1
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
2
|
Maekawa S, Nishikawa I, Horiguchi G. Impaired inosine monophosphate dehydrogenase leads to plant-specific ribosomal stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:1091-1104. [PMID: 39235732 DOI: 10.1007/s10265-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Nucleotides are the building blocks of living organisms and their biosynthesis must be tightly regulated. Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in GTP synthesis that is essential for biological activities, such as RNA synthesis. In animals, the suppression of IMPDH function causes ribosomal stress (also known as nucleolar stress), a disorder in ribosome biogenesis that results in cell proliferation defects and apoptosis. Despite its importance, plant IMPDH has not been analyzed in detail. Therefore, we analyzed the phenotypes of mutants of the two IMPDH genes in Arabidopsis thaliana and investigated their relationship with ribosomal stress. Double mutants of IMPDH1 and IMPDH2 were lethal, and only the impdh2 mutants showed growth defects and transient chlorophyll deficiency. These results suggested that IMPDH1 and IMPDH2 are redundant and essential, whereas IMPDH2 has a crucial role. In addition, the impdh2 mutants showed a reduction in nucleolus size and resistance to several translation inhibitors, which is a known response to ribosomal stress. Furthermore, the IMPDH1/impdh1 impdh2 mutants showed more severe growth defects and phenotypes such as reduced plastid rRNA levels and abnormal processing patterns than the impdh2 mutants. Finally, multiple mutations of impdh with as2, which has abnormal leaf polarity, caused the development of needle-like leaves because of the enhancement of the as2 phenotype, which is a typical effect observed in mutants of genes involved in ribosome biogenesis. These results indicated that IMPDH is closely related to ribosome biogenesis, and that mutations in the genes lead to not only known responses to ribosomal stress, but also plant-specific responses.
Collapse
Affiliation(s)
- Shugo Maekawa
- Institute of Natural Sciences, Senshu University, Higashimita 2-1-1, Tama, Kawasaki, Kanagawa, 214-8580, Japan.
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan.
| | - Ikuto Nishikawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
| |
Collapse
|
3
|
Huang Y, Flentke GR, Smith SM. Alcohol induces p53-mediated apoptosis in neural crest by stimulating an AMPK-mediated suppression of TORC1, S6K, and ribosomal biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601754. [PMID: 39005448 PMCID: PMC11244973 DOI: 10.1101/2024.07.02.601754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG. Alcohol-exposed cells of the pluripotent, primary cranial NC line O9-1 were evaluated with respect to their S6K, TORC1, and AMPK activity. The functional impact of these signals with respect to RBG, p53, and apoptosis were assessed using gain-of-function constructs and small molecule mediators. Alcohol rapidly (<2hr) increased pAMPK, pTSC2, and pRaptor, and reduced both total and pS6K in NC cells. These changes persisted for at least 12hr to 18hr following alcohol exposure. Attenuation of these signals via gain- or loss-of-function approaches that targeted AMPK, S6K, or TORC1 prevented alcohol's suppression of rRNA synthesis and the induction of p53-stimulated apoptosis. We conclude that alcohol induces ribosome dysbiogenesis and activates their p53/MDM2-mediated apoptosis via its activation of pAMPK, which in turn activates TSC2 and Raptor to suppress the TORC1/S6K-mediated promotion of ribosome biogenesis. This represents a novel mechanism underlying alcohol's neurotoxicity and is consistent with findings that TORC1/S6K networks are critical for cranial NC survival.
