1
|
Suspène R, Raymond KA, Guardado-Calvo P, Dairou J, Bonhomme F, Bonenfant C, Guyetant S, Lecomte T, Pagès JC, Vartanian JP. Disruption of deoxyribonucleotide triphosphate biosynthesis leads to RAS proto-oncogene activation and perturbation of mitochondrial metabolism. J Biol Chem 2024:108117. [PMID: 39722416 DOI: 10.1016/j.jbc.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG->TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | - Kyle A Raymond
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France; Sorbonne Université, Complexité du Vivant, ED515, Paris, France
| | - Pablo Guardado-Calvo
- Structural Biology of Infectious Diseases, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, 75006 Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology Unit, UMR CNRS 3523, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | - Christine Bonenfant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, avenue de la République, Chambray-lès-Tours, France
| | - Serge Guyetant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, avenue de la République, Chambray-lès-Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, N2COx "Niche, Nutrition, Cancer and Oxidative Metabolism", Université de Tours, Tours, France; Service de gastroentérologie, CHRU de Tours Hôpital Trousseau, avenue de la République, Chambray-lès-Tours, France
| | - Jean-Christophe Pagès
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, INSERM U1301, UMR CNRS 5070, Université de Toulouse, Toulouse, France; CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France.
| |
Collapse
|
2
|
Komza M, Khatun J, Gelles JD, Trotta AP, Abraham-Enachescu I, Henao J, Elsaadi A, Kotini AG, Clementelli C, Arandela J, El Ghaity-Beckley S, Barua A, Chen Y, Marcellino BK, Papapetrou EP, Poyurovsky MV, Chipuk JE. Metabolic Adaptations To Acute Glucose Uptake Inhibition Converge Upon Mitochondrial Respiration For Leukemia Cell Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624567. [PMID: 39713344 PMCID: PMC11661232 DOI: 10.1101/2024.11.20.624567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems. Our results reveal that while several metabolic adaptations occur in response to acute glucose uptake inhibition, the most critical is increased mitochondrial oxidative phosphorylation. KL-11743 treatment efficiently blocks the majority of glucose uptake and glycolysis, yet markedly increases mitochondrial respiration via enhanced Complex I function. Compared to partial glucose uptake inhibition, dependency on mitochondrial respiration is less apparent suggesting robust blockage of glucose uptake is essential to create a metabolic vulnerability. When wild-type and oncogenic RAS patient-derived induced pluripotent stem cell acute myeloid leukemia (AML) models were examined, KL-11743 mediated induction of mitochondrial respiration and dependency for survival associated with oncogenic RAS. Furthermore, we examined the therapeutic potential of these observations by treating a cohort of primary AML patient samples with KL-11743 and witnessed similar dependency on mitochondrial respiration for sustained cellular survival. Together, these data highlight conserved adaptations to acute glucose uptake inhibition in diverse leukemic models and AML patient samples, and position mitochondrial respiration as a key determinant of treatment success.
Collapse
|
3
|
Nigam A, Krishnamoorthy GP, Chatila WK, Berman K, Saqcena M, Walch H, Venkatramani M, Ho AL, Schultz N, Fagin JA, Untch BR. Cooperative genomic lesions in HRAS-mutant cancers predict resistance to farnesyltransferase inhibitors. Oncogene 2024; 43:2806-2819. [PMID: 39152269 DOI: 10.1038/s41388-024-03095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024]
Abstract
In the clinical development of farnesyltransferase inhibitors (FTIs) for HRAS-mutant tumors, responses varied by cancer type. Co-occurring mutations may affect responses. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and to study their effect on sensitivity to FTIs. Using targeted sequencing data from the MSK-IMPACT and Dana-Farber Cancer Institute Genomic Evidence Neoplasia Information Exchange databases, we identified comutations that were observed predominantly in HRAS-mutant versus KRAS-mutant or NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of coaltered mutations (48.8%) in the MAPK, PI3K, or RTK pathway genes, compared with KRAS-mutant (41.4%) and NRAS-mutant (38.4%) cancers (p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effects of comutations on sensitivity to FTIs, HrasG13R was transfected into "RASless" (Kraslox/lox/Hras-/-/Nras-/-/RERTert/ert) mouse embryonic fibroblasts (MEFs), which sensitized nontransfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion and Pik3caH1047R transduction led to resistance to tipifarnib in HrasG13R-transfected MEFs in the presence or absence of KrasWT, whereas BrafG466E transduction led to resistance to tipifarnib only in the presence of KrasWT. Combined treatment with tipifarnib and MEK inhibition sensitized cells to tipifarnib in all settings, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage-dependent MAPK or PI3K pathway alterations, which confer resistance to tipifarnib. The combined use of FTIs and MEK inhibition is a promising strategy for HRAS-mutant tumors.
Collapse
Affiliation(s)
- Aradhya Nigam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandakini Venkatramani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Lin X, Dong L, Miao Q, Huang Z, Wang F. Cycloheptylprodigiosin from marine bacterium Spartinivicinus ruber MCCC 1K03745 T induces a novel form of cell death characterized by Golgi disruption and enhanced secretion of cathepsin D in non-small cell lung cancer cell lines. Eur J Pharmacol 2024; 974:176608. [PMID: 38663542 DOI: 10.1016/j.ejphar.2024.176608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Prodiginines have been studied extensively for their anticancer activity, however, the majority of the research has focused on prodigiosin. In this study, cycloheptylprodigiosin (S-1) is extracted from marine bacterium Spartinivicinus ruber MCCC 1K03745T, and its anticancer property was investigated. It exhibits remarkable cytotoxicity against a panel of human lung cancer cell lines, with the IC50 values ranging from 84.89 nM to 661.2 nM. After 6 h of treatment, S-1 gradually accumulates on mitochondria and lysosomes. While lower doses of S-1 induce cell cycle arrest, treatment with higher doses results in cell death in apoptotic independent manner in both NCI-H1299 and NCI-H460 cell lines. Interestingly, treatment with S-1 leads to the accumulation of LC3B-II via pathways that vary among different cell lines. In addition to its role as an autophagy inhibitor, S-1 also promotes autophagy initiation as demonstrated by the increment of EGFP fragment in the EGFP-LC3 degradation assay, however, inhibition of autophagy does not rescue cells from death induced by S-1. Mechanistically, S-1 impairs autophagic flux through disrupting acidic lysosomal pH and blocking the maturation of cathepsin D. Moreover, treatment with S-1 enhanced secretion of both pro- and mature forms of cathepsin D, coincident with disintegration of trans-Golgi network. Interestingly, S-1 does not induce ferroptosis, pyroptosis or necroptosis in NCI-H1299 cells. However, treatment of NCI-H460 cells with S-1 induces methuosis, which can be suppressed by Rac1 inhibitor EHT 1864. Our data demonstrate that S-1 is an effective anticancer agent with potential therapeutic application.
