tissue and donor site but harvested either as aspirate or bone chip cultures. Both MSC populations were profiled for MSC markers defined by the International Society for Cellular Therapy (ISCT), MSC markers currently under discussion and markers of particular interest. While classic ISCT MSC markers did not show any significant difference between aspirate and outgrowth hBM-MSCs, our additional characterization panel revealed distinct patterns of differentially expressed markers. Furthermore, hBM-MSCs from aspirate cultures demonstrated a significantly higher osteogenic differentiation potential than outgrowth MSCs, which could be confirmed using a transcriptional approach. Our comparison of MSC phenotypes obtained by different harvesting techniques suggests the need of future standardized harvesting, processing and phenotyping procedures in order to gain better comparability in the MSC field.
Collapse
Affiliation(s)
- Sebastian G. Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
- Clinic for Cardiothoracic Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Thomas M. Randau
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - Cäcilia Hilgers
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - Werner Masson
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - Sascha Gravius
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, 68167 Mannheim, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - Dieter C. Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (S.G.W.); (T.M.R.); (C.H.); (E.-M.H.); (W.M.); (S.G.); (C.B.); (D.C.W.)
- Correspondence:
| |
Collapse
|
40
|
García-Bernal D, Palomo M, Martínez CM, Millán-Rivero JE, García-Guillén AI, Blanquer M, Díaz-Ricart M, Sackstein R, Carreras E, Moraleda JM. Defibrotide inhibits donor leucocyte-endothelial interactions and protects against acute graft-versus-host disease. J Cell Mol Med 2020; 24:8031-8044. [PMID: 32519822 PMCID: PMC7348164 DOI: 10.1111/jcmm.15434] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/05/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo‐HCT) is an effective therapy for the treatment of high‐risk haematological malignant disorders and other life‐threatening haematological and genetic diseases. Acute graft‐versus‐host disease (aGvHD) remains the most frequent cause of non‐relapse mortality following allo‐HCT and limits its extensive clinical application. Current pharmacologic agents used for prophylaxis and treatment of aGvHD are not uniformly successful and have serious secondary side effects. Therefore, more effective and safe prophylaxis and therapy for aGvHD are an unmet clinical need. Defibrotide is a multi‐target drug successfully employed for prophylaxis and treatment of veno‐occlusive disease/sinusoidal obstruction syndrome. Recent preliminary clinical data have suggested some efficacy of defibrotide in the prevention of aGvHD after allo‐HCT. Using a fully MHC‐mismatched murine model of allo‐HCT, we report here that defibrotide, either in prophylaxis or treatment, is effective in preventing T cell and neutrophil infiltration and aGvHD‐associated tissue injury, thus reducing aGvHD incidence and severity, with significantly improved survival after allo‐HCT. Moreover, we performed in vitro mechanistic studies using human cells revealing that defibrotide inhibits leucocyte‐endothelial interactions by down‐regulating expression of key endothelial adhesion molecules involved in leucocyte trafficking. Together, these findings provide evidence that defibrotide may represent an effective and safe clinical alternative for both prophylaxis and treatment of aGvHD after allo‐HCT, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Internal Medicine Department, Medicine School, University of Murcia, Murcia, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CBD), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Carlos M Martínez
- Experimental Pathology Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Murcia, Spain
| | - José E Millán-Rivero
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Internal Medicine Department, Medicine School, University of Murcia, Murcia, Spain
| | - Ana I García-Guillén
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Internal Medicine Department, Medicine School, University of Murcia, Murcia, Spain
| | - Maribel Díaz-Ricart
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CBD), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Robert Sackstein
- Department of Translational Medicine, and the Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Internal Medicine Department, Medicine School, University of Murcia, Murcia, Spain
| |
Collapse
|
41
|
Akkoç T, Genç D. Asthma immunotherapy and treatment approaches with mesenchymal stem cells. Immunotherapy 2020; 12:665-674. [PMID: 32489107 DOI: 10.2217/imt-2019-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways where exaggerated T helper 2 immune responses and inflammatory mediators play a role. Current asthma treatment options can effectively suppress symptoms and control the inflammatory process; however, cannot modulate the dysregulated immune response. Allergen-specific immunotherapy is one of the effective treatments capable of disease modification. Injecting allergens under the skin in allergen-specific immunotherapy can reduce asthma and improve the sensitivity of the lungs, however, has a risk of severe reactions. Mesenchymal stem cells have immunoregulatory activity with their soluble mediators and contact dependent manner. In this review, we focus on the current treatment strategies with mesenchymal stem cells in asthma as a new therapeutic tool and compare those with immunotherapy.