Collapse
|
4
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
5
|
Dabrowska A, Ruggero D. snoRNAs in making "snoman" ribosomes. Mol Cell 2024; 84:3008-3010. [PMID: 39178837 DOI: 10.1016/j.molcel.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
In a recent study in Cell, Cheng and Wang et al.1 show that the small nucleolar RNA (snoRNA) SNORA13 has a non-canonical role in ribosome biogenesis and senescence by acting directly on RPL23 and regulating its assembly into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Adrianna Dabrowska
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Mills J, Tessari A, Anastas V, Kumar DS, Rad NS, Lamba S, Cosentini I, Reers A, Zhu Z, Miles WO, Coppola V, Cocucci E, Magliery TJ, Shive H, Davies AE, Rizzotto L, Croce CM, Palmieri D. Nucleolin acute degradation reveals novel functions in cell cycle progression and division in TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599429. [PMID: 38948867 PMCID: PMC11212942 DOI: 10.1101/2024.06.17.599429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nucleoli are large nuclear sub-compartments where vital processes, such as ribosome assembly, take place. Technical obstacles still limit our understanding of the biological functions of nucleolar proteins in cell homeostasis and cancer pathogenesis. Since most nucleolar proteins are essential, their abrogation cannot be achieved through conventional approaches. Additionally, the biological activities of many nucleolar proteins are connected to their physiological concentration. Thus, artificial overexpression might not fully recapitulate their endogenous functions. Proteolysis-based approaches, such as the Auxin Inducible Degron (AID) system paired with CRISPR/Cas9 knock-in gene-editing, have the potential to overcome these limitations, providing unprecedented characterization of the biological activities of endogenous nucleolar proteins. We applied this system to endogenous nucleolin (NCL), one of the most abundant nucleolar proteins, and characterized the impact of its acute depletion on Triple-Negative Breast Cancer (TNBC) cell behavior. Abrogation of endogenous NCL reduced proliferation and caused defective cytokinesis, resulting in bi-nucleated tetraploid cells. Bioinformatic analysis of patient data, and quantitative proteomics using our experimental NCL-depleted model, indicated that NCL levels are correlated with the abundance of proteins involved in chromosomal segregation. In conjunction with its effects on sister chromatid dynamics, NCL abrogation enhanced the anti-proliferative effects of chemical inhibitors of mitotic modulators such as the Anaphase Promoting Complex. In summary, using the AID system in combination with CRISPR/Cas9 for endogenous gene editing, our findings indicate a novel role for NCL in supporting the completion of the cell division in TNBC models, and that its abrogation could enhance the therapeutic activity of mitotic-progression inhibitors.
Collapse
Affiliation(s)
- Joseph Mills
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, 43210, Columbus, OH, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Graduate School of Biomedical Sciences, Tufts University, 02155, Boston, MA, USA
| | - Damu Sunil Kumar
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Nastaran Samadi Rad
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, 43210, Columbus, OH, USA
| | - Saranya Lamba
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Ilaria Cosentini
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Current address: Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Ashley Reers
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Current address: Department of Ecology and Evolutionary Biology, Tulane University, 70118, New Orleans, LA, USA
| | - Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, 43210, Columbus, OH, USA
- Chemistry Graduate Program, The Ohio State University, 43210, Columbus, OH, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University-James Cancer Hospital and Solove Research Institute, 43210, Columbus, OH, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Thomas J. Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, 43210, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University-James Cancer Hospital and Solove Research Institute, 43210, Columbus, OH, USA
| | - Heather Shive
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA
- Current address: Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander E. Davies
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA
- Current address: Division of Oncological Sciences, Department of Pediatrics, Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, 97239, Portland, OR, USA
| | - Lara Rizzotto
- Gene Editing Shared Resource, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Gene Editing Shared Resource, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| |
Collapse
|
9
|
Wang L, Yang R, Kong Y, Zhou J, Chen Y, Li R, Chen C, Tang X, Chen X, Xia J, Chen X, Cheng B, Ren X. Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC. Int J Oral Sci 2024; 16:44. [PMID: 38886346 PMCID: PMC11183126 DOI: 10.1038/s41368-024-00310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.
