1
|
Li XP, Song JT, Dai YT, Zhang WN, Zhao BT, Mao JY, Gao Y, Jiang L, Liang Y. Integrative single-cell analysis of longitudinal t(8;21) AML reveals heterogeneous immune cell infiltration and prognostic signatures. Front Immunol 2024; 15:1424933. [PMID: 39086485 PMCID: PMC11288856 DOI: 10.3389/fimmu.2024.1424933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Immunotherapies targeting T cells in solid cancers are revolutionizing clinical treatment. Novel immunotherapies have had extremely limited benefit for acute myeloid leukemia (AML). Here, we characterized the immune microenvironment of t(8;21) AML patients to determine how immune cell infiltration status influenced prognosis. Methods Through multi-omics studies of primary and longitudinal t(8;21) AML samples, we characterized the heterogeneous immune cell infiltration in the tumor microenvironment and their immune checkpoint gene expression. Further external cohorts were also included in this research. Results CD8+ T cells were enriched and HAVCR2 and TIGIT were upregulated in the CD34+CD117dim%-High group; these features are known to be associated with immune exhaustion. Data integration analysis of single-cell dynamics revealed that a subset of T cells (cluster_2) (highly expressing GZMB, NKG7, PRF1 and GNLY) evolved and expanded markedly in the drug-resistant stage after relapse. External cohort analysis confirmed that the cluster_2 T-cell signature could be utilized to stratify patients by overall survival outcome. Discussion In conclusion, we discovered a distinct T-cell signature by scRNA-seq that was correlated with disease progression and drug resistance. Our research provides a novel system for classifying patients based on their immune microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Prognosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Chromosomes, Human, Pair 8/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Female
- Translocation, Genetic
- Chromosomes, Human, Pair 21/genetics
- CD8-Positive T-Lymphocytes/immunology
- Adult
- Middle Aged
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Tao Song
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bai-Tian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
2
|
Liu H, Wu K, Hu W, Chen X, Tang Y, Ma Y, Chen C, Xie Y, Yu L, Huang J, Shen S, Wang X. Immunophenotypic clustering in paediatric acute myeloid leukaemia. Br J Haematol 2024; 204:2275-2286. [PMID: 38639201 DOI: 10.1111/bjh.19471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, exhibiting diverse subtypes according to the characteristics of tumour cells. The immunophenotype is one of the aspects acquired routinely through flow cytometry in the diagnosis of AML. Here, we characterized the antigen expression in paediatric AML cases across both morphological and molecular genetic subgroups. We discovered a subgroup of patients with unfavourable prognosis that can be immunologically characterized, irrespective of morphological FAB results or genetic aberrations. Cox regression analysis unveiled key antigens influencing the prognosis of AML patients. In terms of underlying genotypes, we observed that the antigenic profiles and outcomes of one specific group, primarily composed of CBFA2T3::GLIS2 and FUS::ERG, were analogous to the reported RAM phenotype. Overall, our data highlight the significance of immunophenotype to tailor treatment for paediatric AML.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Tang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Ma
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changcheng Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lisha Yu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Huang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Damiani D, Tiribelli M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024; 12:1194. [PMID: 38927401 PMCID: PMC11200794 DOI: 10.3390/biomedicines12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to disease recurrence and the development of resistance to both conventional and novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used in patients with B cell malignancies, with remarkable clinical results despite some immune-related toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is extremely limited, as specific molecular targets for immune cells are generally lacking on AML blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition, the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical evidence and the potential approaches to overcome its limitations, including genetic modifications and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Chen P, Liu X, Zhao Y, Hu Y, Guo J, Wang H. Global, national, and regional burden of acute myeloid leukemia among 60-89 years-old individuals: insights from a study covering the period 1990 to 2019. Front Public Health 2024; 11:1329529. [PMID: 38274540 PMCID: PMC10808630 DOI: 10.3389/fpubh.2023.1329529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background Our study examined the global, national, and regional trends in the incidence, mortality, and disability-adjusted life years (DALYs) associated with older people's acute myeloid leukemia (AML) over a 30 years period. AML, which predominantly affects individuals aged 60-89, is known for its severity and unfavorable prognosis. By providing insights into the growing burden of AML, our research highlights the urgent need for effective interventions and support at various levels. Methods In this study, we analyzed older people with AML aged 60-89 using the Global Burden of Disease (GBD) database for 2019. Our goal was to assess trends and characteristics by examining the incidence rate, mortality rate, DALYs, and estimated annual percentage change (EAPC). We aimed to provide a comprehensive understanding of the disease's trajectory and development. Results In 2019, the older age group of 60 to 89 years reported 61,559 new cases of AML, with the corresponding number of deaths being 53,620, and the estimated DALYs standing at 990,656. Over the last 30 years, the incidence rate of AML in this age bracket increased by 1.67 per 100,000 people, the mortality rate rose by 1.57 per 100,000 people, and the rate of DALYs, indicative of disease burden, climbed by 1.42 per 100,000 people. High Socio-demographic Index (SDI) regions, particularly high-income North America and Australia, had the highest incidence rates. Germany had the highest incidence rate among the 204 countries analyzed, while Monaco reported the highest mortality and DALY rates. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were identified as significant risk factors associated with mortality from older people with AML in 2019. Conclusion Our study showed that the incidence, mortality, and DALY rates of AML in the older population were strongly correlated with the SDI, and these rates have been steadily increasing. This had become an increasingly serious global health issue, particularly in areas with a high SDI. We highlighted the urgency to focus more on this disease and called for the prompt implementation of appropriate preventive and control measures.
