1
|
Dobner J, Diecke S, Krutmann J, Prigione A, Rossi A. Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control. Nat Commun 2024; 15:8547. [PMID: 39358374 PMCID: PMC11447164 DOI: 10.1038/s41467-024-52922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have great potential in research, but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here, we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD, NANOG, SPP1), endoderm (CER1, EOMES, GATA6), mesoderm (APLNR, HAND1, HOXB7), and ectoderm (HES5, PAMR1, PAX6). Using these genes, we develop a machine learning-based scoring system, "hiPSCore", trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time, subjectivity, and resource use, thus enhancing iPSC quality for scientific and medical applications.
Collapse
Affiliation(s)
- Jochen Dobner
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jean Krutmann
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Smith L, Quelch-Cliffe R, Liu F, Aguilar AH, Przyborski S. Evaluating Strategies to Assess the Differentiation Potential of Human Pluripotent Stem Cells: A Review, Analysis and Call for Innovation. Stem Cell Rev Rep 2024:10.1007/s12015-024-10793-5. [PMID: 39340737 DOI: 10.1007/s12015-024-10793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Pluripotent stem cells have the ability to differentiate into all cells and tissues within the human body, and as a result they are attractive resources for use in basic research, drug discovery and regenerative medicine. In order to successfully achieve this application, starting cell sources ideally require in-depth characterisation to confirm their pluripotent status and their ability to differentiate into tissues representative of the three developmental germ layers. Many different methods to assess potency are employed, each having its own distinct advantages and limitations. Some aspects of this characterisation process are not always well standardised, particularly techniques used to assess pluripotency as a function. In this article, we consider the methods used to establish cellular pluripotency and subsequently analyse characterisation data for over 1590 human pluripotent cell lines from publicly available repositories in the UK and USA. In particular, we focus on the teratoma xenograft assay, its use and protocols, demonstrating the level of variation and the frequency with which it is used. Finally, we reflect on the implications of the findings, and suggest in vitro alternatives using modern innovative technology as a way forward.
Collapse
Affiliation(s)
- Lucy Smith
- Department of Biosciences, Durham University, Durham, England
| | | | - Felicity Liu
- Department of Biosciences, Durham University, Durham, England
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, England.
- Reprocell Europe Ltd, NETPark, Sedgefield, England.
| |
Collapse
|
3
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Teratoma Assay for Testing Pluripotency and Malignancy of Stem Cells: Insufficient Reporting and Uptake of Animal-Free Methods-A Systematic Review. Int J Mol Sci 2023; 24:ijms24043879. [PMID: 36835305 PMCID: PMC9967860 DOI: 10.3390/ijms24043879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Pluripotency describes the ability of stem cells to differentiate into derivatives of the three germ layers. In reporting new human pluripotent stem cell lines, their clonal derivatives or the safety of differentiated derivatives for transplantation, assessment of pluripotency is essential. Historically, the ability to form teratomas in vivo containing different somatic cell types following injection into immunodeficient mice has been regarded as functional evidence of pluripotency. In addition, the teratomas formed can be analyzed for the presence of malignant cells. However, use of this assay has been subject to scrutiny for ethical reasons on animal use and due to the lack of standardization in how it is used, therefore questioning its accuracy. In vitro alternatives for assessing pluripotency have been developed such as ScoreCard and PluriTest. However, it is unknown whether this has resulted in reduced use of the teratoma assay. Here, we systematically reviewed how the teratoma assay was reported in publications between 1998 (when the first human embryonic stem cell line was described) and 2021. Our analysis of >400 publications showed that in contrast to expectations, reporting of the teratoma assay has not improved: methods are not yet standardized, and malignancy was examined in only a relatively small percentage of assays. In addition, its use has not decreased since the implementation of the ARRIVE guidelines on reduction of animal use (2010) or the introduction of ScoreCard (2015) and PluriTest (2011). The teratoma assay is still the preferred method to assess the presence of undifferentiated cells in a differentiated cell product for transplantation since the in vitro assays alone are not generally accepted by the regulatory authorities for safety assessment. This highlights the remaining need for an in vitro assay to test malignancy of stem cells.
Collapse
|
6
|
Menzorov AG. Pluripotent Stem Cells of Order Carnivora: Technical Perspective. Int J Mol Sci 2023; 24:ijms24043905. [PMID: 36835318 PMCID: PMC9963171 DOI: 10.3390/ijms24043905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Human and mouse induced pluripotent stem cells (PSCs) are widely used for studying early embryonic development and for modeling of human diseases. Derivation and studying of PSCs from model organisms beyond commonly used mice and rats may provide new insights into the modeling and treating human diseases. The order Carnivora representatives possess unique features and are already used for modeling human-related traits. This review focuses on the technical aspects of derivation of the Carnivora species PSCs as well as their characterization. Current data on dog, feline, ferret, and American mink PSCs are summarized.
Collapse
Affiliation(s)
- Aleksei G. Menzorov
- Sector of Cell Collections, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Shivalingappa PKM, Singh DK, Sharma V, Arora V, Shiras A, Bapat SA. RBM47 is a Critical Regulator of Mouse Embryonic Stem Cell Differentiation. Stem Cell Rev Rep 2023; 19:475-490. [PMID: 35986129 PMCID: PMC9391069 DOI: 10.1007/s12015-022-10441-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are pivotal for regulating gene expression as they are involved in each step of RNA metabolism. Several RBPs are essential for viable growth and development in mammals. RNA-binding motif 47 (RBM47) is an RRM-containing RBP whose role in mammalian embryonic development is poorly understood yet deemed to be essential since its loss in mouse embryos leads to perinatal lethality. In this study, we attempted to elucidate the significance of RBM47 in cell-fate decisions of mouse embryonic stem cells (mESCs). Downregulation of Rbm47 did not affect mESC maintenance and the cell cycle but perturbed the expression of primitive endoderm (PrE) markers and increased GATA4 + PrE-like cells. However, the PrE misregulation could be reversed by either overexpressing Rbm47 or treating the knockdown mESCs with the inhibitors of FGFR or MEK, suggesting an implication of RBM47 in regulating FGF-ERK signaling. Rbm47 knockdown affected the multi-lineage differentiation potential of mESCs as it regressed teratoma in NSG mice and led to a skewed expression of differentiation markers in serum-induced monolayer differentiation. Further, lineage-specific differentiation revealed that Rbm47 is essential for proper differentiation of mESCs towards neuroectodermal and endodermal fate. Taken together, we assign a hitherto unknown role(s) to RBM47 in a subtle regulation of mESC differentiation.
Collapse
Affiliation(s)
| | - Divya Kumari Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Vaishali Sharma
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Vivek Arora
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Anjali Shiras
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
8
|
Young JE, Goldstein LSB. Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods Mol Biol 2023; 2561:105-133. [PMID: 36399267 DOI: 10.1007/978-1-0716-2655-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder and a mechanistically complex disease. For the last decade, human models of AD using induced pluripotent stem cells (iPSCs) have emerged as a powerful way to understand disease pathogenesis in relevant human cell types. In this review, we summarize the state of the field and how this technology can apply to studies of both familial and sporadic studies of AD. We discuss patient-derived iPSCs, genome editing, differentiation of neural cell types, and three-dimensional organoids, and speculate on the future of this type of work for increasing our understanding of, and improving therapeutic development for, this devastating disease.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, Department of Neurosciences, UC San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
9
|
Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reprod Toxicol 2022; 112:36-50. [PMID: 35697279 DOI: 10.1016/j.reprotox.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to develop a wide range of human models that could enhance understanding of mechanisms underlying human development and disease. These systems are now beginning to mature and provide the basis for the development of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent variability, which means that it is important to identify the most appropriate characterization markers and quality control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations for experimental work. This paper considers those core quality control measures for human pluripotent stem cell lines and evaluates the state of play in the development of key functional markers for their differentiated cell derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based systems.