Collapse
Affiliation(s)
- Lixuan Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rongchun Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Kong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhou
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yingyao Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rui Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuwen Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xinran Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
11
|
Zhang M, Zeng Y, Wang F, Feng H, Liu Q, Li F, Zhao S, Zhao J, Liu Z, Zheng F, Liu H. Effects of the Nonstructural Protein-Nucleolar and Coiled-Body Phosphoprotein 1 Protein Interaction on rRNA Synthesis Through Telomeric Repeat-Binding Factor 2 Regulation Under Nucleolar Stress. AIDS Res Hum Retroviruses 2024; 40:408-416. [PMID: 38062753 DOI: 10.1089/aid.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects and underlying molecular mechanisms of the interaction between the non-structural protein 1 (NS1) and nucleolar and coiled-body phosphoprotein 1 (NOLC1) on rRNA synthesis through nucleolar telomeric repeat-binding factor 2 (TRF2) under nucleolar stress in avian influenza A virus infection. The analysis of TRF2 ties into the exploration of ribosomal protein L11 (RPL11) and mouse double minute 2 (MDM2) because TRF2 has been found to interact with NOLC1, and the RPL11-MDM2 pathway plays an important role in nucleolar regulation and cellular processes. Both human embryonic kidney 293T cells and human lung adenocarcinoma A549 cells were transfected with the plasmids pCAGGS-HA and pCAGGS-HA-NS1, respectively. In addition, A549 cells were transfected with the plasmids pEGFP-N1, pEGFP-N1-NS1, and pDsRed2-N1-TRF2. The cell cycle was detected by flow cytometry, and coimmunoprecipitation was applied to examine the interactions between different proteins. The effect of NS1 on TRF2 was detected by immunoprecipitation, and the colocalization of NOLC1 and TRF2 or NS1 and TRF2 was visualized by immunofluorescence. Quantitative real-time PCR was conducted to detect the expression of the TRF2 and p21. There is a strong interaction between NOLC1 and TRF2, and the colocalization of NOLC1 and TRF2 in the nucleus. The protein expression of NOLC1 in A549-HA-NS1 cells was lower than that in A549-HA cells, which was accompanied by the upregulated protein expression of p53 in A549-HA-NS1 cells (all p < .05). TRF2 was scattered throughout the nucleus without clear nucleolar aggregation. RPL11 specifically interacted with MDM2 in the NS1 group, and expression of the p21 gene was significantly increased in the HA-NS1 group compared with the HA group (p < .01). NS1 protein can lead to the reduced aggregation of TRF2 in the nucleolus, inhibition of rRNA expression, and cell cycle blockade by interfering with the NOLC1 protein and generating nucleolar stress.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
| | - Fengchao Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, China
| | - Shan Zhao
- School of Life Science, Liaoning University, Shenyang, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Fangliang Zheng
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| |
Collapse
|
12
|
Shlapakova PS, Dobrynina LA, Kalashnikova LA, Gubanova MV, Danilova MS, Gnedovskaya EV, Grigorenko AP, Gusev FE, Manakhov AD, Rogaev EI. Peripheral Blood Gene Expression Profiling Reveals Molecular Pathways Associated with Cervical Artery Dissection. Int J Mol Sci 2024; 25:5205. [PMID: 38791244 PMCID: PMC11121660 DOI: 10.3390/ijms25105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Cervical artery dissection (CeAD) is the primary cause of ischemic stroke in young adults. Monogenic heritable connective tissue diseases account for fewer than 5% of cases of CeAD. The remaining sporadic cases have known risk factors. The clinical, radiological, and histological characteristics of systemic vasculopathy and undifferentiated connective tissue dysplasia are present in up to 70% of individuals with sporadic CeAD. Genome-wide association studies identified CeAD-associated genetic variants in the non-coding genomic regions that may impact the gene transcription and RNA processing. However, global gene expression profile analysis has not yet been carried out for CeAD patients. We conducted bulk RNA sequencing and differential gene expression analysis to investigate the expression profile of protein-coding genes in the peripheral blood of 19 CeAD patients and 18 healthy volunteers. This was followed by functional annotation, heatmap clustering, reports on gene-disease associations and protein-protein interactions, as well as gene set enrichment analysis. We found potential correlations between CeAD and the dysregulation of genes linked to nucleolar stress, senescence-associated secretory phenotype, mitochondrial malfunction, and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Polina S. Shlapakova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Larisa A. Dobrynina
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Ludmila A. Kalashnikova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Mariia V. Gubanova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Maria S. Danilova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Elena V. Gnedovskaya
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Anastasia P. Grigorenko
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
| | - Fedor E. Gusev
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
| | - Andrey D. Manakhov
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Evgeny I. Rogaev
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Department of Psychiatry, UMass Chan Medical School, 222 Maple Ave, Reed-Rose-Gordon Building, Shrewsbury, MA 01545, USA
| |
Collapse
|
13
|
Nowak J, Lenartowski R, Kalita K, Lehka L, Karatsai O, Lenartowska M, Rędowicz MJ. Myosin VI in the nucleolus of neurosecretory PC12 cells: its involvement in the maintenance of nucleolar structure and ribosome organization. Front Physiol 2024; 15:1368416. [PMID: 38774650 PMCID: PMC11106421 DOI: 10.3389/fphys.2024.1368416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
Collapse
Affiliation(s)
- Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Sirozh O, Saez-Mas A, Jung B, Sanchez-Burgos L, Zarzuela E, Rodrigo-Perez S, Ventoso I, Lafarga V, Fernandez-Capetillo O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol Cell 2024; 84:1527-1540.e7. [PMID: 38521064 DOI: 10.1016/j.molcel.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
Collapse
Affiliation(s)
- Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Anabel Saez-Mas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ivan Ventoso
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Departamento de Biologia Molecular, Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| |
Collapse
|
15
|
Jiang W, Qiao Q, Chen J, Bao P, Tao Y, Zhang Y, Xu Z. Rna Buffering Fluorogenic Probe for Nucleolar Morphology Stable Imaging And Nucleolar Stress-Generating Agents Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309743. [PMID: 38326089 PMCID: PMC11022735 DOI: 10.1002/advs.202309743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
In the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus. Nu-AN demonstrates a significant enhancement in fluorescence upon its selective binding to nucleolar RNA, due to the inhibited twisted intramolecular charge-transfer (TICT) and reduced hydrogen bonding with water. What sets Nu-AN apart is its neutral charge and weak interaction with nucleolus RNA, enabling it to label the nucleolus selectively and reversibly. This not only reduces interference but also permits the replacement of photobleached probes with fresh ones outside the nucleolus, thereby preserving imaging photostability. By closely monitoring morphology-specific changes in the nucleolus with this buffering fluorogenic probe, screenings for agents are conducted that induce nucleolar stress within living cells.