Collapse
Affiliation(s)
- Pengyin Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xinling Liu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yao Zhao
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuyuan Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiaxin Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haiying Wang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Lebon D, Collet L, Djordjevic S, Gomila C, Ouled‐Haddou H, Platon J, Demont Y, Marolleau J, Caulier A, Garçon L. PIEZO1 is essential for the survival and proliferation of acute myeloid leukemia cells. Cancer Med 2024; 13:e6984. [PMID: 38334477 PMCID: PMC10854442 DOI: 10.1002/cam4.6984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Leukemogenesis is a complex process that interconnects tumoral cells with their microenvironment, but the effect of mechanosensing in acute myeloid leukemia (AML) blasts is poorly known. PIEZO1 perceives and transmits the constraints of the environment to human cells by acting as a non-selective calcium channel, but very little is known about its role in leukemogenesis. RESULTS For the first time, we show that PIEZO1 is preferentially expressed in healthy hematopoietic stem and progenitor cells in human hematopoiesis, and globally overexpressed in AML cells. In AML subtypes, PIEZO1 expression associates with favorable outcomes as better overall (OS) and disease-free survival (DFS). If PIEZO1 is expressed and functional in THP1 leukemic myeloid cell line, its chemical activation doesn't impact the proliferation, differentiation, nor survival of cells. However, the downregulation of PIEZO1 expression dramatically reduces the proliferation and the survival of THP1 cells. We show that PIEZO1 knock-down blocks the cell cycle in G0/G1 phases of AML cells, impairs the DNA damage response pathways, and critically increases cell death by triggering extrinsic apoptosis pathways. CONCLUSIONS Altogether, our results reveal a new role for PIEZO1 mechanosensing in the survival and proliferation of leukemic blasts, which could pave the way for new therapeutic strategies to target AML cells.
Collapse
Affiliation(s)
- Delphine Lebon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | - Louison Collet
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | | | - Cathy Gomila
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | - Jessica Platon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Biologie, CHU Amiens‐PicardieAmiensFrance
| | - Jean‐Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Division of Hematology/Oncology Boston Children's HospitalBostonMassachusettsUSA
- Department of Medical and Population GeneticsThe Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Biologie, CHU Amiens‐PicardieAmiensFrance
| |
Collapse
|
7
|
Bennett J, Ishikawa C, Agarwal P, Yeung J, Sampson A, Uible E, Vick E, Bolanos LC, Hueneman K, Wunderlich M, Kolt A, Choi K, Volk A, Greis KD, Rosenbaum J, Hoyt SB, Thomas CJ, Starczynowski DT. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML. Blood 2023; 142:989-1007. [PMID: 37172199 PMCID: PMC10517216 DOI: 10.1182/blood.2022018718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Eric Vick
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Lyndsey C. Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | | | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Andrew Volk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | | | - Scott B. Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- University of Cincinnati Cancer Center, Cincinnati, OH
| |
Collapse
|
8
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
9
|
Kumar J, Patel S, Chang A, Mukherjee S, Small C, Gollapudi S, Butzmann A, Jangam D, Weinberg OK, George TI, Zehnder JL, Ohgami RS. Smoking status in acute myeloid leukemia is associated with worse overall survival and independent of prior nonhematopoietic malignancies, cytogenetic abnormalities, and WHO category. Hum Pathol 2023; 135:45-53. [PMID: 36921727 DOI: 10.1016/j.humpath.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with several patient- and disease-associated variables known to impact prognosis. Tobacco smoking is an environmental factor associated with a greater incidence of AML, but there have been limited studies that evaluated smoking toward overall survival. We retrospectively searched for AML cases and collected clinical and diagnostic data for each case. We also used an independent next-generation sequencing (NGS) data set to assess for a distinct mutational signature associated with smoking. When stratified by smoking status, there was a greater number of males, patients aged ≥60 years, and patients with ≥2 comorbidities within the smoking category (P < .05). Survival analysis demonstrated decreased survival probability in the smokers, male smokers, smokers with 1 other comorbidity, and smokers without a prior history of nonhematopoietic malignancy (P < .05) as compared to nonsmokers. Smoking was associated with a decrease in survival within the World Health Organization categories of AML, not otherwise specified (AML NOS; P = .035) and AML with recurrent genetic abnormalities (AML RGA; P = .002). Multivariate analysis showed that patients who were smokers had a greater hazard ratio than nonsmokers after adjusting for the other covariates. Our findings demonstrated that smoking was independently associated with decreased overall survival after adjusting for other potentially confounding factors. In addition, our results suggest that a mutational signature can be recognized using NGS data in a subset of AML patients who smoke.
Collapse
Affiliation(s)
- Jyoti Kumar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 United States.
| | - Samit Patel
- Department of Pharmacy, Stanford University School of Medicine, Stanford, CA, 94305 United States
| | - Abraham Chang
- Department of Pharmacy, Stanford University School of Medicine, Stanford, CA, 94305 United States
| | - Soham Mukherjee
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143 United States
| | - Corinn Small
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143 United States
| | - Sumanth Gollapudi
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143 United States
| | - Alexandra Butzmann
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143 United States
| | - Diwash Jangam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305 United States
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern, Dallas, TX, 75235 United States
| | - Tracy I George
- Department of Pathology, University of Utah Health, Salt Lake City, UT, 84132 United States
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305 United States
| | - Robert S Ohgami
- Department of Pathology, University of Utah Health, Salt Lake City, UT, 84132 United States
| |
Collapse
|
10
|
Austin RJ, Straube J, Halder R, Janardhanan Y, Bruedigam C, Witkowski M, Cooper L, Porter A, Braun M, Souza-Fonseca-Guimaraes F, Minnie SA, Cooper E, Jacquelin S, Song A, Bald T, Nakamura K, Hill GR, Aifantis I, Lane SW, Bywater MJ. Oncogenic drivers dictate immune control of acute myeloid leukemia. Nat Commun 2023; 14:2155. [PMID: 37059710 PMCID: PMC10104832 DOI: 10.1038/s41467-023-37592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.