Collapse
|
10
|
Bialecka M, Montilla-Rojo J, Roelen BAJ, Gillis AJ, Looijenga LHJ, Salvatori DCF. Humanised Mice and Immunodeficient Mice (NSG) Are Equally Sensitive for Prediction of Stem Cell Malignancy in the Teratoma Assay. Int J Mol Sci 2022; 23:ijms23094680. [PMID: 35563071 PMCID: PMC9105268 DOI: 10.3390/ijms23094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The use of human pluripotent stem cells (hPSCs) in regenerative medicine has great potential. However, it is important to exclude that these cells can undergo malignant transformation, which could lead to the development of malignant tumours. This property of hPSCs is currently being tested using the teratoma assay, through which cells are injected into immunodeficient mice. Transplantation of stem cells in immunocompromised recipient animals certainly has a much higher incidence of tumour formation. On the other hand, the results obtained in immunodeficient mice could indicate a risk of tumour formation that is practically not present in the human immunocompetent recipient. The presence of a humanised immune system might be more representative of the human situation; therefore, we investigated if the demonstrated malignant features of chosen and well-characterised stem cell lines could be retrieved and if new features could arise in a humanised mouse model. Hu-CD34NSGTM (HIS) mice were compared side by side with immunocompromised mice (NSG) after injection of a set of benign (LU07) and malignant (LU07+dox and 2102Ep) cell lines. Analysis of the tumour development, histological composition, pathology evaluation, and malignancy-associated miRNA expression levels, both in tumour and plasma samples, revealed no differences among mouse groups. This indicates that the HIS mouse model is comparable to, but not more sensitive than, the NSG immunodeficient model for studying the malignancy of stem cells. Since in vivo teratoma assay is cumbersome, in vitro methods for the detection of malignancy are urgently needed.
Collapse
Affiliation(s)
- Monika Bialecka
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (M.B.); (J.M.-R.); (B.A.J.R.)
| | - Joaquin Montilla-Rojo
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (M.B.); (J.M.-R.); (B.A.J.R.)
| | - Bernard A. J. Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (M.B.); (J.M.-R.); (B.A.J.R.)
| | - Ad J. Gillis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.J.G.); (L.H.J.L.)
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.J.G.); (L.H.J.L.)
| | - Daniela. C. F. Salvatori
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (M.B.); (J.M.-R.); (B.A.J.R.)
- Correspondence:
| |
Collapse
|
11
|
Hidalgo Aguilar A, Smith L, Owens D, Quelch R, Przyborski S. Recreating Tissue Structures Representative of Teratomas In Vitro Using a Combination of 3D Cell Culture Technology and Human Embryonic Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9050185. [PMID: 35621463 PMCID: PMC9138123 DOI: 10.3390/bioengineering9050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
In vitro studies using human embryonic stem cells (hESCs) are a valuable method to study aspects of embryogenesis, avoiding ethical issues when using embryonic materials and species dissimilarities. The xenograft teratoma assay is often traditionally used to establish pluripotency in putative PSC populations, but also has additional applications, including the study of tissue differentiation. The stem cell field has long sought an alternative due to various well-established issues with the in vivo technique, including significant protocol variability and animal usage. We have established a two-step culture method which combines PSC-derived embryoid bodies (EBs) with porous scaffolds to enhance their viability, prolonging the time these structures can be maintained, and therefore, permitting more complex, mature differentiation. Here, we have utilised human embryonic stem cell-derived EBs, demonstrating the formation of tissue rudiments of increasing complexity over time and the ability to manipulate their differentiation through the application of exogenous morphogens to achieve specific lineages. Crucially, these EB-derived tissues are highly reminiscent of xenograft teratoma samples derived from the same cell line. We believe this in vitro approach represents a reproducible, animal-free alternative to the teratoma assay, which can be used to study human tissue development.
Collapse
Affiliation(s)
| | - Lucy Smith
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Dominic Owens
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Rebecca Quelch
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
- Reprocell Europe, NETPark, Sedgefield TS21 3FD, UK
- Correspondence:
| |
Collapse
|
12
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
13
|
Niemi SM. Harm-Benefit Analyses Can Be Harmful. ILAR J 2021; 60:341-346. [PMID: 32785593 DOI: 10.1093/ilar/ilaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/05/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
Harm-benefit analyses (HBAs) are becoming de rigueur with some governmental regulatory agencies and popular with local institutional animal care and use committees (or their equivalents), the latter due, in part, to the adoption of HBAs as an international accreditation standard. Such analyses are employed as an attempt to balance potential or actual pain or distress imposed on laboratory animals against scientists' justifications for those impositions. The outcomes of those analyses are then supposed to be included in an official assessment of whether a given animal protocol should be approved as proposed. While commendable in theory as a means to avoid or minimize animal suffering, HBAs come with a flawed premise. Establishing an accurate prediction of benefit, especially for so-called "basic" research (vs "applied" research, such as in vivo testing for product development or batch release), is often impossible given the uncertain nature of experimental outcomes and the eventual value of those results. That impossibility, in turn, risks disapproving a legitimate research proposal that might have yielded important new knowledge if it had been allowed to proceed. Separately, the anticipated harm to which the animal would be subjected should similarly be scrutinized with an aim to refine that harm regardless of purported benefits if the protocol is approved. The intentions of this essay are to reflect on the potential harm and benefit of the HBA itself, highlight how HBAs may be helpful in advancing refinements, and propose alternative approaches to both parts of the equation in the assessment process.
Collapse
Affiliation(s)
- Steven M Niemi
- Animal Law & Policy Program, Harvard Law School, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To Better Generate Organoids, What Can We Learn From Teratomas? Front Cell Dev Biol 2021; 9:700482. [PMID: 34336851 PMCID: PMC8324104 DOI: 10.3389/fcell.2021.700482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jinlin Du
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
15
|
Smith LA, Hidalgo Aguilar A, Owens DDG, Quelch RH, Knight E, Przyborski SA. Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts. Front Cell Dev Biol 2021; 9:667246. [PMID: 34026759 PMCID: PMC8134696 DOI: 10.3389/fcell.2021.667246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2–3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines.
Collapse
Affiliation(s)
- L A Smith
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - A Hidalgo Aguilar
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - D D G Owens
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - R H Quelch
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - E Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - S A Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe, NETPark, Sedgefield, United Kingdom
| |
Collapse
|
16
|
Panina Y, Karagiannis P, Kurtz A, Stacey GN, Fujibuchi W. Human Cell Atlas and cell-type authentication for regenerative medicine. Exp Mol Med 2020; 52:1443-1451. [PMID: 32929224 PMCID: PMC8080834 DOI: 10.1038/s12276-020-0421-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been defined on the basis of morphological and physiological markers and, more recently, immunological markers and molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to molecular marker databases for individual cell types and other sources that address cell-type identification for regenerative medicine based on cell data guidelines.