Collapse
Affiliation(s)
- Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengjun Bao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
16
|
Huang Y, Flentke GR, Rivera OC, Saini N, Mooney SM, Smith SM. Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain. Cells 2024; 13:440. [PMID: 38474404 PMCID: PMC10931382 DOI: 10.3390/cells13050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5-E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol's actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - George R. Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Olivia C. Rivera
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
17
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
18
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
19
|
Ma Y, Wang J, He X, Liu Y, Zhen S, An L, Yang Q, Niu F, Wang H, An B, Tai X, Yan Z, Wu C, Yang X, Liu X. Molecular mechanism of human ISG20L2 for the ITS1 cleavage in the processing of 18S precursor ribosomal RNA. Nucleic Acids Res 2024; 52:1878-1895. [PMID: 38153123 PMCID: PMC10899777 DOI: 10.1093/nar/gkad1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
The exonuclease ISG20L2 has been initially characterized for its role in the mammalian 5.8S rRNA 3' end maturation, specifically in the cleavage of ITS2 of 12S precursor ribosomal RNA (pre-rRNA). Here, we show that human ISG20L2 is also involved in 18S pre-rRNA maturation through removing the ITS1 region, and contributes to ribosomal biogenesis and cell proliferation. Furthermore, we determined the crystal structure of the ISG20L2 nuclease domain at 2.9 Å resolution. It exhibits the typical αβα fold of the DEDD 3'-5' exonuclease with a catalytic pocket located in the hollow near the center. The catalytic residues Asp183, Glu185, Asp267, His322 and Asp327 constitute the DEDDh motif in ISG20L2. The active pocket represents conformational flexibility in the absence of an RNA substrate. Using structural superposition and mutagenesis assay, we mapped RNA substrate binding residues in ISG20L2. Finally, cellular assays revealed that ISG20L2 is aberrantly up-regulated in colon adenocarcinoma and promotes colon cancer cell proliferation through regulating ribosome biogenesis. Together, these results reveal that ISG20L2 is a new enzymatic member for 18S pre-rRNA maturation, provide insights into the mechanism of ISG20L2 underlying pre-rRNA processing, and suggest that ISG20L2 is a potential therapeutic target for colon adenocarcinoma.