Collapse
Affiliation(s)
- Xiaosi Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Le Dong
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Qing Miao
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Zhaobin Huang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Fang Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| |
Collapse
|
5
|
Linscott MP, Ren JR, Gestl SA, Gunther EJ. Different Oncogenes and Reproductive Histories Shape the Progression of Distinct Premalignant Clones in Multistage Mouse Breast Cancer Models. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1329-1345. [PMID: 38537934 PMCID: PMC11220927 DOI: 10.1016/j.ajpath.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/10/2024]
Abstract
A remote carcinogen exposure can predispose to breast cancer onset decades later, suggesting that carcinogen-induced mutations generate long-lived premalignant clones. How subsequent events influence the progression of specific premalignant clones remains poorly understood. Herein, multistage mouse models of mammary carcinogenesis were generated by combining chemical carcinogen exposure [using 7,12-dimethylbenzanthracene (DMBA)] with transgenes that enable inducible expression of one of two clinically relevant mammary oncogenes: c-MYC (MYC) or PIK3CAH1047R (PIK). In prior work, DMBA exposure generated mammary clones bearing signature HrasQ61L mutations, which only progressed to mammary cancer after inducible Wnt1 oncogene expression. Here, after an identical DMBA exposure, MYC versus PIK drove cancer progression from mammary clones bearing mutations in distinct Ras family paralogs. For example, MYC drove cancer progression from either Kras- or Nras-mutant clones, whereas PIK transformed Kras-mutant clones only. These Ras mutation patterns were maintained whether oncogenic transgenes were induced within days of DMBA exposure or months later. Completing a full-term pregnancy (parity) failed to protect against either MYC- or PIK-driven tumor progression. Instead, a postpartum increase in mammary tumor predisposition was observed in the context of PIK-driven progression. However, parity decreased the overall prevalence of tumors bearing Krasmut, and the magnitude of this decrease depended on both the number and timing of pregnancies. These multistage models may be useful for elucidating biological features of premalignant mammary neoplasia.
Collapse
Affiliation(s)
- Maryknoll P Linscott
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jerry R Ren
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shelley A Gestl
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Edward J Gunther
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
6
|
Haertle L, Munawar U, Hernández HNC, Arroyo-Barea A, Heckel T, Cuenca I, Martin L, Höschle C, Müller N, Vogt C, Bischler T, Del Campo PL, Han S, Buenache N, Zhou X, Bassermann F, Waldschmidt J, Steinbrunn T, Rasche L, Stühmer T, Martinez-Lopez J, Martin Kortüm K, Barrio S. Clonal competition assays identify fitness signatures in cancer progression and resistance in multiple myeloma. Hemasphere 2024; 8:e110. [PMID: 38993727 PMCID: PMC11237348 DOI: 10.1002/hem3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.
Collapse
Affiliation(s)
- Larissa Haertle
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Umair Munawar
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Hipólito N C Hernández
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Andres Arroyo-Barea
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School Complutense University Madrid Madrid Spain
| | - Tobias Heckel
- Core Unit Systems Medicine University of Würzburg Würzburg Germany
| | - Isabel Cuenca
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Lucia Martin
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Carlotta Höschle
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Nicole Müller
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Cornelia Vogt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | | | - Paula L Del Campo
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Seungbin Han
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Natalia Buenache
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Xiang Zhou
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Johannes Waldschmidt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Torsten Steinbrunn
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Medical Oncology Dana-Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| | - Leo Rasche
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg Würzburg Germany
| | - Joaquin Martinez-Lopez
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - K Martin Kortüm
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Santiago Barrio
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| |
Collapse
|
7
|
Yang Q, To KKW, Hu G, Fu K, Yang C, Zhu S, Pan C, Wang F, Luo K, Fu L. BI-2865, a pan-KRAS inhibitor, reverses the P-glycoprotein induced multidrug resistance in vitro and in vivo. Cell Commun Signal 2024; 22:325. [PMID: 38872211 PMCID: PMC11170860 DOI: 10.1186/s12964-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. METHODS The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [125I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. RESULTS We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. CONCLUSIONS This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers.
Collapse
MESH Headings
- Humans
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Multiple/drug effects
- Mice
- Cell Line, Tumor
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Xenograft Model Antitumor Assays
- Mice, Nude
- Doxorubicin/pharmacology
- Mice, Inbred BALB C
- Female
Collapse
Affiliation(s)
- Qihong Yang
- People's Hospital of Longhua, Shenzhen, 518109, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kewang Luo
- People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
8
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
9
|
Zhang L, Zhang S, Cao X, Shi J, Zhao S, Tian J, Xiao K, Wang M, Liu J, Wang C, Zhou L, Yu Y, Zhao H, Li S, Sun J. RAF1 facilitates KIT signaling and serves as a potential treatment target for gastrointestinal stromal tumor. Oncogene 2024; 43:2078-2091. [PMID: 38760447 DOI: 10.1038/s41388-024-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.
Collapse
Affiliation(s)
- Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jun Shi
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Liu
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Department of Emergency, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
10
|
Atsavapranee E, Haley RM, Billingsley MM, Chan A, Ruan B, Figueroa-Espada CG, Gong N, Mukalel AJ, Bryan PN, Mitchell MJ. Ionizable lipid nanoparticles for RAS protease delivery to inhibit cancer cell proliferation. J Control Release 2024; 370:614-625. [PMID: 38729436 PMCID: PMC11210981 DOI: 10.1016/j.jconrel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.
Collapse
Affiliation(s)
- Ella Atsavapranee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biao Ruan
- Potomac Affinity Proteins, LLC, North Potomac, MD 20878, USA
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip N Bryan
- Potomac Affinity Proteins, LLC, North Potomac, MD 20878, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Meng Q, Han J, Wang P, Jia C, Guan M, Zhang B, Zhao W. BMS-794833 reduces anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. J Bone Oncol 2024; 45:100594. [PMID: 38532893 PMCID: PMC10963651 DOI: 10.1016/j.jbo.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Background Osteosarcoma, a tumor that originates from bone cells, has a poor prognosis and a high degree of malignancy. Anlotinib, a small-molecule multi-target tyrosine kinase inhibitor (TKI), is the first-line drug in treating osteosarcoma, especially in late-stage osteosarcoma. However, patients often develop resistance after using anlotinib for a certain period, which poses a challenge to its further clinical application. Recently, several TKIs, for instance regorafenib and cabozantinib, have showed clinical interest in treating osteosarcoma and target both vascular endothelial growth factor receptor (VEGFR) and mesenchymal epithelial transition factor (c-MET). Therefore, the identification of new TKI warrants further investigation. Methods We performed CCK8 aasays to confirm that BMS-794833 sensitization osteosarcoma cells to anlotinib. Bioinformatics analysis and rescue experiments showed that the reduce of resistance were dependent on the VEGFR/Ras/CDK2 pathway. Cell line based xenograft model were used to demonstrate that BMS-794833 and anlotinib could synergistically treat OS. Results Here, we found that BMS-794833 reduced anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. CCK8 assay showed that BMS-794833 significantly improved the resistance of osteosarcoma cells to anlotinib. The results of rescue experiments showed that the regulatory effects of BMS-794833 on the proliferation and drug resistance of osteosarcoma cells were dependent on the VEGFR/Ras/CDK2 pathway. In addition, BMS-794833 affected the resistance of osteosarcoma cells to anlotinib through epithelial-mesenchymal transition (EMT) and apoptosis pathways. More importantly, BMS-794833 and anlotinib exerted synergistic therapeutic effects against osteosarcoma in vivo. Conclusion Altogether, this study reveals a new (VEGFR)-targeting drug that can be combined with anlotinib for the treatment of osteosarcoma, which provides an important theoretical basis for overcoming anlotinib resistance.