Collapse
Affiliation(s)
- Yulia Panina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts, SG88HZ, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, 100190, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
17
|
Munro MJ, Peng L, Wickremesekera SK, Tan ST. Colon adenocarcinoma-derived cells that express induced-pluripotent stem cell markers possess stem cell function. PLoS One 2020; 15:e0232934. [PMID: 32428045 PMCID: PMC7236985 DOI: 10.1371/journal.pone.0232934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
AIMS Much work has been done to find markers of cancer stem cells (CSCs) that distinguish them from the tumor bulk cells and normal cells. Recent CSC research has applied the induced pluripotent stem cell (iPSC) concept. In this study, we investigated the expression of a panel of iPSC markers in primary colon adenocarcinoma (CA)-derived cell lines. MATERIALS AND METHODS Expression of iPSC markers by CA-derived primary cell lines was interrogated using immunocytochemistry, western blotting and RT-qPCR. The stem cell function of these cells was then assessed in vitro using differentiation and tumorsphere assays. RESULTS Expression of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC was more widespread in high-grade CA (HGCA) cell lines than low-grade CA (LGCA) cell lines, as demonstrated by western blotting and RT-qPCR. These cells could be induced to differentiate down the three embryonic lineages. Cells derived from HGCA were more capable of forming tumorspheres than those derived from LGCA. EpCAM sorting revealed that a population enriched for EpCAMHigh cells formed larger tumorspheres than EpCAMLow cells. Pluripotency markers, SSEA4 and TRA-1-60, were co-expressed by a small subpopulation of cells that also co-expressed SOX2 in 75% and OCT4 in 50% of the cell lines. CONCLUSIONS CA-derived primary cell lines contain tumorsphere-forming cells which express key pluripotency genes and can differentiate down 3 embryonic lineages, suggesting a pluripotent CSC-like phenotype. There appear to be two iPSC-like subpopulations, one with high EpCAM expression which forms larger tumorspheres than another with low EpCAM expression. Furthermore, these cells can be characterized based on iPSC marker expression, as we have previously demonstrated in the original CA tumor tissues.
Collapse
Affiliation(s)
- Matthew J. Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susrutha K. Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
18
|
O'Shea O, Steeg R, Chapman C, Mackintosh P, Stacey GN. Development and implementation of large-scale quality control for the European bank for induced Pluripotent Stem Cells. Stem Cell Res 2020; 45:101773. [DOI: 10.1016/j.scr.2020.101773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023] Open
|
19
|
Kim A, Lee SY, Seo CS, Chung SK. Ethanol extract of Magnoliae cortex (EEMC) limits teratoma formation of pluripotent stem cells by selective elimination of undifferentiated cells through the p53-dependent mitochondrial apoptotic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153198. [PMID: 32151917 DOI: 10.1016/j.phymed.2020.153198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/16/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) are regarded as the best potential cell source for cell-based regenerative medicine. To develop a safe and efficient iPSC-based cell therapy, it is very important to avoid possible teratoma formation, which can arise from undifferentiated iPSCs (USCs) remaining among differentiated cell products. Dried bark of Magnolia officinalis (Magnolia cortex, MC) has long been used in traditional medicine to treat gastrointestinal ailments and allergic diseases, and has shown have various pharmacological activities, including anti-bacterial, anti-inflammatory, and anti-cancer effects. However, its effects on iPSCs have not yet been examined. PURPOSE In this study, we investigated the selective cytotoxic effects of ethanol extract of MC (EEMC) on undifferentiated iPSCs and elucidated the underlying apoptotic mechanisms in detail. We also investigated the inhibitory effects of EEMC on teratoma formation via in ovo experiments. RESULTS We found that EEMC greatly reduced cell growth and induced apoptotic cell death in USCs, but not in differentiated or normal cells. EEMC caused G2/M cell cycle arrest, mitochondrial damage, and caspase activation of USCs, accompanied by p53 accumulation. In p53KO human iPSCs, EEMC had no cytotoxicity, reinforcing that EEMC-mediated apoptosis of USCs is p53-dependent. EEMC did not cause DNA damage in iPSC-derived differentiated cells. In ovo teratoma formation assay revealed that EEMC treatment before injection efficiently eliminated USCs and prevented teratoma formation. CONCLUSIONS These results collectively indicate that EEMC has potent anti-teratoma activity, and therefore can be used for the development of safe iPSC-based therapy.
Collapse
Affiliation(s)
- Aeyung Kim
- Division of Clinical Medicine, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Seo-Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun-Ku Chung
- Division of Clinical Medicine, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
20
|
Yang X, Ku T, Sun Z, Liu QS, Yin N, Zhou Q, Faiola F, Liao C, Jiang G. Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. Toxicol Lett 2019; 312:139-147. [PMID: 31082521 DOI: 10.1016/j.toxlet.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
As the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has gained lots of concerns, due to its diverse deleterious effects. However, the knowledge on carcinogenic risk of TCDD during early stage of development remains scarce. The in vivo teratoma formation model based on the transplantation of embryonic stem cells (ESCs) in immunodeficient mice is appealing for studying pluripotency and tumorigenicity in developmental biology, and also shows promise in environmental toxicology, especially in carcinogenesis researches. In this study, the malignant transformation of mouse embryonic stem cells (mESCs) pretreated with TCDD was investigated during their in vivo differentiation using teratoma formation model. Based on characterization of the pluripotency and differentiation capabilities of mESCs, evil changes in teratomas derived from TCDD-exposed mESCs were systematically studied. The results showed that TCDD significantly up-regulated CYP1A1 transcriptional levels in mESCs, elevated the incidence of malignant change in mESC-derived teratomas, and caused indefinite proliferation capabilities in sequential cultures of tumor tissues. The findings suggested that TCDD could exert carcinogenic effect on mESCs during their differentiation into teratoma in vivo, and more attention should be paid to the adverse health effects of this chemical during gestation or early developmental period.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Kuang YL, Munoz A, Nalula G, Santostefano KE, Sanghez V, Sanchez G, Terada N, Mattis AN, Iacovino M, Iribarren C, Krauss RM, Medina MW. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res 2019; 37:101434. [PMID: 30999275 PMCID: PMC6570500 DOI: 10.1016/j.scr.2019.101434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) have become a promising resource for exploring genetics of complex diseases, discovering new drugs, and advancing regenerative medicine. Increasingly, laboratories are creating their own banks of iPSCs derived from diverse donors. However, there are not yet standardized guidelines for qualifying these cell lines, i.e., distinguishing between bona fide human iPSCs, somatic cells, and imperfectly reprogrammed cells. Here, we report the establishment of a panel of 30 iPSCs from CD34+ peripheral blood mononuclear cells, of which 10 were further differentiated in vitro into all three germ layers. We characterized these different cell types with commonly used pluripotent and lineage specific markers, and showed that NES, TUBB3, and OTX2 cannot be reliably used as ectoderm differentiation markers. Our work highlights the importance of marker selection in iPSC authentication, and the need for the field to establish definitive standard assays.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Antonio Munoz
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Gilbert Nalula
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Katherine E Santostefano
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Valentina Sanghez