Collapse
Affiliation(s)
- Rebecca J Austin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Rohit Halder
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Claudia Bruedigam
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Matthew Witkowski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Leanne Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Amy Porter
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Matthias Braun
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Simone A Minnie
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Emily Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Sebastien Jacquelin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Mater Research, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Axia Song
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Tobias Bald
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Institute of Experimental Oncology, University Hospital of Bonn, 53127, Bonn, Germany
| | - Kyohei Nakamura
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Geoffrey R Hill
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, 4029, Australia.
| | - Megan J Bywater
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Patel SB, Kuznetsova V, Matkins VR, Franceski AM, Bassal MA, Welner RS. Ex Vivo Expansion of Phenotypic and Transcriptomic Chronic Myeloid Leukemia Stem Cells. Exp Hematol 2022; 115:1-13. [PMID: 36115580 DOI: 10.1016/j.exphem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Despite decades of research, standard therapies remain ineffective for most leukemias, pushing toward an essential unmet need for targeted drug screens. Moreover, preclinical drug testing is an important consideration for success of clinical trials without affecting non-transformed stem cells. Using the transgenic chronic myeloid leukemia (CML) mouse model, we determine that leukemic stem cells (LSCs) are transcriptionally heterogenous with a preexistent drug-insensitive signature. To test targeting of potentially important pathways, we establish ex vivo expanded LSCs that have long-term engraftment and give rise to multilineage hematopoiesis. Expanded LSCs share transcriptomic signatures with primary LSCs including enrichment in Wnt, JAK-STAT, MAPK, mTOR and transforming growth factor β signaling pathways. Drug testing on expanded LSCs show that transforming growth factor β and Wnt inhibitors had significant effects on the viability of LSCs, but not leukemia-exposed healthy HSCs. This platform allows testing of multiple drugs at the same time to identify vulnerabilities of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL; Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Victoria R Matkins
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Alana M Franceski
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA; Cancer Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL.
| |
Collapse
|
14
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
15
|
Schnoeder TM, Schwarzer A, Jayavelu AK, Hsu CJ, Kirkpatrick J, Döhner K, Perner F, Eifert T, Huber N, Arreba-Tutusaus P, Dolnik A, Assi SA, Nafria M, Jiang L, Dai YT, Chen Z, Chen SJ, Kellaway SG, Ptasinska A, Ng ES, Stanley EG, Elefanty AG, Buschbeck M, Bierhoff H, Brodt S, Matziolis G, Fischer KD, Hochhaus A, Chen CW, Heidenreich O, Mann M, Lane SW, Bullinger L, Ori A, von Eyss B, Bonifer C, Heidel FH. PLCG1 is required for AML1-ETO leukemia stem cell self-renewal. Blood 2022; 139:1080-1097. [PMID: 34695195 PMCID: PMC8854675 DOI: 10.1182/blood.2021012778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.
Collapse
MESH Headings
- Animals
- Cell Self Renewal
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Proteome
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Transcriptome
- Translocation, Genetic
Collapse
Affiliation(s)
- Tina M Schnoeder
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Adrian Schwarzer
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, and
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Chen-Jen Hsu
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Perner
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA
| | - Theresa Eifert
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nicolas Huber
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Anna Dolnik
- Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Monica Nafria
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lu Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sophie G Kellaway
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | | | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, Jena, Germany
| | - Steffen Brodt
- University Hospital Jena, Orthopaedic Department at Campus Eisenberg, Eisenberg, Germany
| | - Georg Matziolis
- University Hospital Jena, Orthopaedic Department at Campus Eisenberg, Eisenberg, Germany
| | - Klaus-Dieter Fischer
- Institute for Cell Biology and Biochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Hochhaus
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, Germany
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands; and
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Steven W Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lars Bullinger
- Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Florian H Heidel
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, Germany
| |
Collapse
|
16
|
Ma XY, Wei L, Lei Z, Chen Y, Ding Z, Chen ZS. Recent progress on targeting leukemia stem cells. Drug Discov Today 2021; 26:1904-1913. [PMID: 34029689 DOI: 10.1016/j.drudis.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Leukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia. LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear to be common in most human leukemias. Therefore, the eradication of LSCs is an approach with the potential to improve survival or even to cure leukemia. Using recent research in the field of LSCs, we summarize the targeted therapy approaches for the removal of LSCs through surface markers including immune checkpoint molecules, pathways influencing LSC survival, or the survival microenvironment of LSCs. In addition, we introduce the survival microenvironment and survival regulation of LSCs.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, Shandong 250101, PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
17
|
Yi M, Li A, Zhou L, Chu Q, Song Y, Wu K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol 2020; 13:72. [PMID: 32513227 PMCID: PMC7282046 DOI: 10.1186/s13045-020-00908-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common leukemia subtype and has a poor prognosis. The risk of AML is highly related to age. In the context of population aging, a comprehensive report presenting epidemiological trends of AML is evaluable for policy-marker to allocate healthy resources. METHODS This study was based on the Global Burden of Disease 2017 database. We analyzed the change trends of incidence rate, death rate, and disability-adjusted life year (DALY) rate by calculating the corresponding estimated annual percentage change (EAPC) values. Besides, we investigated the influence of social development degree on AML's epidemiological trends and potential risk factors for AML-related mortality. RESULTS From 1990 to 2017, the incidence of AML gradually increased in the globe. Males and elder people had a higher possibility to develop AML. Developed countries tended to have higher age-standardized incidence rate and death rate than developing regions. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were the main risk factors for AML-related mortality. Notably, the contribution ratio of exposure to carcinogens was significantly increased in the low social-demographic index (SDI) region than in the high SDI region. CONCLUSION Generally, the burden of AML became heavier during the past 28 years which might need more health resources to resolve this population aging-associated problem. In the present stage, developed countries with high SDI had the most AML incidences and deaths. At the same time, developing countries with middle- or low-middle SDI also need to take actions to relieve rapidly increased AML burden.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
18
|