Collapse
Affiliation(s)
- Qingtao Meng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chenxu Jia
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
| |
Collapse
|
12
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
13
|
Bedrikovetski S, Traeger L, Sammour T. ASO Author Reflections: Impact of RAS Mutations on Total Neoadjuvant Therapy Outcomes in Rectal Cancer. Ann Surg Oncol 2024; 31:1692-1693. [PMID: 38127218 DOI: 10.1245/s10434-023-14826-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Sergei Bedrikovetski
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, SA, Australia.
| | - Luke Traeger
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, Australia
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Tarik Sammour
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, Australia
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
15
|
Desai J, Alonso G, Kim SH, Cervantes A, Karasic T, Medina L, Shacham-Shmueli E, Cosman R, Falcon A, Gort E, Guren T, Massarelli E, Miller WH, Paz-Ares L, Prenen H, Amatu A, Cremolini C, Kim TW, Moreno V, Ou SHI, Passardi A, Sacher A, Santoro A, Stec R, Ulahannan S, Arbour K, Lorusso P, Luo J, Patel MR, Choi Y, Shi Z, Mandlekar S, Lin MT, Royer-Joo S, Chang J, Jun T, Dharia NV, Schutzman JL, Han SW. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: a phase 1b trial. Nat Med 2024; 30:271-278. [PMID: 38052910 PMCID: PMC10803265 DOI: 10.1038/s41591-023-02696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
KRAS G12C mutation is prevalent in ~4% of colorectal cancer (CRC) and is associated with poor prognosis. Divarasib, a KRAS G12C inhibitor, has shown modest activity as a single agent in KRAS G12C-positive CRC at 400 mg. Epidermal growth factor receptor has been recognized as a major upstream activator of RAS-MAPK signaling, a proposed key mechanism of resistance to KRAS G12C inhibition in CRC. Here, we report on divarasib plus cetuximab (epidermal growth factor receptor inhibitor) in patients with KRAS G12C-positive CRC (n = 29) from arm C of an ongoing phase 1b trial. The primary objective was to evaluate safety. Secondary objectives included preliminary antitumor activity. The safety profile of this combination was consistent with those of single-agent divarasib and cetuximab. Treatment-related adverse events led to divarasib dose reductions in four patients (13.8%); there were no treatment withdrawals. The objective response rate was 62.5% (95% confidence interval: 40.6%, 81.2%) in KRAS G12C inhibitor-naive patients (n = 24). The median duration of response was 6.9 months. The median progression-free survival was 8.1 months (95% confidence interval: 5.5, 12.3). As an exploratory objective, we observed a decline in KRAS G12C variant allele frequency associated with response and identified acquired genomic alterations at disease progression that may be associated with resistance. The manageable safety profile and encouraging antitumor activity of divarasib plus cetuximab support the further investigation of this combination in KRAS G12C-positive CRC.ClinicalTrials.gov identifier: NCT04449874.
Collapse
Affiliation(s)
- Jayesh Desai
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Guzman Alonso
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Se Hyun Kim
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | | | - Thomas Karasic
- Abramson Cancer Center, University Of Pennsylvania, Philadelphia, PA, USA
| | - Laura Medina
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Einat Shacham-Shmueli
- Sheba Medical Center, Sackler School of Medicineó, Tel Aviv University, Tel Aviv, Israel
| | - Rasha Cosman
- The Kinghorn Cancer Centre, St. Vincent's Hospital and School of Medicine, University of New South Wales, Sydney, Australia
| | | | - Eelke Gort
- Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Tormod Guren
- Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | | | - Wilson H Miller
- Lady Davis Institute and Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, H120-CNIO Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | - Hans Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - Alessio Amatu
- Haematology and Oncology Division, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Victor Moreno
- START MADRID-FJD, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Sai-Hong I Ou
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada, Department of Medicine & Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Armando Santoro
- Humanitas University and IRCCS Humanitas Research Hospital-Humanitas Cancer Center, Milan, Italy
| | - Rafal Stec
- Biokinetica, Przychodnia Jozefow, Józefów, Poland
- Warsaw Medical University, Warsaw, Poland
| | - Susanna Ulahannan
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Sarah Cannon Research Institute, Nashville, TN, USA
| | - Kathryn Arbour
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Jia Luo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | | | - Zhen Shi
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | - Tomi Jun
- Genentech, South San Francisco, CA, USA
| | | | | | - Sae-Won Han
- Seoul National University Hospital and Seoul National University Cancer Research Institute, Seoul, South Korea.
| |
Collapse
|
16
|
Waybright T, Stephen AG. Nucleotide Exchange on RAS Proteins Using Hydrolysable and Non-hydrolysable Nucleotides. Methods Mol Biol 2024; 2797:35-46. [PMID: 38570451 DOI: 10.1007/978-1-0716-3822-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Biochemical and biophysical assays using recombinant RAS require the protein to be in either the active or inactive state. Here we describe methods to exchange the nucleotide present in the purified RAS protein with either GDPβS, GppNHp, or GTP depending on the assay requirement. In addition, we also describe the HPLC method used to validate the exchange process and provide information on the efficiency of the nucleotide exchange.
Collapse
Affiliation(s)
- Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
17
|
Mouhcine M, Kadil Y, Segmani I, Rahmoune I, Filali H. In silico Exploration of a Novel ICMT Inhibitor with More Solubility than Cysmethynil against Membrane Localization of KRAS Mutant in Colorectal Cancer. Curr Comput Aided Drug Des 2024; 20:1055-1069. [PMID: 38835128 DOI: 10.2174/0115734099264451231003172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 06/06/2024]
Abstract
BACKGROUND ICMT (isoprenylcysteine carboxyl methyltransferase) is an enzyme that plays a key role in the post-translational modification of the K-Ras protein. The carboxyl methylation of this protein by ICMT is important for its proper localization and function. Cysmethynil (2-[5-(3-methylphenyl)-l-octyl-lH-indolo-3-yl] acetamide) causes K-Ras mislocalization and interrupts pathways that control cancer cell growth and division through inhibition of ICMT, but its poor water solubility makes it difficult and impractical for clinical use. This indicates that relatively high amounts of cysmethynil would be required to achieve an effective dose, which could result in significant adverse effects in patients. OBJECTIVE The general objective of this work was to find virtually new compounds that present high solubility in water and are similar to the pharmacological activity of cysmethynil. MATERIALS AND METHODS Pharmacophore modeling, pharmacophore-based virtual screening, prediction of ADMET properties (absorption, distribution, metabolism, excretion, and toxicity), and water solubility were performed to recover a water-soluble molecule that shares the same chemical characteristics as cysmethynil using Discovery Studio v16.1.0 (DS16.1), SwissADME server, and pkCSM server. RESULTS In this study, ten pharmacophore model hypotheses were generated by exploiting the characteristics of cysmethynil. The pharmacophore model validated by the set test method was used to screen the "Elite Library®" and "Synergy Library" databases of Asinex. Only 1533 compounds corresponding to all the characteristics of the pharmacophore were retained. Then, the aqueous solubility in water at 25°C of these 1533 compounds was predicted by the Cheng and Merz model. Among these 1533 compounds, two had the optimal water solubility. Finally, the ADMET properties and Log S water solubility by three models (ESOL, Ali, and SILICOS-IT) of the two compounds and cysmethynil were compared, resulting in compound 2 as a potential inhibitor of ICMT. CONCLUSION According to the results obtained, the identified compound presented a high solubility in water and could be similar to the pharmacological activity of cysmethynil.