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Gabriela Sanchez
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Naohiro Terada
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Aras N Mattis
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Michelina Iacovino
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| |
Collapse
|
22
|
Ramuta TŽ, Kreft ME. Human Amniotic Membrane and Amniotic Membrane-Derived Cells: How Far Are We from Their Use in Regenerative and Reconstructive Urology? Cell Transplant 2019; 27:77-92. [PMID: 29562770 PMCID: PMC6434475 DOI: 10.1177/0963689717725528] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human amniotic membrane (hAM) is the innermost layer of fetal membranes, which surrounds the developing fetus and forms the amniotic cavity. hAM and hAM-derived cells possess many properties that make them suitable for use in regenerative medicine, such as low immunogenicity, promotion of epithelization, anti-inflammatory properties, angiogenic and antiangiogenic properties, antifibrotic properties, antimicrobial properties, and anticancer properties. Many pathological conditions of the urinary tract lead to organ damage or complete loss of function. Consequently, the reconstruction or replacement of damaged organs is needed, which makes searching for new approaches in regenerative and reconstructive urology a necessity. The use of hAM for treating defects in kidneys, ureters, urinary bladder, and urethra was tested in vitro in cell cultures and in vivo in mice, rats, rabbits, cats, dogs, and also in humans. These studies confirmed the advantages and the potential of hAM for use in regenerative and reconstructive urology as stated above. However, they also pointed out a few concerns we have to take into consideration. These are (1) the lack of a standardized protocol in hAM preparation and storage, (2) the heterogeneity of hAM, and especially (3) low mechanical strength of hAM. Before any wider use of hAM for treating urological defects, the protocols for preparation and storage will need to be standardized, followed by more studies on larger animals and clinical trials, which will altogether extensively assess the potential of hAM use in urological patients.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- 1 Faculty of Medicine, Institute of Cell biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- 1 Faculty of Medicine, Institute of Cell biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Salvatori DCF, Dorssers LCJ, Gillis AJM, Perretta G, van Agthoven T, Gomes Fernandes M, Stoop H, Prins JB, Oosterhuis JW, Mummery C, Looijenga LHJ. The MicroRNA-371 Family as Plasma Biomarkers for Monitoring Undifferentiated and Potentially Malignant Human Pluripotent Stem Cells in Teratoma Assays. Stem Cell Reports 2018; 11:1493-1505. [PMID: 30503260 PMCID: PMC6294243 DOI: 10.1016/j.stemcr.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/09/2023] Open
Abstract
Predicting developmental potency and risk of posttransplantation tumor formation by human pluripotent stem cells (hPSCs) and their derivatives largely rely on classical histological analysis of teratomas. Here, we investigated whether an assay based on microRNAs (miRNA) in blood plasma is able to detect potentially malignant elements. Several hPSCs and human malignant germ cell tumor (hGCT) lines were investigated in vitro and in vivo after mouse xenografting. The multiple conventional hPSC lines generated mature teratomas, while xenografts from induced hPSCs (hiPSCs) with reactivated reprogramming transgenes and hGCT lines contained undifferentiated and potentially malignant components. The presence of these elements was reflected in the mRNA and miRNA profiles of the xenografts with OCT3/4 mRNA and the miR-371 and miR-302 families readily detectable. miR-371 family members were also identified in mouse plasma faithfully reporting undifferentiated elements in the xenografts. This study demonstrated that undifferentiated and potentially malignant cells could be detected in vivo.
Collapse
Affiliation(s)
- Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - Lambert C J Dorssers
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Ad J M Gillis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Gemma Perretta
- Fondazione Guido Bernardini, Via Manfredo Camperio, 10, 20123 Milano, Italy
| | - Ton van Agthoven
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Maria Gomes Fernandes
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jan-Bas Prins
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Christine Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Jaffer S, Goh P, Abbasian M, Nathwani AC. Mbd3 Promotes Reprogramming of Primary Human Fibroblasts. Int J Stem Cells 2018; 11:235-241. [PMID: 30497130 PMCID: PMC6285286 DOI: 10.15283/ijsc18036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 04/23/2018] [Accepted: 09/25/2018] [Indexed: 01/31/2023] Open
Abstract
Mbd3 (Methyl-CpG binding domain protein), a core member of NuRD (nucleosome remodelling and deacetylation) is essential for embryogenesis. However, its role in reprogramming of somatic cells into induced pluripotent stem cells (iPSC) remains controversial. Some reports suggest that Mbd3 inhibits pluripotency, whilst others show that it greatly enhances reprogramming efficiency. Our study is the first to assess the role of Mbd3 on reprogramming of primary human fibroblasts using Yamanaka episomal plasmids (Reprogramming factors (RF) under feeder-free conditions. We showed that shRNA-mediated partial depletion of Mbd3 resulted in >5-fold reduction in the efficiency of reprogramming of primary human fibroblasts. Furthermore, iPSC that emerged after knock-down of Mbd3 were incapable of trilineage differentiation even though they expressed all markers of pluripotency. In contrast, over-expression of the Mbd3b isoform along with the Yamanaka episomal plasmids increased the number of fibroblast derived iPSC colonies by at least two-fold. The resulting colonies were capable of trilineage differentiation. Our results, therefore, suggest that Mbd3 appears to play an important role in reprogramming of primary human fibroblasts, which provides further insight into the biology of reprogramming but also has direct implication for translation of iPSC to clinic.
Collapse
Affiliation(s)
- Sajjida Jaffer
- Department of Haematology, University College London, Cancer Institute, London,
UK
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free NHS Trust, London,
UK
| | - Pollyanna Goh
- Centre for Paediatrics, Barts and The London Medical School, Blizard Institute, Queen Mary University of London, London,
UK
| | - Mahnaz Abbasian
- Department of Haematology, University College London, Cancer Institute, London,
UK
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free NHS Trust, London,
UK
| | - Amit C Nathwani
- Department of Haematology, University College London, Cancer Institute, London,
UK
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free NHS Trust, London,
UK
- National Health Services Blood and Transplant, Oak House, Reeds Crescent, Watford, Hertfordshire,
UK
| |
Collapse
|
25
|
Kamaldinov T, Erndt-Marino J, Diaz-Rodriguez P, Chen H, Gharat T, Munoz-Pinto D, Arduini B, Hahn MS. Tuning Forkhead Box D3 overexpression to promote specific osteogenic differentiation of human embryonic stem cells while reducing pluripotency in a three-dimensional culture system. J Tissue Eng Regen Med 2018; 12:2256-2265. [PMID: 30350469 DOI: 10.1002/term.2757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Clinical use of human embryonic stem cells (hESCs) in bone regeneration applications requires that their osteogenic differentiation be highly controllable as well as time- and cost-effective. The main goals of the current work were thus (a) to assess whether overexpression of pluripotency regulator Forkhead Box D3 (FOXD3) can enhance the osteogenic commitment of hESCs seeded in three-dimensional (3D) scaffolds and (b) to evaluate if the degree of FOXD3 overexpression regulates the strength and specificity of hESC osteogenic commitment. In conducting these studies, an interpenetrating hydrogel network consisting of poly(ethylene glycol) diacrylate and collagen I was utilized as a 3D culture platform. Expression of osteogenic, chondrogenic, pluripotency, and germ layer markers by encapsulated hESCs was measured after 2 weeks of culture in osteogenic medium in the presence or absence doxycycline-induced FOXD3 transgene expression. Towards the first goal, FOXD3 overexpression initiated 24 hr prior to hESC encapsulation, relative to unstimulated controls, resulted in upregulation of osteogenic markers and enhanced calcium deposition, without promoting off-target effects. However, when initiation of FOXD3 overexpression was increased from 24 to 48 hr prior to encapsulation, hESC osteogenic commitment was not further enhanced and off-target effects were noted. Specifically, relative to 24-hr prestimulation, initiation of FOXD3 overexpression 48 hr prior to encapsulation yielded increased expression of pluripotency markers while reducing mesodermal but increasing endodermal germ layer marker expression. Combined, the current results indicate that the controlled overexpression of FOXD3 warrants further investigation as a mechanism to guide enhanced hESC osteogenic commitment.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Brigitte Arduini