Collapse
Affiliation(s)
- Yinliang Ma
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Jiaxu Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- College of Life Sciences, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453002 Henan, China
| | - Xingyi He
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Yuhang Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Shuo Zhen
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Lina An
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Qian Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Fumin Niu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Hong Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Boran An
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002 Hebei, China
| | - Xinyue Tai
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Chen Wu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Xiaoyun Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Xiuhua Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| |
Collapse
|
20
|
Ji R, Zhang Z, Yang Z, Chen X, Yin T, Yang J. BOP1 contributes to the activation of autophagy in polycystic ovary syndrome via nucleolar stress response. Cell Mol Life Sci 2024; 81:101. [PMID: 38409361 PMCID: PMC10896891 DOI: 10.1007/s00018-023-05091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
Abnormal autophagy is one of the vital features in polycystic ovary syndrome (PCOS). However, the underlying molecular mechanisms remain unelucidated. In this study, we aimed to investigate whether Block of Proliferation 1 (BOP1) is involved in the onset of autophagy activation of granulosa cells in PCOS. Firstly, we found that BOP1 expression was significantly down-regulated in the ovaries of PCOS mice, which was associated with the development of PCOS. Next, local injection of lentiviral vectors in the ovary for the overexpression of BOP1 significantly alleviated the phenotypes of elevated androgens, disturbed estrous cycle, and abnormal follicular development in PCOS mice. Subsequently, we found that knockdown of BOP1 activated autophagy of granulosa cells in the in vitro experiments, whereas overexpression of BOP1 inhibited autophagy in both in vivo and in vitro models. Mechanistically, BOP1 knockdown triggered the nucleolus stress response, which caused RPL11 to be released from the nucleolus into the nucleoplasm and inhibited the E3 ubiquitination ligase of MDM2, thereby enhancing the stability of p53. Subsequently, P53 inhibited mTOR, thereby activating autophagy in granulosa cells. In addition, the mRNA level of BOP1 was negatively correlated with antral follicle count (AFC), body-mass index (BMI), serum androgen levels, and anti-Mullerian hormone (AMH) in patients with PCOS. In summary, our study demonstrates that BOP1 downregulation inhibits mTOR phosphorylation through activation of the p53-dependent nucleolus stress response, which subsequently contributes to aberrant autophagy in granulosa cells, revealing that BOP1 may be a key target for probing the mechanisms of PCOS.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zhimo Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
21
|
Bobrov IP, Dolgatov AY, Lepilov AV, Korsikov NA, Dolgatova ES, Klinnikova MG, Lushnikova EL. Structural Changes in Rat Hepatocyte Nucleolus under Nucleolar Stress Caused by Hypothermia. Bull Exp Biol Med 2024; 176:519-522. [PMID: 38492107 DOI: 10.1007/s10517-024-06059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 03/18/2024]
Abstract
Structural changes in rat hepatocyte nucleoli were studied during deep hypothermia simulated by immersion in water at 5°C for 40 min (ambient air temperature 7°C). In comparison with the control, phenomena of nucleolar stress occurred in rats during hypothermia: the number of fibrillar centers (FC) per nucleus (by 1.7 times) and per nucleolus (by 1.6 times), nucleolonemal nucleoli per nucleus (by 2.8 times), and the relative content of nucleolonemal nucleoli per nucleus (by 2.6 times) significantly decreased (p=0.0000001); the number of FC per nucleolonemal nucleolus also decreased by 1.4 times (p=0.01). In the hepatocyte nuclei, we observed an increase in the relative content of transitional type nucleoli per nucleus (by 1.3 times; p=0.01), the number of FC per transitional type nucleolus (by 1.4 times; p=0.003), the content of free FC per nucleus (by 3 times; p=0.00004), and the percentage of free FC per nucleus (by 3.5 times; p=0.00004). These changes can be considered as compensatory and adaptive reactions, and transitional type nucleoli can be attributed to the "reserve" nucleolar pool.
Collapse
Affiliation(s)
- I P Bobrov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - A Yu Dolgatov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - A V Lepilov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - N A Korsikov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - E S Dolgatova
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| |
Collapse
|
22
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
23
|
Kodera K, Hishida R, Sakai A, Nyuzuki H, Matsui N, Yamanaka T, Saitoh A, Matsui H. GPATCH4 contributes to nucleolus morphology and its dysfunction impairs cell viability. Biochem Biophys Res Commun 2024; 693:149384. [PMID: 38113722 DOI: 10.1016/j.bbrc.2023.149384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The nucleolus serves a multifaceted role encompassing not only rRNA transcription and ribosome synthesis, but also the intricate orchestration of cell cycle regulation and the modulation of cellular senescence. G-patch domain containing 4 (GPATCH4) stands as one among the nucleolar proteins; however, its functional significances remain still unclear. In order to elucidate the functions of GPATCH4, we examined the effects of its dysfunction on cellular proliferation, alterations in nucleolar architecture, apoptotic events, and cellular senescence. Through experimentation conducted on cultured neuroblastoma SH-SY5Y cells, the reduction of GPATCH4 caused inhibition of cellular proliferation, concurrently fostering escalated apoptotic susceptibilities upon exposure to high-dose etoposide. In the realm of nucleolar morphology comparisons, a discernible decline was noted in the count of nucleoli per nucleus, concomitant with a significant expansion in the area occupied by individual nucleoli. Upon induction of senescence prompted by low-dose etoposide, GPATCH4 knockdown resulted in decreased cell viability and increased expression of senescence-associated markers, namely senescence-associated β-galactosidase (SA-β-GAL) and p16. Furthermore, GPATCH4 dysfunction elicited alterations in the gene expression profile of the ribosomal system. In sum, our findings showed that GPATCH4 is a pivotal nucleolar protein that regulates nucleolar morphology and is correlated with cell viability.