Collapse
Affiliation(s)
- Tunç Akkoç
- Department of Pediatric Allergy & Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Deniz Genç
- Department of Pediatric Health & Diseases, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
42
|
Sergeant E, Buysse M, Devos T, Sprangers B. Multipotent mesenchymal stromal cells in kidney transplant recipients: The next big thing? Blood Rev 2020; 45:100718. [PMID: 32507576 DOI: 10.1016/j.blre.2020.100718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived multipotent mesenchymal stromal cells (BM-MSCs) are non-haematopoietic cells present in the bone marrow stroma. They have the potential to modulate immune responses and exhibit a capacity to promote immune tolerance. Although the efficacy of immunosuppressive drugs has improved significantly, thereby ameliorating renal graft outcome, the use of these drugs still carries an increased risk of malignancies and opportunistic infections, and sometimes fail to prevent chronic allograft rejection or recurrence of the original kidney disease. As such, there is strong interest in ways to induce immune tolerance and thereby tempering or avoiding conventional immunosuppressive drugs. Cellular immunomodulation by MSCs can create a new way to induce transplant tolerance. This review will give a critical overview of the use of BM-MSCs as a cell-based immunosuppressive therapy in kidney transplant recipients. In vitro studies revealed several mechanisms that can clarify the immunomodulatory potential of BM-MSCs. Several clinical studies showed that BM-MSCs can modulate T-cell proliferation and can alter the ratio of T-cell subsets, favoring immune tolerance. However, this immunomodulation was often not associated with better clinical outcome during follow-up when compared to control groups. Some clinical studies found that BM-MSCs allow a reduction in dose of conventional immunosuppressive drugs and prevent acute graft dysfunction. Most clinical studies emphasized that BM-MSC infusion was safe. This review suggests that the use of BM-MSCs as cell-based immunosuppression therapy in kidney transplant recipients has potential, however some caution regarding their clinical use is appropriate. Mechanisms by which BM-MSCs induce transplant tolerance and factors that can alter their functionality need to be analyzed in more detail before clinical use.
Collapse
Affiliation(s)
- Elien Sergeant
- Division of Internal Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Malicorne Buysse
- Division of Hematology, University Hospitals Ghent, Ghent, Belgium.
| | - Timothy Devos
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Hematology, University Hospitals Leuven, Leuven, Belgium.
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Silva-Carvalho AÉ, Rodrigues LP, Schiavinato JL, Alborghetti MR, Bettarello G, Simões BP, Neves FDAR, Panepucci RA, de Carvalho JL, Saldanha-Araujo F. GVHD-derived plasma as a priming strategy of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:156. [PMID: 32299501 PMCID: PMC7164240 DOI: 10.1186/s13287-020-01659-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) therapy is an important alternative for GVHD treatment, but a third of patients fail to respond to such therapy. Therefore, strategies to enhance the immunosuppressive potential of MSCs constitute an active area of investigation. Here, we proposed an innovative priming strategy based on the plasma obtained from GVHD patients and tested whether this approach could enhance the immunosuppressive capacity of MSCs. Methods We obtained the plasma from healthy as well as acute (aGVHD) and chronic (cGVHD) GVHD donors. Plasma samples were characterized according to the TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-15 cytokine levels. The MSCs primed with such plasmas were investigated according to surface markers, morphology, proliferation, mRNA expression, and the capacity to control T cell proliferation and Treg generation. Results Interestingly, 57% of aGVHD and 33% of cGVHD plasmas significantly enhanced the immunosuppressive potential of MSCs. The most suppressive MSCs presented altered morphology, and those primed with cGHVD displayed a pronounced overexpression of ICAM-1 on their surface. Furthermore, we observed that the ratio of IFN-γ to IL-10 cytokine levels in the plasma used for MSC priming was significantly correlated with higher suppressive potential and Treg generation induction by primed MSCs, regardless of the clinical status of the donor. Conclusions This work constitutes an important proof of concept which demonstrates that it is possible to prime MSCs with biological material and also that the cytokine levels in the plasma may affect the MSC immunosuppressive potential, serving as the basis for the development of new therapeutic approaches for the treatment of immune diseases.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Leane Perim Rodrigues
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Josiane Lilian Schiavinato
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Marcos Rodrigo Alborghetti
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF, Brazil
| | - Gustavo Bettarello
- Unidade de Transplante de Medula Óssea, Instituto de Cardiologia do Distrito Federal, Brasilia, DF, Brazil
| | - Belinda Pinto Simões
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Francisco de Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratório de Biologia Funcional (LFBio), Centro de Terapia Celular (CTC), Hemocentro de Ribeirão Preto, Rua Tenente Catão Roxo, Ribeirão Preto, SP, 2501, Brazil
| | - Juliana Lott de Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil.,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil. .,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.