Collapse
Affiliation(s)
- Mohammed Mouhcine
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
| | - Youness Kadil
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ibtihal Segmani
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
| | - Imane Rahmoune
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
| | - Houda Filali
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Batrash F, Kutmah M, Zhang J. The current landscape of using direct inhibitors to target KRAS G12C-mutated NSCLC. Exp Hematol Oncol 2023; 12:93. [PMID: 37925476 PMCID: PMC10625227 DOI: 10.1186/s40164-023-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Mutation in KRAS protooncogene represents one of the most common genetic alterations in NSCLC and has posed a great therapeutic challenge over the past ~ 40 years since its discovery. However, the pioneer work from Shokat's lab in 2013 has led to a recent wave of direct KRASG12C inhibitors that utilize the switch II pocket identified. Notably, two of the inhibitors have recently received US FDA approval for their use in the treatment of KRASG12C mutant NSCLC. Despite this success, there remains the challenge of combating the resistance that cell lines, xenografts, and patients have exhibited while treated with KRASG12C inhibitors. This review discusses the varying mechanisms of resistance that limit long-lasting effective treatment of those direct inhibitors and highlights several novel therapeutic approaches including a new class of KRASG12C (ON) inhibitors, combinational therapies across the same and different pathways, and combination with immunotherapy/chemotherapy as possible solutions to the pressing question of adaptive resistance.
Collapse
Affiliation(s)
- Firas Batrash
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Mahmoud Kutmah
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
19
|
Kuttikrishnan S, Masoodi T, Ahmad F, Sher G, Prabhu KS, Mateo JM, Buddenkotte J, El-Elimat T, Oberlies NH, Pearce CJ, Bhat AA, Alali FQ, Steinhoff M, Uddin S. In vitro evaluation of Neosetophomone B inducing apoptosis in cutaneous T cell lymphoma by targeting the FOXM1 signaling pathway. J Dermatol Sci 2023; 112:83-91. [PMID: 37865581 DOI: 10.1016/j.jdermsci.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha, Qatar; Department of Medicine, Weill Cornell Medicine, NY, USA; College of Medicine, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
21
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
22
|
Gurban P, Mambet C, Botezatu A, Necula LG, Neagu AI, Matei L, Pitica IM, Nedeianu S, Chivu-Economescu M, Bleotu C, Ataman M, Mocanu G, Saguna C, Pavel AG, Stambouli D, Sepulchre E, Anton G, Diaconu CC, Constantinescu SN. Leukemic conversion involving RAS mutations of type 1 CALR-mutated primary myelofibrosis in a patient treated for HCV cirrhosis: a case report. Front Oncol 2023; 13:1266996. [PMID: 37841434 PMCID: PMC10570518 DOI: 10.3389/fonc.2023.1266996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Somatic frameshift mutations in exon 9 of calreticulin (CALR) gene are recognized as disease drivers in primary myelofibrosis (PMF), one of the three classical Philadelphia-negative myeloproliferative neoplasms (MPNs). Type 1/type 1-like CALR mutations particularly confer a favorable prognostic and survival advantage in PMF patients. We report an unusual case of PMF incidentally diagnosed in a 68-year-old woman known with hepatitis C virus (HCV) cirrhosis who developed a progressive painful splenomegaly, without anomalies in blood cell counts. While harboring a type 1 CALR mutation, the patient underwent a leukemic transformation in less than 1 year from diagnosis, with a lethal outcome. Analysis of paired DNA samples from chronic and leukemic phases by a targeted next-generation sequencing (NGS) panel and single-nucleotide polymorphism (SNP) microarray revealed that the leukemic clone developed from the CALR-mutated clone through the acquisition of genetic events in the RAS signaling pathway: an increased variant allele frequency of the germline NRAS Y64D mutation present in the chronic phase (via an acquired uniparental disomy of chromosome 1) and gaining NRAS G12D in the blast phase. SNP microarray analysis showed five clinically significant copy number losses at regions 7q22.1, 8q11.1-q11.21, 10p12.1-p11.22, 11p14.1-p11.2, and Xp11.4, revealing a complex karyotype already in the chronic phase. We discuss how additional mutations, detected by NGS, as well as HCV infection and antiviral therapy, might have negatively impacted this type 1 CALR-mutated PMF. We suggest that larger studies are required to determine if more careful monitoring would be needed in MPN patients also carrying HCV and receiving anti-HCV treatment.
Collapse
Affiliation(s)
- Petruta Gurban
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Cytogenomic Medical Laboratory Ltd., Bucharest, Romania
| | - Cristina Mambet
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Hematology Department, Emergency University Clinical Hospital, Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Laura G. Necula
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ana I. Neagu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Lilia Matei
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ioana M. Pitica
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Saviana Nedeianu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Mihaela Chivu-Economescu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Marius Ataman
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Gabriela Mocanu
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
| | - Carmen Saguna
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
| | - Anca G. Pavel
- Cytogenomic Medical Laboratory Ltd., Bucharest, Romania
| | | | - Elise Sepulchre
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gabriela Anton
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Carmen C. Diaconu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Stefan N. Constantinescu
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- SIGN (Cell Signalling and Molecular Hematology), Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom
| |
Collapse
|
23
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
24
|
Xie R, Huang H, Chen T, Huang X, Chen C. Effectiveness and safety of pelareorep plus chemotherapy versus chemotherapy alone for advanced solid tumors: a meta-analysis. Front Pharmacol 2023; 14:1228225. [PMID: 37829303 PMCID: PMC10566296 DOI: 10.3389/fphar.2023.1228225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Pelareorep is an oncolytic virus that causes oncolytic effects in many solid tumors, and it has shown therapeutic benefits. However, few studies have compared pelareorep combined with chemotherapy to traditional chemotherapy alone in advanced solid tumors. Consequently, we intended to evaluate the effectiveness and safety of pelareorep plus chemotherapy in this paper. Methods: We searched four databases including PubMed, Embase, Cochrane Library and Web of Science comprehensively for studies comparing pelareorep combined with chemotherapy to chemotherapy alone in the treatment of advanced solid tumors. The outcomes measures were 1-year overall survival (OS), 2-year OS, 4-month progression-free survival (PFS), 1-year PFS, objective response rate (ORR), any-grade adverse events (any-grade AEs), and severe AEs (grade ≥ 3). Results: There were five studies involving 492 patients included in the study. Combination therapy did not significantly improve clinical outcomes in terms of 1-year OS [RR = 1.02, 95%CI = (0.82-1.25)], 2-year OS [RR = 1.00, 95%CI = (0.67-1.49)], 4-month PFS [RR = 1.00, 95%CI = (0.67-1.49)], 1-year PFS [RR = 0.79, 95%CI = (0.44-1.42)], and ORR [OR = 0.79, 95%CI = (0.49-1.27)] compared to chemotherapy alone, and the subgroup analysis of 2-year OS, 1-year PFS, and ORR based on countries and tumor sites showed similar results. In all grades, the incidence of AEs was greater with combination therapy, including fever [RR = 3.10, 95%CI = (1.48-6.52)], nausea [RR = 1.19, 95%CI = (1.02-1.38)], diarrhea [RR = 1.87, 95%CI = (1.39-2.52)], chills [RR = 4.14, 95%CI = (2.30-7.43)], headache [RR = 1.46, 95%CI = (1.02-2.09)], vomiting [RR = 1.38, 95%CI = (1.06-1.80)] and flu-like symptoms [RR = 4.18, 95%CI = (2.19-7.98)]. However, severe adverse events did not differ significantly between the two arms. Conclusion: Pelareorep addition to traditional chemotherapy did not lead to significant improvements in OS, PFS, or ORR in advanced solid tumor patients, but it did partially increase AEs in all grades, with no discernible differences in serious AEs. Therefore, the combination treatment is not recommended in patients with advanced solid tumors. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=400841, identifier CRD42023400841.