Collapse
Affiliation(s)
- Kazuki Kodera
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan; Department of Paediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryuichi Hishida
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Akiko Sakai
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hiromi Nyuzuki
- Department of Paediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Akihiko Saitoh
- Department of Paediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
24
|
Liu XY, Tan Q, Li LX. A pan-cancer analysis of Dyskeratosis congenita 1 (DKC1) as a prognostic biomarker. Hereditas 2023; 160:38. [PMID: 38082360 PMCID: PMC10712082 DOI: 10.1186/s41065-023-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1), a critical component of telomerase complex, is highly expressed in a variety of human cancers. However, the association of DKC1 with cancer occurrence and development stages is not clear, making a pan-cancer analysis crucial. METHODS We conducted a study using various bioinformatic databases such as TIMER, GEPIA, UALCAN, and KM plotter Analysis to examine the different expressions of DKC1 in multiple tissues and its correlation with pathological stages. Through KEGG analysis, GO enrichment analysis and Venn analysis, we were able to reveal DKC1-associated genes and signaling pathways. In addition, we performed several tests including the CCK, wound healing assay, cell cycle arrest assay, transwell assay and Sa-β-gal staining on DKC1-deleted MDA-231 cells. RESULTS Our study demonstrates that DKC1 has relatively low expression specificity in different tissues. Furthermore, we found that in ACC, KICH, KIRP and LIHC, the expression level of DKC1 is positively correlated with pathological stages. Conversely, in NHSC, KIRP, LGG, LIHC, MESO and SARC, we observed a negative influence of DKC1 expression level on the overall survival rate. We also found a significant positive correlation between DKC1 expression and Tumor Mutational Burden in 14 tumors. Additionally, we observed a significantly negative impact of DKC1 DNA methylation on gene expression at the promoter region in BRCA. We also identified numerous phosphorylation sites concentrated at the C-terminus of the DKC1 protein. Our GO analysis revealed a correlation between DKC1 and ribosomal biosynthesis pathways, and the common element UTP14A was identified. We also observed decreased rates of cell proliferation, migration and invasion abilities in DKC1-knockout MDA-MB-231 cell lines. Furthermore, DKC1-knockout induced cell cycle arrest and caused cell senescence. CONCLUSIONS Our findings suggest that the precise expression of DKC1 is closely associated with the occurrence and developmental stages of cancer in multiple tissues. Depletion of DKC1 can inhibit the abilities of cancer cells to proliferate, migrate, and invade by arresting the cell cycle and inducing cell senescence. Therefore, DKC1 may be a valuable prognostic biomarker for the diagnosis and treatment of cancer in various tissues.
Collapse
Affiliation(s)
- Xin-Ying Liu
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lin-Xiao Li
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China.
| |
Collapse
|
25
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
26
|
Lafita-Navarro MC, Hao YH, Jiang C, Jang S, Chang TC, Brown IN, Venkateswaran N, Maurais E, Stachera W, Zhang Y, Mundy D, Han J, Tran VM, Mettlen M, Xu L, Woodruff JB, Grishin NV, Kinch L, Mendell JT, Buszczak M, Conacci-Sorrell M. ZNF692 organizes a hub specialized in 40S ribosomal subunit maturation enhancing translation in rapidly proliferating cells. Cell Rep 2023; 42:113280. [PMID: 37851577 DOI: 10.1016/j.celrep.2023.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhui Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Maurais
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weronika Stachera
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dorothy Mundy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Live Cell Imaging Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanna M Tran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
Affiliation(s)
| | - Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| |
Collapse
|
28
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
29
|
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int J Mol Sci 2023; 24:13196. [PMID: 37686003 PMCID: PMC10488196 DOI: 10.3390/ijms241713196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.