Butt E, Stempfle K, Lister L, Wolf F, Kraft M, Herrmann AB, Viciano CP, Weber C, Hochhaus A, Ernst T, Hoffmann C, Zernecke A, Frietsch JJ. Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia. Cells 2020; 9:cells9020444. [PMID: 32075106 PMCID: PMC7072741 DOI: 10.3390/cells9020444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival. While in chronic myeloid leukemia (CML) the CXCR4 is downregulated, thereby promoting the mobilization of progenitor cells into blood, the receptor is highly expressed in breast cancer cells, favoring the migratory capacity of these cells. Recently, the LIM and SH3 domain protein 1 (LASP1) has been described as a novel CXCR4 binding partner and as a promoter of the PI3K/AKT pathway. In this study, we uncovered a direct binding of LASP1, phosphorylated at S146, to both CXCR4 and AKT1, as shown by immunoprecipitation assays, pull-down experiments, and immunohistochemistry data. In contrast, phosphorylation of LASP1 at Y171 abrogated these interactions, suggesting that both LASP1 phospho-forms interact. Finally, findings demonstrating different phosphorylation patterns of LASP1 in breast cancer and chronic myeloid leukemia may have implications for CXCR4 function and tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Katrin Stempfle
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Lorenz Lister
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Felix Wolf
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
- Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Marcella Kraft
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Andreas B Herrmann
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Cristina Perpina Viciano
- Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 5, 97080 Wuerzburg, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, 80336 Munich, Germany
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, 6229 ER Maastricht, The Netherlands
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Carsten Hoffmann
- Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 5, 97080 Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
19
|
Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H, Wei M, Chen X, Qin W, Yang G, Liu L. Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl Microbiol Biotechnol 2019; 103:9569-9582. [PMID: 31701195 DOI: 10.1007/s00253-019-10127-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/27/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
Imatinib resistance remains the biggest hurdle for the treatment of chronic myeloid leukemia (CML), with the underlying mechanisms not fully understood. In this study, we found that miR328 significantly and strikingly decreased among other miRNA candidates during the induction of imatinib resistance. Overexpression of miR328 sensitized resistant cells to imatinib via post-transcriptionally decreasing ABCG2 expression, while miR328 knockdown conferred imatinib resistance in parental K562 cells. Moreover, miR328 was found selectively degraded in the lysosomes of K562R cells, as inhibition of lysosome with chloroquine restored miR328 expression and increased sensitivity to imatinib. Moreover, delivery of alkalized exosomes increased endogenous miR328 expression. Compared with the corresponding controls, the alkalized exosomes with or without miR328 sensitized the chronic leukemia cells to imatinib. Taken together, our study has revealed that lysosomal clearance of miR328 in imatinib-resistant cells at least partially contributes to the drug resistance, while delivery of alkalized exosomes would sensitize the chromic leukemia cells to imatinib.
Collapse
Affiliation(s)
- Yan Dong
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Yao Lin
- Department of Stomatology, the Second Affiliated hospital, Shantou University Medical College, Shantou, China
| | - Xiaotong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Yingxin Zhao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Haotian Wang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Mengying Wei
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Changlexi Road NO.169th, Xi'an, 710032, China
| | - Xutao Chen
- Department of Implantation, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Weiwei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Changlexi Road NO.169th, Xi'an, 710032, China.
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road NO. 569th, Xi'an, 710038, China.
| |
Collapse
|
20
|
Ikumawoyi VO, Awodele O, Agbaje EO, Alimba CG, Bakare AA, Akinloye O. Bioactivity and modulatory functions of Napoleona vogelii on oxidative stress-induced micronuclei and apoptotic biomarkers in mice. Toxicol Rep 2019; 6:963-974. [PMID: 31673498 PMCID: PMC6816133 DOI: 10.1016/j.toxrep.2019.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
Napoleona vogelii is used in traditional medicine for the management of pain, inflammatory conditions and cancer. This study was conducted to investigate the modulatory mechanisms of methanol stem bark extract of N. vogelii on induction of micronuclei, apoptotic biomarkers and in vivo antioxidant enzymes in mice. Forty male albino mice were randomly divided into eight groups (n = 5) and were administered distilled water (DW, 5 mL/kg) as negative control, 100, 200 or 400 mg/kg of the extract respectively for 28 days before the injection of cyclophosphamide (CP, 40 mg/kg) i.p. on the 28th day. The remaining groups were administered 100, 200 or 400 mg/kg of the extract only for 28 days. Twenty four hours after injection of CP or administration of the last dose of extract, animals were euthanized by cervical dislocation and blood samples collected for determination of in vivo antioxidants, the spleen harvested for immunohistochemical expression of NFκB, Bcl-2, Bax and p53. Bone marrow smears were also made for the micronucleus assay. Treatment with the extract resulted in a significant (p < 0.0001) reduction in frequency of micronucleated polychromatic erythrocytes (MNPCEs) compared to CP exposed control conferring protection of 75.09, 94.74 and 96.84% at 100, 200 or 400 mg/kg respectively. In extract and CP exposed animals, there were significant (p < 0.05) increases in GSH, GST and SOD with a corresponding significant (p < 0.05) reduction in MDA. In addition, the extract significantly downregulated cytoplasmic levels of NFκB and Bcl-2 and upregulated Bax and p53. These findings demonstrate that N. vogelli may serve as an interesting lead for chemo-preventive drug development.
Collapse
Affiliation(s)
- Victor Olabowale Ikumawoyi
- Department of Pharmacology Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-Araba, Lagos, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-Araba, Lagos, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-Araba, Lagos, Nigeria
| | - Chibuisi Gideon Alimba
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Science, University of Ibadan, Nigeria
| | - Adekunle Akeem Bakare
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Science, University of Ibadan, Nigeria
| | - Oluyemi Akinloye
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
21
|
Ahmed ESA, Ahmed NH, Medhat AM, Said UZ, Rashed LA, Abdel Ghaffar ARB. Mesenchymal stem cells targeting PI3K/AKT pathway in leukemic model. Tumour Biol 2019; 41:1010428319846803. [PMID: 31018830 DOI: 10.1177/1010428319846803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells have therapeutic properties that are related to their potentials for trans-differentiation, immunomodulation, anti-inflammatory, inhibitory effect on tumor proliferation, and induction of apoptosis. This study was performed to analyze the role of mesenchymal stem cells as an alternative for cellular signaling growth factors involved in the pathogenesis of leukemogenesis in rats. Treatment of rats with 7,12-dimethyl benz [a] anthracene induced leukemogenesis appeared as a significant decrease in hematological parameters with concomitant significant increase in bone marrow oxidative and inflammatory indices (transforming growth factor beta and interleukin-6) in comparison with normal groups. On the contrary, Western immunoblotting showed a significant increase in the signaling growth factors: PI3K, AKT, mTOR proteins and a significant decrease in PTEN in 7,12-dimethyl benz [a] anthracene-treated group. In addition, a significant increase in the transcript levels of B cell lymphoma-2 protein gene in the 7,12-dimethyl benz [a] anthracene group, while that of C-X-C motif chemokine receptor-4 and B cell lymphoma-2 protein associated x-protein were significantly downregulated compared to controls. Meanwhile, therapeutic mesenchymal stem cells treatment predict a significant improvement versus 7,12-dimethyl benz [a] anthracene group through the modulation of growth factors that confront bone marrow dysplasia. In the same direction treatment of 7,12-dimethyl benz [a] anthracene group with mesenchymal stem cells, it induced apoptosis and increased the homing efficacy to bone marrow. In conclusion, mesenchymal stem cells improve hematopoiesis and alleviate inflammation, and modulated PI3K/AKT signaling pathway contributed to experimental leukemogenesis.