| |
Collapse
|
44
|
Castro LL, Kitoko JZ, Xisto DG, Olsen PC, Guedes HLM, Morales MM, Lopes-Pacheco M, Cruz FF, Rocco PRM. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med 2019; 9:250-260. [PMID: 31746562 PMCID: PMC6988761 DOI: 10.1002/sctm.19-0120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
In experimental house dust mite (HDM)‐induced allergic asthma, therapeutic administration of a single dose of adipose tissue‐derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)‐4, IL‐13, and eotaxin; total leukocyte, CD4+ T‐cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor‐β levels in lung tissue; however, the three‐dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α‐actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three‐dose regimen increased CD39 levels in the thymus. Dexamethasone and the three‐dose, but not the two‐dose regimen, also increased levels of programmed death receptor‐1 and IL‐10, while reducing CD4+CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM‐induced allergic asthma.
Collapse
Affiliation(s)
- Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L M Guedes
- Laboratory of Glycobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Fakhimi M, Talei AR, Ghaderi A, Habibagahi M, Razmkhah M. Helios, CD73 and CD39 Induction in Regulatory T Cells Exposed to Adipose Derived Mesenchymal Stem Cells. CELL JOURNAL 2019; 22:236-244. [PMID: 31721539 PMCID: PMC6874788 DOI: 10.22074/cellj.2020.6313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Objective Mesenchymal stem cells (MSCs) have prominent immunomodulatory roles in the tumor microenvironment.
The current study intended to elucidate Treg subsets and their cytokines after exposing naïve T lymphocytes to adipose-
derived MSCs (ASCs).
Materials and Methods In this experimental study, to obtain ASCs, breast adipose tissues of a breast cancer patient
and a normal individual were used. Magnetic cell sorting (MACS) was employed for purifying naïve CD4+T cells
from peripheral blood of five healthy donors. Naïve CD4+T cells were then co-cultured with ASCs for five days. The
phenotype of regulatory T cells (Tregs) and production of interleukine-10 (IL-10), transforming growth factor beta
(TGF-β) and IL-17 were assessed using flow cytometry and ELISPOT assays, respectively.
Results CD4+CD25-FOXP3+CD45RA+Tregs were expanded in the presence of cancer ASCs but
CD4+CD25+Foxp3+CD45RA+regulatory T cells were up-regulated in the presence of both cancer- and normal-ASCs.
This up-regulation was statistically significant in breast cancer-ASCs compared to the cells cultured without ASCs
(P=0.002). CD4+CD25+ FOXP3+Helios+, CD4+CD25-FOXP3+Helios+and CD25+FOXP3+CD73+CD39+Tregs were
expanded after co-culturing of T cells with both cancer-ASCs and normal-ASCs, while they were statistically significant
only in the presence of cancer-ASCs (P<0.05). Production of IL-10, IL-17 and TGF-β by T cells was increased in the
presence of either normal- or cancer-ASCs; however, significant effect was only observed in the IL-10 and TGF-β of
cancer-ASCs (P<0.05).
Conclusion The results further confirm the immunosuppressive impacts of ASCs on T lymphocytes and direct them
to specific regulatory phenotypes which may support immune evasion and tumor growth.
Collapse
Affiliation(s)
- Maryam Fakhimi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdol Rasoul Talei
- Breast Diseases Research Center (BDRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Habibagahi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
46
|
Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1350-1362. [DOI: 10.1016/j.bbalip.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
47
|
da Costa Gonçalves F, Paz AH. Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases. World J Stem Cells 2019; 11:618-633. [PMID: 31616539 PMCID: PMC6789183 DOI: 10.4252/wjsc.v11.i9.618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract associated with multifactorial conditions such as ulcerative colitis and Crohn’s disease. Although the underlying mechanisms of IBD remain unclear, growing evidence has shown that dysregulated immune system reactions in genetically susceptible individuals contribute to mucosal inflammation. However, conventional treatments have been effective in inducing remission of IBD but not in preventing the relapse of them. In this way, mesenchymal stromal cells (MSC) therapy has been recognized as a promising treatment for IBD due to their immunomodulatory properties, ability to differentiate into several tissues, and homing to inflammatory sites. Even so, literature is conflicted regarding the location and persistence of MSC in the body after transplantation. For this reason, recent studies have focused on the paracrine effect of the biofactors secreted by MSC, especially in relation to the immunomodulatory potential of soluble factors (cytokines, chemokines, and growth factors) and extracellular vehicles that are involved in cell communication and in the transfer of cellular material, such as proteins, lipids, and nucleic acids. Moreover, treatment with interferon-γ, tumor necrosis factor-α, and interleukin-1β causes MSC to express immunomodulatory molecules that mediate the suppression via cell-contact dependent mechanisms. Taken together, we present an overview of the role of bioactive factors and cell membrane proteins derived from MSC as a cell-free therapy that can improve IBD treatment.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, GD 3015, Netherlands