Collapse
Affiliation(s)
- Renxian Xie
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Hongxin Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Tong Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Xuehan Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Chuangzhen Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
25
|
Wang X, Sun Q, Wang W, Liu B, Gu Y, Chen L. Decoding key cell sub-populations and molecular alterations in glioblastoma at recurrence by single-cell analysis. Acta Neuropathol Commun 2023; 11:125. [PMID: 37525259 PMCID: PMC10391841 DOI: 10.1186/s40478-023-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant brain tumor, the relapse of which is unavoidable following standard treatment. However, the effective treatment for recurrent GBM is lacking, necessitating the understanding of key mechanisms driving tumor recurrence and the identification of new targets for intervention. Here, we integrated single-cell RNA-sequencing data spanning 36 patient-matched primary and recurrent GBM (pGBM and rGBM) specimens, with 6 longitudinal GBM spatial transcriptomics to explore molecular alterations at recurrence, with each cell type characterized in parallel. Genes involved in extracellular matrix (ECM) organization are preferentially enriched in rGBM cells, and MAFK is highlighted as a potential regulator. Notably, we uncover a unique subpopulation of GBM cells that is much less detected in pGBM and highly expresses ECM and mesenchyme related genes, suggesting it may contribute to the molecular transition of rGBM. Further regulatory network analysis reveals that transcription factors, such as NFATC4 and activator protein 1 members, may function as hub regulators. All non-tumor cells alter their specific sets of genes as well and certain subgroups of myeloid cells appear to be physically associated with the mesenchyme-like GBM subpopulation. Altogether, our study provides new insights into the molecular understanding of GBM relapse and candidate targets for rGBM treatment.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
- BGI Research, Hangzhou, 310030 China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen, 518120 China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying Gu
- BGI Research, Hangzhou, 310030 China
- BGI Research, Shenzhen, 518083 China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083 China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Nigam A, Krishnamoorthy G, Chatila W, Berman K, Saqcena M, Walch H, Ho A, Schultz N, Fagin J, Untch B. Cooperative Genomic Lesions in HRAS-Mutant Cancers Predict Resistance to Farnesyltransferase Inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3154719. [PMID: 37503077 PMCID: PMC10371077 DOI: 10.21203/rs.3.rs-3154719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical development of farnesyltransferase inhibitors (FTI) for HRAS-mutant tumors showed mixed responses dependent on cancer type. Co-occurring mutations may affect response. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and study their effect on FTI sensitivity. Using targeted sequencing data from MSK-IMPACT and DFCI-GENIE databases we identified co-mutations in HRAS- vs KRAS- and NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of co-altered mutations (48.8%) in MAPK, PI3K, or RTK pathways genes compared to KRAS- and NRAS-mutant cancers (41.4% and 38.4%, respectively; p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effect of comutations on FTI sensitivity, HrasG13R was transfected into 'RASless' (Kraslox/lox;Hras-/-;Nras-/-) mouse embryonic fibroblasts (MEFs) which sensitized non-transfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion or Pik3caH1047R or BrafG466E transduction led to relative resistance to tipifarnib in HrasG13R MEFs in the presence or absence of KrasWT. Combined treatment of tipifarnib with MEK inhibition sensitized cells to tipifarnib, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage demonstrate lineage-dependent MAPK/PI3K pathway alterations that confer relative resistance to tipifarnib. Combined FTI and MEK inhibition is a promising combination for HRAS-mutant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan Ho
- Memorial Sloan-Kettering Cancer Center
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
27
|
Antony ML, Chang D, Noble-Orcutt KE, Kay A, Jensen JL, Mohei H, Myers CL, Sachs K, Sachs Z. CD69 marks a subpopulation of acute myeloid leukemia with enhanced colony forming capacity and a unique signaling activation state. Leuk Lymphoma 2023; 64:1262-1274. [PMID: 37161853 DOI: 10.1080/10428194.2023.2207698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/10/2023] [Accepted: 04/09/2023] [Indexed: 05/11/2023]
Abstract
In acute myeloid leukemia (AML), leukemia stem cells (LSCs) have self-renewal potential and are responsible for relapse. We previously showed that, in Mll-AF9/NRASG12V murine AML, CD69 expression marks an LSC-enriched subpopulation with enhanced in vivo self-renewal capacity. Here, we used CyTOF to define activated signaling pathways in LSC subpopulations in Mll-AF9/NRASG12V AML. Furthermore, we compared the signaling activation states of CD69High and CD36High subsets of primary human AML. The human CD69High subset expresses low levels of Ki67 and high levels of NFκB and pMAPKAPKII. Additionally, the human CD69High AML subset also has enhanced colony-forming capacity. We applied Bayesian network modeling to compare the global signaling network within the human AML subsets. We find that distinct signaling states, distinguished by NFκB and pMAPKAPKII levels, correlate with divergent functional subsets, defined by CD69 and CD36 expression, in human AML. Targeting NFκB with proteasome inhibition diminished colony formation.
Collapse
Affiliation(s)
- Marie Lue Antony
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Chang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Anna Kay
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeffrey L Jensen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hesham Mohei
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Karen Sachs
- Next Generation Analytics, Palo Alto, CA, USA
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics 2023; 15:1686. [PMID: 37376135 DOI: 10.3390/pharmaceutics15061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
Collapse
Affiliation(s)
- Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Júlia German-Cortés
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Sara Montero
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Pilar Carcavilla
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diego Baranda-Martínez-Abascal
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Joaquín Seras-Franzoso
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Zamira Vanessa Díaz-Riascos
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
29
|
Jin H, Koh M, Lim H, Yong HY, Kim ES, Kim SY, Kim K, Jung J, Ryu WJ, Choi KY, Moon A. Lipid raft protein flotillin-1 is important for the interaction between SOS1 and H-Ras/K-Ras, leading to Ras activation. Int J Cancer 2023; 152:1933-1946. [PMID: 36691829 DOI: 10.1002/ijc.34443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.
Collapse
Affiliation(s)
- Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hae-Young Yong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Republic of Korea
| | - Kyoungmee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| |
Collapse
|
30
|
Wang D, Zhang W, Zhang X, Li M, Wu Q, Li X, Zhao L, Yuan Q, Yu Y, Lu J, Zhao J, Dong Z, Liu K, Jiang Y. Daurisoline suppresses esophageal squamous cell carcinoma growth in vitro and in vivo by targeting MEK1/2 kinase. Mol Carcinog 2023; 62:517-531. [PMID: 36645220 DOI: 10.1002/mc.23503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for 90% of esophageal cancers and has a high mortality rate worldwide. The 5-year survival rate of ESCC patients in developing countries is <20%. Hence, there is an urgent need for developing new and effective treatments that are based on newly-discovered emerging molecules and pathways to prevent ESCC occurrence and recurrence. We investigated the effects of Daurisoline, a bis-benzylisoquinoline alkaloid extracted from the rhizome of menisperum dauricum, on ESCC cell proliferation and elucidated the molecular mechanisms underlying its functions. To explore the effects of Daurisoline on ESCC growth in vitro and in vivo, cell proliferation assays and anchorage-independent growth assays were performed and a patient-derived xenograft (PDX) model was established. Subsequently, phosphoproteomics, molecular docking analysis, pull down assays, mutation experiments and in vitro kinase assay were performed to explore the mechanism of Daurisoline's function on ESCC. Daurisoline inhibited ESCC proliferation in vitro and reduced ESCC PDX exnograft growth in vivo by reducing ERK1/2 phosphorylation. Furthermore, it directly bound to MEK1 (at Asn78 and Lys97) and MEK2 (at Asp194 and Asp212) kinases to inactivate the ERK1/2 signaling pathway. Our results suggest that Daurisoline is a dual inhibitor of MEK1 and MEK2 and suppresses ESCC growth both in vitro and in vivo by inactivating the ERK1/2 signaling pathway. This is first report on the use of MEK inhibitor for ESCC and highlights its potential applications for ESCC treatment and prevention.