Collapse
Affiliation(s)
- Esraa S A Ahmed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Neamat H Ahmed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Amina M Medhat
- 2 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ussama Z Said
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Laila A Rashed
- 3 Biochemistry & Molecular Biology Department, Medicine Faculty, Cairo University, Cairo, Egypt
| | | |
Collapse
|
22
|
Abstract
For several decades, few substantial therapeutic advances have been made for patients with acute myeloid leukaemia. However, since 2017 unprecedented growth has been seen in the number of drugs available for the treatment of acute myeloid leukaemia, with several new drugs receiving regulatory approval. In addition to advancing our therapeutic armamentarium, an increased understanding of the biology and genomic architecture of acute myeloid leukaemia has led to refined risk assessment of this disease, with consensus risk stratification guidelines now incorporating a growing number of recurrent molecular aberrations that aid in the selection of risk-adapted management strategies. Despite this promising recent progress, the outcomes of patients with acute myeloid leukaemia remain unsatisfactory, with more than half of patients ultimately dying from their disease. Enrolment of patients into clinical trials that evaluate novel drugs and rational combination therapies is imperative to continuing this progress and further improving the outcomes of patients with acute myeloid leukaemia.
Collapse
MESH Headings
- Aminoglycosides/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Consolidation Chemotherapy
- Cytarabine/administration & dosage
- Gemtuzumab
- Genomics
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Patient Selection
- Recurrence
- Remission Induction
- Risk Assessment
- Risk Factors
- Staurosporine/analogs & derivatives
- Staurosporine/therapeutic use
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Rytting
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Salemi M, Mohammadi S, Ghavamzadeh A, Nikbakht M. Anti-Vascular Endothelial Growth Factor Targeting by Curcumin and Thalidomide in Acute Myeloid Leukemia Cells. Asian Pac J Cancer Prev 2017; 18:3055-3061. [PMID: 29172279 PMCID: PMC5773791 DOI: 10.22034/apjcp.2017.18.11.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukemias (AMLs) are blood disorders that exhibit uncontrolled growth and reduction of apoptosis rates. As with other malignancies, progression may be result of induction and formation of new blood vessels influenced by disease conditions. Cancer cells produce a variety of factors which play important roles in angiogenesis. Vascular endothelial growth factor (VEGF) is critical for many malignancies, including AMLs. Curcumin, as a natural compound, is able to enhance apoptosis via a mechanism affecting regulatory genes. As a new strategy we here evaluated anti-VEGF properties of curcumin, alone and in combination with thalidomide, in leukemic cell lines. Growth inhibitory effects were assessed by MTT assay and apoptosis was detected by annexin/PI staining in U937 and KG-1 cell lines. mRNA expression levels of VEGF isoforms were evaluated by qRT-PCR. Curcumin inhibited proliferation and induced apoptosis in both KG-1 and U937 cells and this effect was stronger in combination with thalidomide. In KG-1 cells, the level of VEGF (A, B, C and D) mRNA was decreased in curcumin-treated as compared to untreated cells. Maximum effects were obtained at the concentration of 40 μM curcumin in U937 cells. Taken together, the results indicate that the VEGF autocrine loop may have an impact on AML development and progression and could be considered as a therapeutic target. Thalidomide as a VEGF inhibitor in combination with curcumin appears to have a synergistic impact on inhibition of cell proliferation and promotion of apoptosis.
Collapse
Affiliation(s)
- Mahdieh Salemi
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| | | | | | | |
Collapse
|
24
|
Jackson JT, Shields BJ, Shi W, Di Rago L, Metcalf D, Nicola NA, McCormack MP. Hhex Regulates Hematopoietic Stem Cell Self-Renewal and Stress Hematopoiesis via Repression of Cdkn2a. Stem Cells 2017; 35:1948-1957. [PMID: 28577303 DOI: 10.1002/stem.2648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
The hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation, due to a failure of progenitor expansion. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature progenitors. Transcriptome analysis of Hhex-null Lin- Sca+ Kit+ cells showed that Hhex deletion leads to derepression of polycomb repressive complex 2 (PRC2) and PRC1 target genes, including the Cdkn2a locus encoding the tumor suppressors p16Ink 4a and p19Arf . Indeed, loss of Cdkn2a restored the capacity of Hhex-null blast colonies to generate myeloid progenitors in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to promote PRC2-mediated Cdkn2a repression to enable continued self-renewal and response to hematopoietic stress. Stem Cells 2017;35:1948-1957.
Collapse
Affiliation(s)
- Jacob T Jackson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Benjamin J Shields
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Departments of Medical Biology
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medical Biology
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medical Biology
| | - Matthew P McCormack
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Departments of Medical Biology
| |
Collapse
|
25
|
Porter AH, Leveque-El Mouttie L, Vu T, Bruedigam C, Sutton J, Jacquelin S, Hill GR, MacDonald KPA, Lane SW. Acute myeloid leukemia stem cell function is preserved in the absence of autophagy. Haematologica 2017; 102:e344-e347. [PMID: 28550181 DOI: 10.3324/haematol.2017.166389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amy H Porter
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Lucie Leveque-El Mouttie
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Therese Vu
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia.,School of Medicine, University of Queensland, Australia
| | - Claudia Bruedigam
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Joanne Sutton
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Sebastien Jacquelin
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Geoffrey R Hill
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia.,School of Medicine, University of Queensland, Australia.,Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia
| | - Steven W Lane
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston Rd, Brisbane, Australia .,School of Medicine, University of Queensland, Australia.,Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
26
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
27
|
CML Mouse Model Generated from Leukemia Stem Cells. Methods Mol Biol 2016. [PMID: 27581136 DOI: 10.1007/978-1-4939-4011-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity.