Collapse
Affiliation(s)
- Terry A. McNearney
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA;
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
| | - Karin N. Westlund
- Department of Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
30
|
Zhao M, Liu A, Mo L, Wan G, Lu F. The value of RPS15 and MRPS27 in ischemic stroke. Medicine (Baltimore) 2023; 102:e34706. [PMID: 37603533 PMCID: PMC10443774 DOI: 10.1097/md.0000000000034706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Ischemic stroke is caused by insufficient blood supply to the brain. It has acute onset, often disturbance of consciousness, and high mortality and disability rate. However, relationship between ribosomal proteins (RP)-S15 and mitochondrial ribosomal proteins (MRP)-S27 and ischemic stroke remains unclear. The ischemic stroke datasets GSE22255, GSE16561, and GSE199435 were downloaded from gene expression omnibus generated by GPL6883, GPL11154, and GPL570. Differentially expressed genes (DEGs) were screened, and the construction and analysis of protein-protein interaction network, functional enrichment analysis and gene set enrichment analysis were performed. The gene expression heat map was drawn. Comparative toxicogenomics database analysis were performed to find the disease most related to core gene. TargetScan screened miRNAs that regulated central DEGs. Five hundred DEGs were identified. According to gene ontology analysis, they were mainly enriched in leukocyte activation, myoid cell activation involved in immune response, cell membrane, mitochondria, secretory vesicles, catalytic activity, enzyme binding, ribonucleic acid binding, splicing. Gene set enrichment analysis showed that the enrichment items are similar to the enrichment items of differentially expressed genes. And 20 core genes were obtained. Comparative toxicogenomics database analysis showed that 6 genes (RPS15, RPS2, RPS3, MRPS27, POLR2A, MRPS26) were found to be associated with chemical and drug-induced liver injury, necrosis, delayed prenatal exposure, nephropathy, hepatomegaly and tumor. RPS15 and MRPS27 are the core genes of ischemic stroke and play an important role in ischemic stroke.
Collapse
Affiliation(s)
- Man Zhao
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Aixian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Linhong Mo
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Guiling Wan
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Fang Lu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| |
Collapse
|
31
|
Chen HF, Gao DD, Jiang XQ, Sheng H, Wu Q, Zheng Q, Zhai QC, Yuan L, Liu M, Xu LF, Qian MX, Xu H, Fang J, Zhang F. TAF1B depletion leads to apoptotic cell death by inducing nucleolar stress and activating p53-miR-101 circuit in hepatocellular carcinoma. Front Oncol 2023; 13:1203775. [PMID: 37645431 PMCID: PMC10461479 DOI: 10.3389/fonc.2023.1203775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Background TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown. Objective In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC. Methods We analyzed the differential expression and prognostic value of TAF1B in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA) database, tumor and paraneoplastic tissue samples from clinical hepatocellular carcinoma patients, and typical hepatocellular carcinoma. We detected cell proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western blotting (WB) detection of apoptosis marker proteins. Simultaneously, we investigated the influence of TAF1B knockdown on the function of the pre-initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays verified the interaction between the complexes and the effect on rDNA activity. Immunofluorescence assays measured the expression of marker proteins of nucleolus stress, fluorescence in situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated the role of p53 and miR-101 in modulating nucleolar stress and apoptosis. Finally, the impact of TAF1B knockdown on tumor growth, apoptosis, and p53 expression was observed in xenograft tumors. Result We identified that TAF1B was highly expressed in hepatocellular carcinoma and associated with poor prognosis in HCC patients. TAF1B depletion modulated nucleolar stress and apoptosis in hepatocellular carcinoma cells through positive and negative feedback from p53-miR-101. RNA polymerase I transcription repression triggered post-transcriptional activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively feeds back through direct inhibition of the p53-mediated PARP pathway. Conclusion These findings broaden our comprehension of the function of TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer new biomarkers for exploring prospective therapeutic targets in HCC.