- Rensselaer Center for Stem Cell Research, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
26
|
Sullivan S, Stacey GN, Akazawa C, Aoyama N, Baptista R, Bedford P, Bennaceur Griscelli A, Chandra A, Elwood N, Girard M, Kawamata S, Hanatani T, Latsis T, Lin S, Ludwig TE, Malygina T, Mack A, Mountford JC, Noggle S, Pereira LV, Price J, Sheldon M, Srivastava A, Stachelscheid H, Velayudhan SR, Ward NJ, Turner ML, Barry J, Song J. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med 2018; 13:859-866. [PMID: 30205750 DOI: 10.2217/rme-2018-0095] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Use of clinical-grade human induced pluripotent stem cell (iPSC) lines as a starting material for the generation of cellular therapeutics requires demonstration of comparability of lines derived from different individuals and in different facilities. This requires agreement on the critical quality attributes of such lines and the assays that should be used. Working from established recommendations and guidance from the International Stem Cell Banking Initiative for human embryonic stem cell banking, and concentrating on those issues more relevant to iPSCs, a series of consensus workshops has made initial recommendations on the minimum dataset required to consider an iPSC line of clinical grade, which are outlined in this report. Continued evolution of this field will likely lead to revision of these guidelines on a regular basis.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies (GAiT), The Jack Copland Centre, Edinburgh, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High St, Barley, Hertfordshire, UK
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naoki Aoyama
- Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, Japan
| | - Ricardo Baptista
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Patrick Bedford
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, ON, Canada
| | | | - Amit Chandra
- Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Ngaire Elwood
- Cord Blood Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mathilde Girard
- Yposkesi, 2 Rue Henri Auguste Desbruères, 91100 Corbeil-Essonnes, France
| | - Shin Kawamata
- Foundation Biomedical Research and Innovation (FBRI), Research and Development Center for Cell Therapy, Chuo-ku, Kobe, Japan
| | - Tadaaki Hanatani
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Theodoros Latsis
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, Villejuif, France
| | - Stephen Lin
- California Institute for Regenerative Medicine (CIRM), Lake Merritt Plaza, 1999 Harrison Street STE 1650, Oakland, CA, USA
| | - Tenneille E Ludwig
- WiCell Research Institute (WiCell Stem Cell Bank), Madison, WI 53719, USA
| | - Tamara Malygina
- Optec LLC, Inzhenernaya Str., 28 Novosibirsk, 630090, Russia
| | - Amanda Mack
- Fujifilm Cellular Dynamics International, 525 Science Dr., Madison, WI 53711, USA
| | - Joanne C Mountford
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Scott Noggle
- New York Stem Cell Foundation Laboratories, New York, NY 10032, USA
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jack Price
- UK Stem Cell Bank, National Institute for Biological Standards and Control, Hertfordshire, UK
| | - Michael Sheldon
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8009, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore- 632004, Tamil Nadu, India.,Centre for Stem Cell Research, Christian Medical College, Vellore- 632004, Tamil Nadu, India
| | - Harald Stachelscheid
- Charité - Universita¨tsmedizin Berlin, Berlin Institute of Health and Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Shaji R Velayudhan
- Department of Haematology, Christian Medical College, Vellore- 632004, Tamil Nadu, India.,Centre for Stem Cell Research, Christian Medical College, Vellore- 632004, Tamil Nadu, India
| | - Natalie J Ward
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Marc L Turner
- Global Alliance for iPSC Therapies (GAiT), The Jack Copland Centre, Edinburgh, UK.,Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK.,Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Jacqueline Barry
- Global Alliance for iPSC Therapies (GAiT), The Jack Copland Centre, Edinburgh, UK.,Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Jihwan Song
- Global Alliance for iPSC Therapies (GAiT), The Jack Copland Centre, Edinburgh, UK.,Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro. Clin Sci (Lond) 2018; 132:1629-1643. [PMID: 30108152 DOI: 10.1042/cs20171483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Impaired wound healing and ulceration caused by diabetes mellitus, is a significant healthcare burden, markedly impairs quality of life for patients, and is the major cause of amputation worldwide. Current experimental approaches used to investigate the complex wound healing process often involve cultures of fibroblasts and/or keratinocytes in vitro, which can be limited in terms of complexity and capacity, or utilisation of rodent models in which the mechanisms of wound repair differ substantively from that in humans. However, advances in tissue engineering, and the discovery of strategies to reprogramme adult somatic cells to pluripotency, has led to the possibility of developing models of human skin on a large scale. Generation of induced pluripotent stem cells (iPSCs) from tissues donated by diabetic patients allows the (epi)genetic background of this disease to be studied, and the ability to differentiate iPSCs to multiple cell types found within skin may facilitate the development of more complex skin models; these advances offer key opportunities for improving modelling of wound healing in diabetes, and the development of effective therapeutics for treatment of chronic wounds.
Collapse
|
28
|
Strnadel J, Wang H, Carromeu C, Miyanohara A, Fujimura K, Blahovcova E, Nosal V, Skovierova H, Klemke R, Halasova E. Transplantation of Human-Induced Pluripotent Stem Cell-Derived Neural Precursors into Early-Stage Zebrafish Embryos. J Mol Neurosci 2018; 65:351-358. [PMID: 30003430 DOI: 10.1007/s12031-018-1109-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells (iPS cells) generated from somatic cells through reprogramming hold great promises for regenerative medicine. However, how reprogrammed cells survive, behave in vivo, and interact with host cells after transplantation still remains to be addressed. There is a significant need for animal models that allow in vivo tracking of transplanted cells in real time. In this regard, the zebrafish, a tropical freshwater fish, provides significant advantage as it is optically transparent and can be imaged in high resolution using confocal microscopy. The principal goal of this study was to optimize the protocol for successful short-term and immunosuppression-free transplantation of human iPS cell-derived neural progenitor cells into zebrafish and to test their ability to differentiate in this animal model. To address this aim, we isolated human iPS cell-derived neural progenitor cells from human fibroblasts and grafted them into (a) early (blastocyst)-stage wild-type AB zebrafish embryos or (b) 3-day-old Tg(gfap:GFP) zebrafish embryos (intracranial injection). We found that transplanted human neuronal progenitor cells can be effectively grafted and that they differentiate and survive in zebrafish for more than 2 weeks, validating the model as an ideal platform for in vivo screening experiments. We conclude that zebrafish provides an excellent model for studying iPS cell-derived cells in vivo.