Collapse
Affiliation(s)
- Donghao Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Weizhe Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mingzhu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Qiong Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Lili Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yin Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
32
|
Bahmad HF, Elhammady G, Gass JM, Paramo JC, Poppiti R, Alexis J. PIK3R1, HRAS and AR Gene Alterations Associated with Sclerosing Polycystic Adenoma of the Parotid Gland. Curr Issues Mol Biol 2023; 45:954-962. [PMID: 36826006 PMCID: PMC9955459 DOI: 10.3390/cimb45020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Sclerosing polycystic adenoma (SPA) is a rare neoplasm occurring in the salivary glands, mainly the parotid gland. Although it was originally thought to represent a non-neoplastic process, recent genetic data have proven its monoclonality, supporting its neoplastic origin. We report a case of a 73-year-old woman who presented with left neck swelling and pain. A 3 cm hypoechoic, heterogeneous, solid mass was identified on neck ultrasonography within the left parotid gland. Fine needle aspiration revealed benign acinar cells and lymphocytes. Left partial superficial parotidectomy was performed and a diagnosis of SPA was made. Targeted next-generation sequencing (NGS) revealed three clinically significant alterations in the PIK3R1, HRAS, and AR genes. Alterations in the PIK3R1 gene have been previously reported in cases of SPA; however, this study is the first to report two novel clinically significant genomic alterations in the HRAS and AR genes. AR protein expression by immunohistochemistry was strongly and diffusely positive in the neoplastic epithelial cells compared to the adjacent normal salivary gland tissue, which was dead negative for AR. This molecular profile will enhance our understanding of the molecular pathways underlying the development of this tumor. Although this entity was initially thought to be a reactive process, evidence from our case and similar cases strongly support the notion that it is neoplastic due to the presence of specific genetic alterations linked to it.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Gina Elhammady
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33916, USA
| | - Jennifer M. Gass
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33916, USA
| | - Juan C. Paramo
- Department of General Surgery, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - John Alexis
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
33
|
McMurtry V, Canberk S, Deftereos G. Molecular testing in fine-needle aspiration of thyroid nodules. Diagn Cytopathol 2023; 51:36-50. [PMID: 36480743 DOI: 10.1002/dc.25035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thyroid nodules are commonly faced by clinicians as palpable nodules or incidentally identified on imaging. Nodules that are found to be suspicious by imaging can be biopsied by fine needle aspiration, which can yield material for molecular testing to refine the diagnosis. METHODS The current literature concerning molecular testing in thyroid nodules including available commercial assays was reviewed and summarized. RESULTS/CONCLUSIONS Commonly encountered alterations include mutations in RAS, BRAF, TERT promoter, PTEN, and DICER1 as well as fusions of RET, ALK, PAX8-PPARγ, and NTRK. This article provides a summary of these molecular alterations, commercially available molecular assays, and general considerations for thyroid epithelial malignancies and benign thyroid nodules.
Collapse
Affiliation(s)
- Valarie McMurtry
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Experimental Pathology, Salt Lake City, Utah, USA
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Georgios Deftereos
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Experimental Pathology, Salt Lake City, Utah, USA
| |
Collapse
|
34
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Sun Y, Zhang F, Huo L, Cai W, Wang Q, Wen L, Yan L, Shen H, Xu X, Chen S. Clinical characteristics and prognostic analysis of acute myeloid leukemia patients with PTPN11 mutations. Hematology 2022; 27:1184-1190. [DOI: 10.1080/16078454.2022.2140274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yueyue Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Cyrus Tang hematology center, Soochow University, Suzhou, People’s Republic of China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Li Huo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Wenzhi Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Qinrong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Lingzhi Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Xiaoyu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Cyrus Tang hematology center, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
36
|
Saedi S, Panahi R, Orak N, Jafarzadeh Shirazi MR. Comparative Meta-analysis of Adipose Tissue Transcriptomics Data in PCOS Patients and Healthy Control Women. Reprod Sci 2022; 30:1823-1833. [DOI: 10.1007/s43032-022-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
|
37
|
Sugito N, Heishima K, Akao Y. Chemically modified MIR143-3p exhibited anti-cancer effects by impairing the KRAS network in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:49-61. [PMID: 36189421 PMCID: PMC9507988 DOI: 10.1016/j.omtn.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Corresponding author
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Corresponding author
| |
Collapse
|
38
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
39
|
Abstract
The RAS family of proteins is among the most frequently mutated genes in human malignancies. In ovarian cancer (OC), the most lethal gynecological malignancy, RAS, especially KRAS mutational status at codons 12, 13, and 61, ranges from 6-65% spanning different histo-types. Normally RAS regulates several signaling pathways involved in a myriad of cellular signaling cascades mediating numerous cellular processes like cell proliferation, differentiation, invasion, and death. Aberrant activation of RAS leads to uncontrolled induction of several downstream signaling pathways such as RAF-1/MAPK (mitogen-activated protein kinase), PI3K phosphoinositide-3 kinase (PI3K)/AKT, RalGEFs, Rac/Rho, BRAF (v-Raf murine sarcoma viral oncogene homolog B), MEK1 (mitogen-activated protein kinase kinase 1), ERK (extracellular signal-regulated kinase), PKB (protein kinase B) and PKC (protein kinase C) involved in cell proliferation as well as maintenance pathways thereby driving tumorigenesis and cancer cell propagation. KRAS mutation is also known to be a biomarker for poor outcome and chemoresistance in OC. As a malignancy with several histotypes showing varying histopathological characteristics, we focus on reviewing recent literature showcasing the involvement of oncogenic RAS in mediating carcinogenesis and chemoresistance in OC and its subtypes.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anjana Anand
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| | | | | | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shahab Uddin
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| |
Collapse
|
40
|
Yadav N, Singh D, Rawat M, Sangwan N. Novel archetype in cancer therapeutics: exploring prospective of phytonanocarriers. 3 Biotech 2022; 12:324. [PMID: 36276448 PMCID: PMC9569404 DOI: 10.1007/s13205-022-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