Collapse
|
28
|
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016; 103:62-77. [DOI: 10.1016/j.critrevonc.2016.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/13/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
|
29
|
Hu Y, Li S. Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73:1039-50. [PMID: 26686687 PMCID: PMC11108378 DOI: 10.1007/s00018-015-2108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss.
Collapse
Affiliation(s)
- Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, The Third Part Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia. Stem Cells Int 2016; 2016:7625827. [PMID: 26880987 PMCID: PMC4737463 DOI: 10.1155/2016/7625827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease.
Collapse
|
31
|
Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, Austin R, Vu T, Lee E, Riyat S, Moore AS, Lock RB, Bullinger L, Hill GR, Armstrong SA, Williams DA, Lane SW. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell 2015; 15:775-90. [PMID: 25479751 DOI: 10.1016/j.stem.2014.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 08/01/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Frederik O Bagger
- The Finsen Laboratory, Bioinformatics Centre, Department of Biology, and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 1165 Copenhagen, Denmark
| | - Florian H Heidel
- Department of Hematology and Oncology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Catherine Paine Kuhn
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Solene Guignes
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Axia Song
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Rebecca Austin
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Therese Vu
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Erwin Lee
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarbjit Riyat
- Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Andrew S Moore
- Queensland Children's Medical Research Institute, Brisbane, QLD 4029, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lars Bullinger
- Department of Hematology and Oncology, University Hospital Ulm, 89081 Ulm, Germany
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Armstrong
- Department of Pediatrics, Memorial Sloan Kettering Leukemia Center, New York, NY 10065, USA
| | - David A Williams
- Division of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica 2015; 99:1277-84. [PMID: 25082785 DOI: 10.3324/haematol.2013.085209] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite an increasingly rich understanding of its pathogenesis, acute myeloid leukemia remains a disease with poor outcomes, overwhelmingly due to disease relapse. In recent years, work to characterize the leukemia stem cell population, the disease compartment most difficult to eliminate with conventional therapy and most responsible for relapse, has been undertaken. This, in conjunction with advances in drug development that have allowed for increasingly targeted therapies to be engineered, raises the hope that we are entering an era in which the leukemia stem cell population can be eliminated, resulting in therapeutic cures for acute myeloid leukemia patients. For these therapies to become available, they must be tested in the setting of clinical trials. A long-established clinical trials infrastructure has been employed to shepherd new therapies from proof-of-concept to approval. However, due to the unique features of leukemia stem cells, drugs that are designed to specifically eliminate this population may not be adequately tested when applied to this model. Therefore, in this review article, we seek to identify the relevant features of acute myeloid leukemia stem cells for clinical trialists, discuss potential strategies to target leukemia stem cells, and propose a set of guidelines outlining the necessary elements of clinical trials to allow for the successful testing of stem cell-directed therapies.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Jonathan A Gutman
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
33
|
Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, Austin R, Vu T, Lee E, Riyat S, Moore AS, Lock RB, Bullinger L, Hill GR, Armstrong SA, Williams DA, Lane SW. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell 2014. [PMID: 25479751 DOI: 10.1016/j.stem.2014.11.010.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Frederik O Bagger
- The Finsen Laboratory, Bioinformatics Centre, Department of Biology, and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 1165 Copenhagen, Denmark
| | - Florian H Heidel
- Department of Hematology and Oncology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Catherine Paine Kuhn
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Solene Guignes
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Axia Song
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Rebecca Austin
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Therese Vu
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Erwin Lee
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarbjit Riyat
- Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Andrew S Moore
- Queensland Children's Medical Research Institute, Brisbane, QLD 4029, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lars Bullinger
- Department of Hematology and Oncology, University Hospital Ulm, 89081 Ulm, Germany
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Armstrong
- Department of Pediatrics, Memorial Sloan Kettering Leukemia Center, New York, NY 10065, USA
| | - David A Williams
- Division of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
34
|
Heterogeneity of clonal expansion and maturation-linked mutation acquisition in hematopoietic progenitors in human acute myeloid leukemia. Leukemia 2014; 28:1969-77. [PMID: 24721792 DOI: 10.1038/leu.2014.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/21/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML), but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34(+)/CD33(-) cells revealed polyclonal growth in highly curable AMLs, suggesting that mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34(+)/CD33(-) cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications.
Collapse
|
35
|
Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci U S A 2014; 111:E880-7. [PMID: 24501127 DOI: 10.1073/pnas.1324267111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states.
Collapse
|
36
|
Pirnes-Karhu S, Mäntymaa P, Sironen R, Mäkinen PI, Wojciechowski S, Juutinen S, Koistinaho J, Hörkkö S, Jantunen E, Alhonen L, Uimari A. Enhanced polyamine catabolism disturbs hematopoietic lineage commitment and leads to a myeloproliferative disease in mice overexpressing spermidine/spermine N¹-acetyltransferase. Amino Acids 2013; 46:689-700. [PMID: 23836421 DOI: 10.1007/s00726-013-1546-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
Abstract
Spermidine/spermine N(1)-acetyltransferase (SSAT) regulates intracellular polyamine levels by catabolizing spermidine and spermine which are essential for cell proliferation and differentiation. Hematological characterization of SSAT overexpressing mice (SSAT mice) revealed enhanced myelopoiesis and thrombocytopoiesis leading to increased amounts of myeloid cells in bone marrow, peripheral blood, and spleen compared to wild-type animals. The level of SSAT activity in the bone marrow cells was associated with the bone marrow cellularity and spleen weight which both were significantly increased in SSAT mice. The result of bone marrow transplantations indicated that both the intrinsic SSAT overexpression of bone marrow cells and bone marrow microenvironment had an impact on the observed hematopoietic phenotype. The Lineage-negative Sca-1(+) c-Kit(+) hematopoietic stem cell (HSC) compartment in SSAT mice, showed enhanced proliferation, increased proportion of long-term HSCs and affected expression of transcription factors associated with lineage priming and myeloid differentiation. The proportions of common myeloid and megakaryocytic/erythroid progenitors were decreased and the proportion of granulocyte-macrophage progenitors was increased in SSAT bone marrow. The data suggest that SSAT overexpression and the concomitantly accelerated polyamine metabolism in hematopoietic cells and bone marrow microenvironment affect lineage commitment and lead to the development of a mouse myeloproliferative disease in SSAT mice.