Collapse
Affiliation(s)
- J Strnadel
- Department of Pathology, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA. .,Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Bratislava, Slovakia.
| | - H Wang
- Department of Pathology, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA
| | - C Carromeu
- Department of Pediatrics, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA
| | - A Miyanohara
- Department of Anesthesiology, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA
| | - K Fujimura
- Department of Pathology, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA
| | - E Blahovcova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Bratislava, Slovakia
| | - V Nosal
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Bratislava, Slovakia
| | - H Skovierova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Bratislava, Slovakia
| | - R Klemke
- Department of Pathology, University of California, 9500 Gilman Drive # 0612, La Jolla, CA, 92093, USA
| | - E Halasova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Bratislava, Slovakia
| |
Collapse
|
29
|
Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: A systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med 2018; 12:1780-1797. [DOI: 10.1002/term.2697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry; Alexandria University; Alexandria Egypt
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| |
Collapse
|
30
|
Ferguson R, Subramanian V. Embryoid body arrays: Parallel cryosectioning of spheroid/embryoid body samples for medium through-put analysis. Stem Cell Res 2018; 28:125-130. [DOI: 10.1016/j.scr.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022] Open
|
31
|
Bouma MJ, van Iterson M, Janssen B, Mummery CL, Salvatori DCF, Freund C. Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays. Stem Cell Reports 2018; 8:1340-1353. [PMID: 28494940 PMCID: PMC5425621 DOI: 10.1016/j.stemcr.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to form teratomas in vivo containing multiple somatic cell types is regarded as functional evidence of pluripotency for human pluripotent stem cells (hPSCs). Since the Teratoma assay is animal dependent, laborious, and only qualitative, the PluriTest and the hPSC ScoreCard assay have been developed as in vitro alternatives. Here we compared normal hPSCs, induced hPSCs (hiPSCs) with reactivated reprogramming transgenes, and human embryonal carcinoma cells (hECs) in these assays. While normal hPSCs gave rise to typical teratomas, the xenografts of the hECs and the hiPSCs with reactivated reprogramming transgenes were largely undifferentiated and malignant. The hPSC ScoreCard assay confirmed the line-specific differentiation propensities in vitro. However, when undifferentiated cells were analyzed by the PluriTest, only hECs were identified as abnormal whereas all other cell lines were indistinguishable and resembled normal hPSCs. Our results indicate that pluripotency assays are best selected on the basis of intended downstream applications. Side-by-side comparison of teratomas/TeratoScore, hPSC ScoreCard, and PluriTest hiPSCs with reactivated transgenes form embryonal carcinomas in vivo hiPSCs with reactivated transgenes show impaired differentiation capacity in vitro • PluriTest does not distinguish hiPSCs with reactivated transgenes from normal hPSCs
Collapse
Affiliation(s)
- Marga J Bouma
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Bart Janssen
- GenomeScan B.V., Plesmanlaan 1D, 2333 BZ Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Christian Freund
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
32
|
Marklein RA, Lam J, Guvendiren M, Sung KE, Bauer SR. Functionally-Relevant Morphological Profiling: A Tool to Assess Cellular Heterogeneity. Trends Biotechnol 2018; 36:105-118. [DOI: 10.1016/j.tibtech.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
|
33
|
Roberts B, Haupt A, Tucker A, Grancharova T, Arakaki J, Fuqua MA, Nelson A, Hookway C, Ludmann SA, Mueller IA, Yang R, Horwitz R, Rafelski SM, Gunawardane RN. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 2017; 28:2854-2874. [PMID: 28814507 PMCID: PMC5638588 DOI: 10.1091/mbc.e17-03-0209] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
The generation of a collection of human induced pluripotent stem cell (hiPSC) lines expressing endogenously GFP-tagged proteins using CRISPR/Cas9 methods is described. The methods used and the genomic and cell biological data validating the GFP-tagged hiPSC lines are also presented. We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community.
Collapse
Affiliation(s)
| | - Amanda Haupt
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | - Joy Arakaki
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | | | | | | | - Ruian Yang
- Allen Institute for Cell Science, Seattle, WA 98109
| | - Rick Horwitz
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | |
Collapse
|
34
|
Paterson YZ, Kafarnik C, Guest DJ. Characterization of companion animal pluripotent stem cells. Cytometry A 2017; 93:137-148. [PMID: 28678404 DOI: 10.1002/cyto.a.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells have the capacity to grow indefinitely in culture and differentiate into derivatives of the three germ layers. These properties underpin their potential to be used in regenerative medicine. Originally derived from early embryos, pluripotent stem cells can now be derived by reprogramming an adult cell back to a pluripotent state. Companion animals such as horses, dogs, and cats suffer from many injuries and diseases for which regenerative medicine may offer new treatments. As many of the injuries and diseases are similar to conditions in humans the use of companion animals for the experimental and clinical testing of stem cell and regenerative medicine products would provide relevant animal models for the translation of therapies to the human field. In order to fully utilize companion animal pluripotent stem cells robust, standardized methods of characterization must be developed to ensure that safe and effective treatments can be delivered. In this review we discuss the methods that are available for characterizing pluripotent stem cells and the techniques that have been applied in cells from companion animals. We describe characteristics which have been described consistently across reports as well as highlighting discrepant results. Significant steps have been made to define the in vitro culture requirements and drive lineage specific differentiation of pluripotent stem cells in companion animal species. However, additional basic research to compare pluripotent stem cell types and define characteristics of pluripotency in companion animal species is still required. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Y Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C Kafarnik
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Institute of Ophthalmology, University College London, London, UK
| | - D J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK
| |
Collapse
|
35
|
Baud A, Wessely F, Mazzacuva F, McCormick J, Camuzeaux S, Heywood WE, Little D, Vowles J, Tuefferd M, Mosaku O, Lako M, Armstrong L, Webber C, Cader MZ, Peeters P, Gissen P, Cowley SA, Mills K. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells. Anal Chem 2017; 89:2440-2448. [PMID: 28192931 DOI: 10.1021/acs.analchem.6b04368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
Collapse
Affiliation(s)
- Anna Baud
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Frank Wessely
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - Francesca Mazzacuva
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - James McCormick
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Stephane Camuzeaux
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Jane Vowles
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | | | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - M Zameel Cader
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford, OX3 9DS, United Kingdom
| | - Pieter Peeters
- Janssen Research and Development , Beerse, 2340, Belgium
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| |
Collapse
|
36
|
Abstract
Stem cell banking has been a topic of discussion and debate for more than a decade since the first public services to supply human embryonic stem cells (hESCs) were established in the USA and the UK. This topic has received a recent revival with numerous ambitious programmes announced to deliver large collections of human induced pluripotency cell (hiPSC) lines. This chapter will provide a brief overview charting the development of stem cell banks, their value, and their likely role in the future.
Collapse
Affiliation(s)
- Glyn Stacey
- UK Stem Cell Bank, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK.
| |
Collapse
|
37
|
Utilizing Regulatory Networks for Pluripotency Assessment in Stem Cells. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2016; 60:486-497. [PMID: 27573128 DOI: 10.1007/s12031-016-0819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.
Collapse
|
39
|
Schulze M, Hoja S, Winner B, Winkler J, Edenhofer F, Riemenschneider MJ. Model Testing of PluriTest with Next-Generation Sequencing Data. Stem Cells Dev 2016; 25:569-71. [PMID: 26978076 DOI: 10.1089/scd.2015.0266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Markus Schulze
- 1 Department of Neuropathology, Regensburg University Hospital , Regensburg, Germany
| | - Sabine Hoja
- 1 Department of Neuropathology, Regensburg University Hospital , Regensburg, Germany
| | - Beate Winner
- 2 IZKF Junior Research Group III and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research , Erlangen, Germany
| | - Jürgen Winkler
- 3 Department of Molecular Neurology, FAU Erlangen-Nürnberg , Erlangen, Germany
| | - Frank Edenhofer
- 4 Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg , Würzburg, Germany .,5 Institute of Molecular Biology, Department of Genomics, Stem Cell Biology & Regenerative Medicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
40
|
Yaffe MP, Noggle SA, Solomon SL. Raising the standards of stem cell line quality. Nat Cell Biol 2016; 18:236-7. [DOI: 10.1038/ncb3313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Asprer JST, Lakshmipathy U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Rev Rep 2016; 11:357-72. [PMID: 25504379 DOI: 10.1007/s12015-014-9580-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.