This paper reports various types of cancer, their incidence, and prevalence all over the globe. Along with the discovery of novel natural drugs for cancer treatment, these present a promising option which are eco-friendly, safe, and provide better acceptability in comparison to synthetic agents that carries multiple side effects. This paper provides an idea about various nanocarriers and phytochemicals, along with how their solubility and bioavailability can be enhanced in nanocarrier system. This report combines the data from various literature available on public domain including PubMed on research articles, reviews, and along with report from various national and international sites. Specialized metabolites (polyphenols, alkaloids, and steroids etc) from medicinal plants are promising alternatives to existing drugs. Studies have suggested that the treatment of cancer using plant products could be an alternative and a safe option. Studies have shown with the several cell lines as well as animal models, that phytomolecules are important in preventing/treating cancer. Phytochemicals often outperform chemical treatments by modulating a diverse array of cellular signaling pathways, promoting cell cycle arrest, apoptosis activation, and metastatic suppression, among others. However, limited water solubility, bioavailability, and cell penetration limit their potential clinical manifestations. The development of plant extract loaded nanostructures, rendering improved specificity and efficacy at lower concentrations could prove effective. Nanocarriers, such as liposomes, nanostructured lipids, polymers, and metal nanoparticles, have been tested for the delivery of plant products with enhanced effects. Recent advances have achieved improvement in the the stability, solubility, bioavailability, circulation time, and target specificity by nanostructure-mediated delivery of phytochemicals. Nanoparticles have been considered and attempted as a novel, targeted, and safe option. Newer approaches such as phyto-nanocarriers with carbohydrates, lignin, and polymers have been considered even more selective and effective modes of drug delivery in biomedical or diagnostic applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
41
|
Toulany M. Targeting K-Ras-mediated DNA damage response in radiation oncology: Current status, challenges and future perspectives. Clin Transl Radiat Oncol 2022; 38:6-14. [PMID: 36313934 PMCID: PMC9596599 DOI: 10.1016/j.ctro.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately 60% of cancer patients receive curative or palliative radiation. Despite the significant role of radiotherapy (RT) as a curative approach for many solid tumors, tumor recurrence occurs, partially because of intrinsic radioresistance. Accumulating evidence indicates that the success of RT is hampered by activation of the DNA damage response (DDR). The intensity of DDR signaling is affected by multiple parameters, e.g., loss-of-function mutations in tumor suppressor genes, gain-of-function mutations in protooncogenes as well as radiation-induced alterations in signal-transduction pathways. Therefore, the response to irradiation differs in tumors of different types, which makes the individualization of RT as a rational but challenging goal. One contributor to tumor cell radiation survival is signaling through the Ras pathway. Three RAS genes encode 4 Ras isoforms: K-Ras4A, K-Ras4B, H-Ras, and N-Ras. RAS family members are found to be mutated in approximately 19% of human cancers. Mutations in RAS lead to constitutive activation of the gene product and activation of multiple Ras-dependent signal-transduction cascades. Preclinical studies have shown that the expression of mutant KRAS affects DDR and increases cell survival after irradiation. Approximately 70% of RAS mutations occur in KRAS. Thus, applying targeted therapies directly against K-Ras as well as K-Ras upstream activators and downstream effectors might be a tumor-specific approach to overcome K-Ras-mediated RT resistance. In this review, the role of K-Ras in the activation of DDR signaling will be summarized. Recent progress in targeting DDR in KRAS-mutated tumors in combination with radiochemotherapy will be discussed.
Collapse
|
42
|
Habibi M, Taheri G. A new machine learning method for cancer mutation analysis. PLoS Comput Biol 2022; 18:e1010332. [PMID: 36251702 PMCID: PMC9612828 DOI: 10.1371/journal.pcbi.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/27/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that cancer driver genes operate across complex pathways and networks, with mutations often arising in a mutually exclusive pattern. Genes with low-frequency mutations are understudied as cancer-related genes, especially in the context of networks. Here we propose a machine learning method to study the functionality of mutually exclusive genes in the networks derived from mutation associations, gene-gene interactions, and graph clustering. These networks have indicated critical biological components in the essential pathways, especially those mutated at low frequency. Studying the network and not just the impact of a single gene significantly increases the statistical power of clinical analysis. The proposed method identified important driver genes with different frequencies. We studied the function and the associated pathways in which the candidate driver genes participate. By introducing lower-frequency genes, we recognized less studied cancer-related pathways. We also proposed a novel clustering method to specify driver modules. We evaluated each driver module with different criteria, including the terms of biological processes and the number of simultaneous mutations in each cancer. Materials and implementations are available at: https://github.com/MahnazHabibi/MutationAnalysis.
Collapse
Affiliation(s)
- Mahnaz Habibi
- Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Golnaz Taheri
- Department of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
43
|
Ivanenko KA, Prassolov VS, Khabusheva ER. Transcription Factor Sp1 in the Expression of Genes Encoding Components of Mapk, JAK/STAT, and PI3K/Akt Signaling Pathways. Mol Biol 2022. [DOI: 10.1134/s0026893322050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Zhang Y, Li C, Xia C, Wah To KK, Guo Z, Ren C, Wen L, Wang F, Fu L, Liao N. Adagrasib, a KRAS G12C inhibitor, reverses the multidrug resistance mediated by ABCB1 in vitro and in vivo. Cell Commun Signal 2022; 20:142. [PMID: 36104708 PMCID: PMC9472360 DOI: 10.1186/s12964-022-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Multidrug resistance (MDR) is a complex phenomenon that frequently leads to chemotherapy failure during cancer treatment. The overexpression of ATP-binding cassette (ABC) transporters represents the major mechanism contributing to MDR. To date, no effective MDR modulator has been applied in clinic. Adagrasib (MRTX849), a specific inhibitor targeting KRAS G12C mutant, is currently under investigation in clinical trials for the treatment of non-small cell lung cancer (NSCLC). This study focused on investigating the circumvention of MDR by MRTX849.
Methods
The cytotoxicity and MDR reversal effect of MRTX849 were assessed by MTT assay. Drug accumulation and drug efflux were evaluated by flow cytometry. The MDR reversal by MRTX849 in vivo was investigated in two ABCB1-overexpressing tumor xenograft models in nude mice. The interaction between MRTX849 and ABCB1 substrate binding sites was studied by the [125I]-IAAP-photoaffinity labeling assay. The vanadate-sensitive ATPase assay was performed to identify whether MRTX849 would change ABCB1 ATPase activity. The effect of MRTX849 on expression of ABCB1 and PI3K/AKT signaling molecules was examined by flow cytometry, Western blot and Quantitative Real-time PCR analyses.
Results
MRTX849 was shown to enhance the anticancer efficacy of ABCB1 substrate drugs in the transporter-overexpressing cells both in vitro and in vivo. The MDR reversal effect was specific against ABCB1 because no similar effect was observed in the parental sensitive cells or in ABCG2-mediated MDR cells. Mechanistically, MRTX849 increased the cellular accumulation of ABCB1 substrates including doxorubicin (Dox) and rhodamine 123 (Rho123) in ABCB1-overexpressing MDR cells by suppressing ABCB1 efflux activity. Additionally, MRTX849 stimulated ABCB1 ATPase activity and competed with [125I]-IAAP for photolabeling of ABCB1 in a concentration-dependent manner. However, MRTX849 did not alter ABCB1 expression or phosphorylation of AKT/ERK at the effective MDR reversal drug concentrations.
Conclusions
In summary, MRTX849 was found to overcome ABCB1-mediated MDR both in vitro and in vivo by specifically attenuating ABCB1 efflux activity in drug-resistant cancer cells. Further studies are warranted to translate the combination of MRTX849 and conventional chemotherapy to clinical application for circumvention of MDR.