Collapse
Affiliation(s)
- Sini Pirnes-Karhu
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cowan AJ, Laszlo GS, Estey EH, Walter RB. Antibody-based therapy of acute myeloid leukemia with gemtuzumab ozogamicin. Front Biosci (Landmark Ed) 2013; 18:1311-34. [PMID: 23747885 DOI: 10.2741/4181] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibodies have created high expectations for effective yet tolerated therapeutics in acute myeloid leukemia (AML). Hitherto the most exploited target is CD33, a myeloid differentiation antigen found on AML blasts in most patients and, perhaps, leukemic stem cells in some. Treatment efforts have focused on conjugated antibodies, particularly gemtuzumab ozogamicin (GO), an anti-CD33 antibody carrying a toxic calicheamicin-g 1 derivative that, after intracellular hydrolytic release, induces DNA strand breaks, apoptosis, and cell death. Serving as paradigm for this strategy, GO was the first anti-cancer immunoconjugate to obtain regulatory approval in the U.S. While efficacious as monotherapy in acute promyelocytic leukemia (APL), GO alone induces remissions in less than 25-35% of non-APL AML patients. However, emerging data from well controlled trials now indicate that GO improves survival for many non-APL AML patients, supporting the conclusion that CD33 is a clinically relevant target for some disease subsets. It is thus unfortunate that GO has become unavailable in many parts of the world, and the drug's usefulness should be reconsidered and selected patients granted access to this immunoconjugate.
Collapse
Affiliation(s)
- Andrew J Cowan
- Hematology/Oncology Fellowship Program, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
38
|
Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood 2013; 121:3692-702. [PMID: 23487027 DOI: 10.1182/blood-2012-05-432989] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNα on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNα treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNα treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNα on Jak2V617F mutant and normal hematopoiesis and suggest that IFNα achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNα and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy.
Collapse
|
39
|
Brown G, Hughes PJ, Ceredig R. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile? Crit Rev Clin Lab Sci 2012; 49:232-40. [PMID: 23153117 DOI: 10.3109/10408363.2012.742487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
40
|
Burnett AK, Russell NH, Hills RK, Kell J, Freeman S, Kjeldsen L, Hunter AE, Yin J, Craddock CF, Dufva IH, Wheatley K, Milligan D. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol 2012; 30:3924-31. [PMID: 22851554 DOI: 10.1200/jco.2012.42.2964] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE There has been little survival improvement in older patients with acute myeloid leukemia (AML) in the last two decades. Improving induction treatment may improve the rate and quality of remission and consequently survival. In our previous trial, in younger patients, we showed improved survival for the majority of patients when adding gemtuzumab ozogamicin (GO) to induction chemotherapy. PATIENTS AND METHODS Untreated patients with AML or high-risk myelodysplastic syndrome (median age, 67 years; range, 51 to 84 years) were randomly assigned to receive induction chemotherapy with either daunorubicin/ara-C or daunorubicin/clofarabine, with (n = 559) or without (n = 556) GO 3 mg/m(2) on day 1 of course one of therapy. The primary end point was overall survival (OS). RESULTS The overall response rate was 69% (complete remission [CR], 60%; CR with incomplete recovery [CRi], 9%), with no difference between GO (70%) and no GO (68%) arms. There was no difference in 30- or 60-day mortality and no major increase in toxicity with GO. With median follow-up of 30 months (range, 5.5 to 54.6 months), 3-year cumulative incidence of relapse was significantly lower with GO (68% v 76%; hazard ratio [HR], 0.78; 95% CI, 0.66 to 0.93; P = .007), and 3-year survival was significantly better (25% v 20%; HR, 0.87; 95% CI, 0.76 to 1.00; P = .05). The benefit was apparent across subgroups. There was no interaction with other treatment interventions. A meta-analysis of 2,228 patients in two United Kingdom National Cancer Research Institute trials showed significant improvements in relapse (HR, 0.82; 95% CI, 0.72 to 0.93; P = .002) and OS (HR, 0.88; 95% CI, 0.79 to 0.98; P = .02). CONCLUSION Adding GO (3 mg/m(2)) to induction chemotherapy reduces relapse risk and improves survival with little increase in toxicity.
Collapse
Affiliation(s)
- Alan K Burnett
- FMedSci, Department of Haematology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Genome-wide profiling reveals transcriptional repression of MYC as a core component of NR4A tumor suppression in acute myeloid leukemia. Oncogenesis 2012; 1:e19. [PMID: 23552735 PMCID: PMC3412651 DOI: 10.1038/oncsis.2012.19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemias (AMLs) are a heterogeneous group of diseases that are sustained by relatively rare leukemia-initiating cells (LICs) that exhibit diverse genetic and phenotypic properties. AML heterogeneity presents a major challenge to development of targeted therapies, and effective treatment will require targeting of common molecular drivers of AML maintenance. The orphan nuclear receptors NR4A1 and NR4A3 are potent tumor suppressors of AML. They are silenced in all human AML LICs, irrespective of patient cytogenetics, and their deletion in mice leads to postnatal AML development. In the current report, we address the tumor-suppressive mechanisms and therapeutic potential of NR4As for AML intervention. We show that rescue of either NR4A1 or NR4A3 inhibits the leukemogenicity of AML cells in vivo and reprograms a subset of gene signatures that distinguish primary human LICs from normal hematopoietic stem cells (HSCs), irrespective of subtype. Central to NR4A reprogramming is the acute suppression of an LIC submodule that includes the transcriptional repression of MYC. Additionally, we show that upregulation of MYC is an acute preleukemic consequence of NR4A deletion and that MYC suppression functionally contributes to NR4A antileukemic effects. Collectively, these results identify NR4As as novel targets for AML therapeutic intervention and reveal molecular targets of NR4A tumor suppression, including the suppression of MYC.