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
48
|
Burr A, Parekkadan B. Kinetics of MSC-based enzyme therapy for immunoregulation. J Transl Med 2019; 17:263. [PMID: 31409424 PMCID: PMC6693124 DOI: 10.1186/s12967-019-2000-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) demonstrate innate and regulatory immunologic functions and have been widely explored for cell therapy applications. Mechanisms by which MSCs achieve therapeutic effects are theorized, though appropriate dosing and duration of these mechanisms in vivo warrant deeper investigation. One, rapid immunosuppressive function of MSCs is through ectoenzyme expression of CD73 and CD39 which cooperatively hydrolyze inflammatory, extracellular adenosine triphosphate (ATP) to anti-inflammatory adenosine. Extracellular ATP has a key role in autoimmune and inflammatory diseases, which administered MSCs have the potential to modulate in a timescale that is befitting of shorter acting therapeutic function. METHODS In vitro experiments were performed to determine the hydrolysis rates of ATP by MSCs. Through kinetic modeling from experimental results, the rate at which a single cell can metabolize ATP was determined. Based on these rates, the ability of MSCs to downregulate inflammatory signaling pathways was prospectively validated using model system parameters with respect to two different mechanisms: extracellular ATP stimulates lymphocytes to suppress proliferation and induce apoptosis and with co-stimulation, it stimulates monocytes to release pro-inflammatory IL-1β. MSCs were co-cultured with immune cells using transwell inserts and compared to immune cell only groups. RESULTS Hydrolysis of ATP was efficiently modeled by first-order enzyme kinetics. For in vitro culture, the rate at which a single cell can hydrolyize ATP is 8.9 nmol/min. In the presence of extracellular ATP, cocultures of MSCs reduced cytotoxicity and allows for proliferation of lymphocytes while limiting IL-1β secretion from monocytes. CONCLUSIONS Such use of these models may allow for better dosing predictions for MSCs to be used therapeutically for chronic inflammatory diseases such as rheumatoid arthritis, diabetes, pancreatitis, and other systemic inflammatory response syndromes. For the first time, the effect of MSCs on ATP hydrolysis in immune cell response is quantitatively analyzed on a cell-molecule basis by modeling the hydrolysis as an enzyme-substrate reaction. The results also give insight into MSCs' dynamic response mechanisms to ameliorate effects of extracellular ATP whether it be through positive or negative regulation.
Collapse
Affiliation(s)
- Alexandra Burr
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
- Department of Surgery, Center for Surgery, Innovation & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
49
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
50
|
Kesarwani P, Prabhu A, Kant S, Chinnaiyan P. Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma. Cancer Immunol Immunother 2019; 68:1107-1120. [PMID: 31119318 DOI: 10.1007/s00262-019-02347-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors. Numerous studies in the field of immunotherapy have focused their efforts on identifying various pathways linked with tumor-induced immunosuppression. Recent research has demonstrated that metabolic reprogramming in a tumor can contribute towards immune tolerance. To begin to understand the interface between metabolic remodeling and the immune-suppressive state in GBM, we performed a focused, integrative analysis coupling metabolomics with gene-expression profiling in patient-derived GBM (n = 80) and compared them to low-grade astrocytoma (LGA; n = 28). Metabolic intermediates of tryptophan, arginine, prostaglandin, and adenosine emerged as immuno-metabolic nodes in GBM specific to the mesenchymal and classical molecular subtypes of GBM. Integrative analyses emphasized the importance of downstream metabolism of several of these metabolic pathways in GBM. Using CIBERSORT to analyze immune components from the transcriptional profiles of individual tumors, we demonstrated that tryptophan and adenosine metabolism resulted in an accumulation of Tregs and M2 macrophages, respectively, and was recapitulated in mouse models. Furthermore, we extended these findings to preclinical models to determine their potential utility in defining the biologic and/or immunologic consequences of the identified metabolic programs. Collectively, through integrative analysis, we uncovered multifaceted ways by which metabolic reprogramming may contribute towards immune tolerance in GBM, providing the framework for further investigations designed to determine the specific immunologic consequence of these metabolic programs and their therapeutic potential.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Radiation Oncology, Beaumont Health, 3811 West Thirteen Mile Road, Royal Oak, MI, 48073, USA
| | - Antony Prabhu
- Department of Radiation Oncology, Beaumont Health, 3811 West Thirteen Mile Road, Royal Oak, MI, 48073, USA
| | - Shiva Kant
- Department of Radiation Oncology, Beaumont Health, 3811 West Thirteen Mile Road, Royal Oak, MI, 48073, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, 3811 West Thirteen Mile Road, Royal Oak, MI, 48073, USA. .,Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| |
Collapse
|