Collapse
Affiliation(s)
- Joanna S T Asprer
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | | |
Collapse
|
42
|
Park SJ, Komiyama Y, Suemori H, Umezawa A, Nakai K. OpenTein: a database of digital whole-slide images of stem cell-derived teratomas. Nucleic Acids Res 2016; 44:D1000-4. [PMID: 26496950 PMCID: PMC4702800 DOI: 10.1093/nar/gkv1096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022] Open
Abstract
Human stem cells are promising sources for regenerative therapy. To ensure safety of future therapeutic applications, the differentiation potency of stem cells has to be tested and be widely opened to the public. The potency is generally assessed by teratoma formation comprising differentiated cells from all three germ layers, and the teratomas can be inspected through high-quality digital images. The teratoma assay, however, lacks consistency in transplantation protocols and even in interpretation, which needs community-based efforts for improving the assay quality. Here, we have developed a novel database OpenTein (Open Teratoma Investigation, http://opentein.hgc.jp/) to archive and freely distribute high-resolution whole-slide images and relevant records. OpenTein has been designed as a searchable, zoomable and annotatable web-based repository system. We have deposited 468 images of teratomas derived by our transplantation of human stem cells, and users can freely access and process such digital teratoma images. Approximately, the current version of OpenTein responds within 11.2 min for processing 2.03 gigapixel teratoma images. Our system offers valuable tools and resources in the new era of stem cell biology.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Komiyama
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hirofumi Suemori
- Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
43
|
Bulic-Jakus F, Katusic Bojanac A, Juric-Lekic G, Vlahovic M, Sincic N. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:186-209. [PMID: 26698368 DOI: 10.1002/wdev.219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
A teratoma is a benign tumor containing a mixture of differentiated tissues and organotypic derivatives of the three germ layers, while a teratocarcinoma also contains embryonal carcinoma cells (EC cells). Experimental teratomas and teratocarcinomas have been derived from early mammalian embryos transplanted into the adult animal (ectopic sites). In the rat, the pluripotency of the transplanted epiblast was demonstrated and a quantifiable restriction of developmental potential persisted after subsequent transplantation of chemically defined cultivated postimplantation embryos. The rat is nonpermissive for teratocarcinoma development and rat pluripotent cell lines have been established only recently. Transplantation of mouse embryos, epiblast, or embryonic stem cells (mESCs) gave rise to teratocarcinomas. The pluripotency of reprogrammed human cells has been tested by a 'gold standard' trilaminar teratoma assay in immunocompromised mice in vivo. Human pluripotent stem cells proposed for use in regenerative medicine such as human embryonic stem cell (hESC), human nuclear-transfer/therapeutic cloning embryonic stem cell (NT-ESC), or human induced pluripotent stem cell (hiPSC) lines, once differentiated in vitro to the desired cell type, should be again tested in a long-term animal teratoma assay to exclude their malignancy. Such an approach led to a recently implemented human therapy with retinal pigmented epithelium. For greater biosafety, the teratoma assay should be standardized and complemented by assessments of mutations/epimutations, RNA/protein expression, and possible immunogenicity of autologous pluripotent cells. Furthermore, the standardized teratoma assay should be directed more to the assessment of EC/malignant cell features than of differentiated tissues, especially after a unique case of human therapy with neural stem cells was found to lead to malignancy. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Floriana Bulic-Jakus
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Juric-Lekic
- Department of Histology and Embryology, University of Zagreb, Zagreb, Croatia
| | - Maja Vlahovic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
44
|
Andrews PW, Baker D, Benvinisty N, Miranda B, Bruce K, Brüstle O, Choi M, Choi YM, Crook JM, de Sousa PA, Dvorak P, Freund C, Firpo M, Furue MK, Gokhale P, Ha HY, Han E, Haupt S, Healy L, Hei DJ, Hovatta O, Hunt C, Hwang SM, Inamdar MS, Isasi RM, Jaconi M, Jekerle V, Kamthorn P, Kibbey MC, Knezevic I, Knowles BB, Koo SK, Laabi Y, Leopoldo L, Liu P, Lomax GP, Loring JF, Ludwig TE, Montgomery K, Mummery C, Nagy A, Nakamura Y, Nakatsuji N, Oh S, Oh SK, Otonkoski T, Pera M, Peschanski M, Pranke P, Rajala KM, Rao M, Ruttachuk R, Reubinoff B, Ricco L, Rooke H, Sipp D, Stacey GN, Suemori H, Takahashi TA, Takada K, Talib S, Tannenbaum S, Yuan BZ, Zeng F, Zhou Q. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 2015; 10:1-44. [PMID: 25675265 DOI: 10.2217/rme.14.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P W Andrews
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Romani R, Pirisinu I, Calvitti M, Pallotta MT, Gargaro M, Bistoni G, Vacca C, Di Michele A, Orabona C, Rosati J, Pirro M, Giovagnoli S, Matino D, Prontera P, Rosi G, Grohmann U, Talesa VN, Donti E, Puccetti P, Fallarino F. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med 2015; 19:1593-605. [PMID: 25783564 PMCID: PMC4511357 DOI: 10.1111/jcmm.12534] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022] Open
Abstract
Although human amniotic fluid does contain different populations of foetal-derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from second-trimester human amniotic fluid samples (human amniotic fluid stem cells, HASCs). Of those populations, one was characterized by a fast doubling time, and cells were thus designated as fHASCs. Cells maintained their original phenotype under prolonged in vitro passaging, and they were able to originate embryoid bodies. Moreover, fHASCs exhibited regulatory properties when treated with interferon (IFN)-γ, including induction of the immunomodulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1). On coculture with human peripheral blood mononuclear cells, IFN-γ-treated fHASCs caused significantly decreased T-cell proliferation and increased frequency in CD4(+) CD25(+) FOXP3(+) regulatory T cells. Both effects required an intact IDO1 function and were cell contact-independent. An unprecedented finding in our study was that purified vesicles from IFN-γ-treated fHASCs abundantly expressed the functional IDO1 protein, and those vesicles were endowed with an fHASC-like regulatory function. In vivo, fHASCs were capable of immunoregulatory function, promoting allograft survival in a mouse model of allogeneic skin transplantation. This was concurrent with the expansion of CD4(+) CD25(+) Foxp3(+) T cells in graft-draining lymph nodes from recipient mice. Thus fHASCs, or vesicles thereof, may represent a novel opportunity for immunoregulatory maneuvers both in vitro and in vivo.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Irene Pirisinu
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | | - Marco Gargaro
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giovanni Bistoni
- Plastic Surgery Unit, Hospital Universitario de la RiberaValencia, Spain
- Department of Surgery, ‘La Sapienza’ UniversityRome, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | | - Ciriana Orabona
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Jessica Rosati
- iPS-Cellular Reprogramming Unit, Fondazione Casa Sollievo della Sofferenza, MendelRome, Italy
| | - Matteo Pirro
- Department of Medicine, University of PerugiaPerugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of PerugiaPerugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Paolo Prontera
- Department of Surgery and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Gabriella Rosi
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Emilio Donti
- Department of Surgery and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | |
Collapse
|
46
|