Collapse
|
42
|
Abstract
Although the identification of cancer stem cells as therapeutic targets is now actively being pursued in many human malignancies, the leukemic stem cells in acute myeloid leukemia (AML) are a paradigm of such a strategy. Heterogeneity of these cells was suggested by clonal analyses indicating the existence of both leukemias resulting from transformed multipotent CD33(-) stem cells as well others arising from, or predominantly involving, committed CD33(+) myeloid precursors. The latter leukemias, which may be associated with an intrinsically better prognosis, offer a particularly attractive target for stem cell-directed therapies. Targeting the CD33 differentiation antigen with gemtuzumab ozogamicin was the first attempt of such an approach. Emerging clinical data indicate that gemtuzumab ozogamicin is efficacious not only for acute promyelocytic leukemia but, in combination with conventional chemotherapy, also for other favorable- and intermediate-risk AMLs, providing the first proof-of-principle evidence for the validity of this strategy. Herein, we review studies on the nature of stem cells in AML, discuss clinical data on the effectiveness of CD33-directed therapy, and consider the mechanistic basis for success and failure in various AML subsets.
Collapse
|
43
|
Pietras EM, Warr MR, Passegué E. Cell cycle regulation in hematopoietic stem cells. ACTA ACUST UNITED AC 2012; 195:709-20. [PMID: 22123859 PMCID: PMC3257565 DOI: 10.1083/jcb.201102131] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.
Collapse
Affiliation(s)
- Eric M Pietras
- Department of Medicine, Division of Hematology/Oncology, The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
44
|
Facompre N, Nakagawa H, Herlyn M, Basu D. Stem-like cells and therapy resistance in squamous cell carcinomas. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:235-65. [PMID: 22959028 DOI: 10.1016/b978-0-12-397927-8.00008-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) within squamous cell carcinomas (SCCs) are hypothesized to contribute to chemotherapy and radiation resistance and represent potentially useful pharmacologic targets. Hallmarks of the stem cell phenotype that may contribute to therapy resistance of CSCs include quiescence, evasion of apoptosis, resistance to DNA damage, and expression of drug transporter pumps. A variety of CSC populations within SCCs of the head and neck and esophagus have been defined tentatively, based on diverse surface markers and functional assays. Stem-like self-renewal and differentiation capacities of these SCC subpopulations are supported by sphere formation and clonogenicity assays in vitro as well as limiting dilution studies in xenograft models. Early evidence supports a role for SCC CSCs in intrinsic therapy resistance, while detailed mechanisms by which these subpopulations evade treatment remain to be defined. Development of novel SCC therapies will be aided by pursuing such mechanisms as well as refining current definitions for CSCs and clarifying their relevance to hierarchical versus dynamic models of stemness.
Collapse
Affiliation(s)
- Nicole Facompre
- Department of Otorhinolaryngology--Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA; The Wistar Institute, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
45
|
Brown G, Hughes PJ, Ceredig R, Michell RH. Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leuk Res 2012; 36:14-22. [DOI: 10.1016/j.leukres.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 12/11/2022]
|
46
|
Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 2011; 118:2849-56. [PMID: 21765021 DOI: 10.1182/blood-2011-03-345165] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) engage in complex bidirectional signals with the hematopoietic microenvironment (HM), and there is emerging evidence that leukemia stem cells (LSCs) may use similar interactions. Using a syngeneic retroviral model of MLL-AF9 induced acute myeloid leukemia (AML), we have identified 2 different stages of leukemia progression, propagated by "pre-LSCs" and established leukemia (LSCs) and compared the homing properties of these distinctive entities to that of normal HSCs. The homing and microlocalization of pre-LSCs was most similar to long-term HSCs and was dependent on cell-intrinsic Wnt signaling. In contrast, the homing of established LSCs was most similar to that of committed myeloid progenitors and distinct from HSCs. Although osteoblast-derived Dickkopf-1, a potent Wnt inhibitor known to impair HSC function, dramatically impaired normal HSC localization within the bone marrow, it did not affect pre-LSCs, LSC homing, or AML development. Mechanistically, cell-intrinsic Wnt activation was observed in human and murine AML samples, explaining the independence of MLL-AF9 LSCs from niche-derived Wnt signals. These data identify differential engagement of HM associated with leukemic progression and identify an LSC niche that is physically distinct and independent of the constraints of Wnt signaling that apply to normal HSCs.
Collapse
|
47
|
Reddy RM, Kakarala M, Wicha MS. Clinical trial design for testing the stem cell model for the prevention and treatment of cancer. Cancers (Basel) 2011; 3:2696-708. [PMID: 24212828 PMCID: PMC3757438 DOI: 10.3390/cancers3022696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022] Open
Abstract
The cancer stem cell model introduces new strategies for the prevention and treatment of cancers. In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size. These new approaches mandate a change in the design of clinical trials and biomarkers chosen for efficacy assessment for preventative, neoadjuvant, adjuvant, and palliative treatments. Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in “complete” or “partial” responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples.
Collapse
Affiliation(s)
- Rishindra M. Reddy
- Medical Center, University of Michigan, 1500 E. Medical Center Drive, 2120 Taubman Center, Ann Arbor, MI 48109, USA
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1-734-763-7337; Fax: +1-734-615-2656
| | - Madhuri Kakarala
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; E-Mails: (M.K.); (M.S.W.)
| | - Max S. Wicha
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; E-Mails: (M.K.); (M.S.W.)
| |
Collapse
|
48
|
Stiehl T, Marciniak-Czochra A. Characterization of stem cells using mathematical models of multistage cell lineages. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2010.03.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Brown G, Hughes PJ, Michell RH, Ceredig R. The versatility of haematopoietic stem cells: implications for leukaemia. Crit Rev Clin Lab Sci 2010; 47:171-80. [DOI: 10.3109/10408363.2010.530150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | |
Collapse
|
50
|
|