Collapse
|
45
|
Sieber B, Lu F, Stribbling SM, Grieve AG, Ryan AJ, Freeman M. iRhom2 regulates ERBB signalling to promote KRAS-driven tumour growth of lung cancer cells. J Cell Sci 2022; 135:jcs259949. [PMID: 35971826 PMCID: PMC9482348 DOI: 10.1242/jcs.259949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Fangfang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Adam G. Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anderson J. Ryan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
46
|
Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022; 12:915512. [PMID: 36033504 PMCID: PMC9399772 DOI: 10.3389/fonc.2022.915512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Special oncogenic mutations in the RAS proteins lead to the aberrant activation of RAS and its downstream signaling pathways. AMG510, the first approval drug for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and has shown promising antitumor activity in clinical trials. Recent studies have reported that the clinically acquired Y96D mutation could severely affect the effectiveness of AMG510. However, the underlying mechanism of the drug-resistance remains unclear. To address this, we performed multiple microsecond molecular dynamics simulations on the KRASG12C−AMG510 and KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction between the residue 96 and AMG510 was impaired owing to the Y96D mutation. Moreover, the mutation yielded higher flexibility and more coupled motion of the switch II and α3-helix, which led to the departing motion of the switch II and α3-helix. The resulting departing motion impaired the interaction between the switch II and α3-helix and subsequently induced the opening and loosening of the AMG510 binding pocket, which further disrupted the interaction between the key residues in the pocket and AMG510 and induced an increased solvent exposure of AMG510. These findings reveal the resistance mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for the development of KRAS targeted drugs to overcome acquired resistance.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| |
Collapse
|
47
|
Ji J, Wang C, Fakih M. Targeting KRAS G12C-Mutated Advanced Colorectal Cancer: Research and Clinical Developments. Onco Targets Ther 2022; 15:747-756. [PMID: 35837349 PMCID: PMC9273901 DOI: 10.2147/ott.s340392] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Identifying mutations in the KRAS gene has become increasingly important in the treatment of colorectal cancer with many prognostic and therapeutic implications. However, efforts to develop drugs that target KRAS mutations have not been successful until more recently with the introduction of the KRAS G12C inhibitors, sotorasib (AMG510) and adagrasib (MRTX849). Both agents have demonstrated safety and promising efficacy in preclinical studies and early phase trials, but it appears that not all tumor types harboring the KRAS G12C mutation are sensitive to monotherapy approaches. In particular, patients with colorectal cancer (CRC) derive less benefit compared to those with non-small cell lung cancer (NSCLC), likely due to rapid treatment-induced resistance through increased epidermal growth factor receptor (EGFR) signaling. As a result, combination therapy trials with EGFR inhibitors are currently underway. Here, we will review the available clinical trial data on KRASG12C inhibitors in KRAS G12C-mutated CRC, possible mechanisms of resistance to monotherapy, the research studying why available agents are proving to be less efficacious in CRC compared to NSCLC, and future directions for these promising new drugs.
Collapse
Affiliation(s)
- Jingran Ji
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
48
|
Schaffrin-Nabe D, Schuster S, Tannapfel A, Voigtmann R. Case Report: Extensive Tumor Profiling in Primary Neuroendocrine Breast Cancer Cases as a Role Model for Personalized Treatment in Rare and Aggressive Cancer Types. Front Med (Lausanne) 2022; 9:841441. [PMID: 35721079 PMCID: PMC9203716 DOI: 10.3389/fmed.2022.841441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroendocrine breast cancer (NEBC) is a rare entity accounting for <0.1% of all breast carcinomas and <0.1% of all neuroendocrine carcinomas. In most cases treatment strategies in NEBC are empirical in absence of prospective trial data on NEBC cohorts. Herein, we present two case reports diagnosed with anaplastic and small cell NEBC. After initial therapies failed, comprehensive tumor profiling was applied, leading to individualized treatment options for both patients. In both patients, targetable alterations of the PI3K/AKT/mTOR pathway were found, including a PIK3CA mutation itself and an STK11 mutation that negatively regulates the mTOR complex. The epicrisis of the two patients exemplifies how to manage rare and difficult to treat cancers and how new diagnostic tools contribute to medical management.
Collapse
Affiliation(s)
- Dörthe Schaffrin-Nabe
- Praxis für Hämatologie und Onkologie, Bochum, Germany
- *Correspondence: Dörthe Schaffrin-Nabe
| | | | | | | |
Collapse
|
49
|
HRAS Q61L Mutation as a Possible Target for Non-Small Cell Lung Cancer: Case Series and Review of Literature. Curr Oncol 2022; 29:3748-3758. [PMID: 35621690 PMCID: PMC9139372 DOI: 10.3390/curroncol29050300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Assessment of actionable gene mutations and oncogene fusions have made a paradigm shift in treatment strategies of non-small cell lung cancer (NSCLC). HRAS mutations involved around 0.2–0.8% of NSCLC patients, mostly on codon 61. For these patients, few data are available regarding clinical characteristics and response to therapies. Methods: Next-Generation Sequencing (NGS) done routinely at Nantes University Hospital was used to identify HRAS molecular alterations in NSCLC patients. We identified and described four HRAS p.GlnQ61Leu mutated patients. Literature of previously HRAS-mutant NSCLC cases was reviewed, and available data in solid tumour with the most advanced H-Ras specific inhibitor, tipifarnib, were presented. Results: Of 1614 patients diagnosed with advanced NSCLC from January 2018 to December 2020, four (0.25%) had HRAS p.Gln61Leu mutation. Three of them died during the first-line systemic therapy. Furthermore, three additional cases were identified in literature. All cases were current or former smokers, most of them had pleural or pericardial effusion at diagnosis. Conclusions: The clinical course of patients with HRAS-mutant NSCLC remains unclear. Furthers cases should be identified in order to clarify prognosis and response to therapies. Tipifarnib, a farnesyl transferase inhibitor, is a promising candidate to target HRAS-mutant tumours and should be explored in NSCLC patients.
Collapse
|
50
|
Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y, Liang Z. microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 2022; 13:12030-12044. [PMID: 35549643 PMCID: PMC9276006 DOI: 10.1080/21655979.2022.2056314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological cancers, which progresses owing to dysregulated microRNAs (miRNAs) expression. Our study attempts to reveal the mechanism by which decreased miR-324-3p expression suppresses OC proliferation. Quantitative real-time PCR, western blotting, in situ hybridization, and immunohistochemistry were performed to estimate miR-324-3p and WNK2 expression levels in OC cells and tissues. Cell Counting Kit-8, colony formation, EdU, and transwell assays were performed to analyze the influence of miR-324-3p and WNK2 on the proliferation and invasion ability of OC cells. Subsequently, xenograft models were established to examine the effects of WNK2 on OC cell proliferation in vivo, and databases and luciferase reporter assays were used to test the relationship between miR-324-3p and WNK2 expression. Then, we showed that miR-324-3p expression is decreased in OC cells and tissues, indicating its inhibitory effect on OC cell proliferation. Quantitative real-time PCR and luciferase reporter assays demonstrated that miR-324-3p inhibited WNK2 expression by directly binding to its 3’ untranslated region. WNK2, an upregulated kinase, promotes the proliferation and invasion of OC cells by activating the RAS pathway. Moreover, WNK2 can partly reverse the inhibitory effects of miR-324-3p on OC cell proliferation. Hence, we demonstrate that miR-324-3p suppressed ovarian cancer progression by targeting the WNK2/RAS pathway. Our study provides theoretical evidence for the clinical application potential of miR-324-3p.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Panyang Zhang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| |
Collapse
|