Romani R, Fallarino F, Pirisinu I, Calvitti M, Caselli A, Fiaschi T, Gamberi T, Matino D, Talesa VN, Donti E, Puccetti P, Modesti A, Magherini F. Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. MOLECULAR BIOSYSTEMS 2015; 11:1622-32. [PMID: 25811139 DOI: 10.1039/c5mb00018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human amniotic fluid (AF) contains a variety of stem cells of embryonic and extra-embryonic origins. We characterized two distinct types of stem cells isolated from residual AF material derived from prenatal diagnostic amniocentesis. The two types of cells differed in their morphology and growth kinetics, showing fast (fast human amniotic stem cells; fHASCs) or slow (slow human amniotic stem cells; sHASCs) population-doubling times. Both fHASCs and sHASCs expressed pluripotent stem-cell markers, yet unlike sHASCs, clonogenic fHASCs would generate embryoid bodies and maintain their original phenotype during prolonged in vitro passaging. fHASCs - but not sHASCs - expressed the KLF4, SSEA-4 and CD117 markers. Differential proteomic analysis allowed us to identify the protein patterns specific for either cell type as potentially contributing to their distinct phenotypes. We found thirty-six proteins that were differentially expressed by the two cell types, and those proteins were classified according to their biological and molecular functions. Bioinformatic cluster analysis revealed differential occurrence of cytoskeletal proteins, such as vimentin, F-actin-binding protein, and chloride intracellular channel protein 1. Selected proteins differentially expressed by fHASCs and sHASCs were further characterized by Western blot analysis and confocal microscopy.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lenz M, Goetzke R, Schenk A, Schubert C, Veeck J, Hemeda H, Koschmieder S, Zenke M, Schuppert A, Wagner W. Epigenetic biomarker to support classification into pluripotent and non-pluripotent cells. Sci Rep 2015; 5:8973. [PMID: 25754700 PMCID: PMC4354028 DOI: 10.1038/srep08973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) can be performed by several methods. These methods are usually relatively labor-intensive, difficult to standardize, or they do not facilitate reliable quantification. Here, we describe a biomarker to distinguish between pluripotent and non-pluripotent cells based on DNA methylation (DNAm) levels at only three specific CpG sites. Two of these CpG sites were selected by their discriminatory power in 258 DNAm profiles – they were either methylated in pluripotent or non-pluripotent cells. The difference between these two β-values provides an Epi-Pluri-Score that was validated on independent DNAm-datasets (264 pluripotent and 1,951 non-pluripotent samples) with 99.9% specificity and 98.9% sensitivity. This score was complemented by a third CpG within the gene POU5F1 (OCT4), which better demarcates early differentiation events. We established pyrosequencing assays for the three relevant CpG sites and thereby correctly classified DNA of 12 pluripotent cell lines and 31 non-pluripotent cell lines. Furthermore, DNAm changes at these three CpGs were tracked in the course of differentiation of iPSCs towards mesenchymal stromal cells. The Epi-Pluri-Score does not give information on lineage-specific differentiation potential, but it provides a simple, reliable, and robust biomarker to support high-throughput classification into either pluripotent or non-pluripotent cells.
Collapse
Affiliation(s)
- Michael Lenz
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Arne Schenk
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Hatim Hemeda
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Andreas Schuppert
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Wolfgang Wagner
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
48
|
Nelakanti RV, Kooreman NG, Wu JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2015; 32:4A.8.1-4A.8.17. [PMID: 25640819 PMCID: PMC4402211 DOI: 10.1002/9780470151808.sc04a08s32] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes protocols for evaluating the pluripotency of embryonic and induced pluripotent stem cells using a teratoma formation assay. Cells are prepared for injection and transplanted into immunodeficient mice at the gastrocnemius muscle, a site well suited for teratoma growth and surgical access. Teratomas that form from the cell transplants are explanted, fixed in paraformaldehyde, and embedded in paraffin. These preserved samples are sectioned, stained, and analyzed. Pluripotency of a cell line is confirmed by whether the teratoma contains tissues derived from each of the embryonic germ layers: endoderm, mesoderm, and ectoderm. Alternatively, explanted and fixed teratomas can be cryopreserved for immunohistochemistry, which allows for more detailed identification of specific tissue types present in the samples.
Collapse
Affiliation(s)
- Raman V Nelakanti
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
- Departments of Medicine and Radiology (Molecular Imaging Program), Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Wilson PG, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. PeerJ 2014; 2:e668. [PMID: 25426336 PMCID: PMC4243337 DOI: 10.7717/peerj.668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023] Open
Abstract
The promise of genetic reprogramming has prompted initiatives to develop banks of induced pluripotent stem cells (iPSCs) from diverse sources. Sentinel assays for pluripotency could maximize available resources for generating iPSCs. Neural rosettes represent a primitive neural tissue that is unique to differentiating PSCs and commonly used to identify derivative neural/stem progenitors. Here, neural rosettes were used as a sentinel assay for pluripotency in selection of candidates to advance to validation assays. Candidate iPSCs were generated from independent populations of amniotic cells with episomal vectors. Phase imaging of living back up cultures showed neural rosettes in 2 of the 5 candidate populations. Rosettes were immunopositive for the Sox1, Sox2, Pax6 and Pax7 transcription factors that govern neural development in the earliest stage of development and for the Isl1/2 and Otx2 transcription factors that are expressed in the dorsal and ventral domains, respectively, of the neural tube in vivo. Dissociation of rosettes produced cultures of differentiation competent neural/stem progenitors that generated immature neurons that were immunopositive for βIII-tubulin and glia that were immunopositive for GFAP. Subsequent validation assays of selected candidates showed induced expression of endogenous pluripotency genes, epigenetic modification of chromatin and formation of teratomas in immunodeficient mice that contained derivatives of the 3 embryonic germ layers. Validated lines were vector-free and maintained a normal karyotype for more than 60 passages. The credibility of rosette assembly as a sentinel assay for PSCs is supported by coordinate loss of nuclear-localized pluripotency factors Oct4 and Nanog in neural rosettes that emerge spontaneously in cultures of self-renewing validated lines. Taken together, these findings demonstrate value in neural rosettes as sentinels for pluripotency and selection of promising candidates for advance to validation assays.
Collapse
Affiliation(s)
- Patricia G Wilson
- Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, NC , USA
| | | |
Collapse
|
50
|
Rasmussen MA, Holst B, Tümer Z, Johnsen MG, Zhou S, Stummann TC, Hyttel P, Clausen C. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Reports 2014; 3:404-13. [PMID: 25241739 PMCID: PMC4266010 DOI: 10.1016/j.stemcr.2014.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023] Open
Abstract
The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion, transient p53 suppression increases reprogramming efficiency without affecting genomic stability, rendering the method suitable for in vitro mechanistic studies with the possibility for future clinical translation. Transient p53 suppression increases reprogramming efficiency through p21 inhibition No adverse effect on DNA damage and apoptosis is observed during reprogramming Stable iPSC lines display normal karyotypes and expression of pluripotency markers The iPSC lines retain their differentiation potential and form functional neurons
Collapse
Affiliation(s)
- Mikkel A Rasmussen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C 1870, Denmark.
| | - Bjørn Holst
- Bioneer A/S, Kogle Alle 2, Hoersholm 2970, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup 2600, Denmark
| | | | - Shuling Zhou
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C 1870, Denmark
| | | | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C 1870, Denmark
| | | |
Collapse
|