Collapse
Affiliation(s)
- Hang-fei Chen
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Dan-dan Gao
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xin-qing Jiang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Sheng
- Department of Anus & Intestine Surgery, The First People’s Hospital of Jiande, Hangzhou, Zhejiang, China
| | - Qi Wu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Quan Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Qiao-cheng Zhai
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Ming Liu
- The Joint Innovation Center for Engineering in Medicine, Quzhou People’s Hospital, Quzhou, China
| | - Li-feng Xu
- The Joint Innovation Center for Engineering in Medicine, Quzhou People’s Hospital, Quzhou, China
| | - Mao-xiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Heng Xu
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Fang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Feng Zhang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
32
|
Chen J, Pu L, Niu Y, Tian K, Jia X, Zhang L, Lu Y. Prolonged fasting induces significant germ cell loss in chickens after hatching. Poult Sci 2023; 102:102815. [PMID: 37356301 PMCID: PMC10404744 DOI: 10.1016/j.psj.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
Germ cell loss is a crucial biological event during germ cell development. The number of female germ cells determines the reproductive performance and egg production of hens. Various intrinsic and extrinsic factors affect germ cell loss, such as germ cell nest breakdown in early life and nutritional deficiencies during daily husbandry. Here, we examined the effect of fasting on the germ cell number of chicks. The results showed that 72 h fasting resulted in a higher germ cell loss than that by 24 h fasting in chicks. The RNA-seq analysis revealed that the genes of ribosome pathway were down-regulated and the biological processes of protein processing in endoplasmic reticulum were inhibited in starved chicks. Furthermore, in female chicks treated with 72 h fasting, the qPCR of ovaries showed down-regulation of ribosome-related genes, and transmission electron microscopy imaging of ovaries showed fewer ribosomes. The blood biochemical indices indicated that 72 h fasting reduced the liver functions and affected the glucose metabolism, lipid metabolites and ion metabolites. In summary, the present results concluded negative impacts on the germ cell pool by prolonged fasting in the early life of chicks and manifested that adequate management should be cared for fasted time for breeding.
Collapse
Affiliation(s)
- Jiawen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yajing Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kui Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoxuan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
33
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
34
|
Boeynaems S, Ma XR, Yeong V, Ginell GM, Chen JH, Blum JA, Nakayama L, Sanyal A, Briner A, Haver DV, Pauwels J, Ekman A, Schmidt HB, Sundararajan K, Porta L, Lasker K, Larabell C, Hayashi MAF, Kundaje A, Impens F, Obermeyer A, Holehouse AS, Gitler AD. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531820. [PMID: 36945394 PMCID: PMC10028949 DOI: 10.1101/2023.03.09.531820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X. Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - H. Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mirian A. F. Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Allie Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Abstract
Although differential transcription drives the development of multicellular organisms, the ultimate readout of a protein-coding gene is ribosome-dependent mRNA translation. Ribosomes were once thought of as uniform molecular machines, but emerging evidence indicates that the complexity and diversity of ribosome biogenesis and function should be given a fresh look in the context of development. This Review begins with a discussion of different developmental disorders that have been linked with perturbations in ribosome production and function. We then highlight recent studies that reveal how different cells and tissues exhibit variable levels of ribosome production and protein synthesis, and how changes in protein synthesis capacity can influence specific cell fate decisions. We finish by touching upon ribosome heterogeneity in stress responses and development. These discussions highlight the importance of considering both ribosome levels and functional specialization in the context of development and disease.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
36
|
Talbot DE, Vormezeele BJ, Kimble GC, Wineland DM, Kelpsch DJ, Giedt MS, Tootle TL. Prostaglandins limit nuclear actin to control nucleolar function during oogenesis. Front Cell Dev Biol 2023; 11:1072456. [PMID: 36875757 PMCID: PMC9981675 DOI: 10.3389/fcell.2023.1072456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Prostaglandins (PGs), locally acting lipid signals, regulate female reproduction, including oocyte development. However, the cellular mechanisms of PG action remain largely unknown. One cellular target of PG signaling is the nucleolus. Indeed, across organisms, loss of PGs results in misshapen nucleoli, and changes in nucleolar morphology are indicative of altered nucleolar function. A key role of the nucleolus is to transcribe ribosomal RNA (rRNA) to drive ribosomal biogenesis. Here we take advantage of the robust, in vivo system of Drosophila oogenesis to define the roles and downstream mechanisms whereby PGs regulate the nucleolus. We find that the altered nucleolar morphology due to PG loss is not due to reduced rRNA transcription. Instead, loss of PGs results in increased rRNA transcription and overall protein translation. PGs modulate these nucleolar functions by tightly regulating nuclear actin, which is enriched in the nucleolus. Specifically, we find that loss of PGs results in both increased nucleolar actin and changes in its form. Increasing nuclear actin, by either genetic loss of PG signaling or overexpression of nuclear targeted actin (NLS-actin), results in a round nucleolar morphology. Further, loss of PGs, overexpression of NLS-actin or loss of Exportin 6, all manipulations that increase nuclear actin levels, results in increased RNAPI-dependent transcription. Together these data reveal PGs carefully balance the level and forms of nuclear actin to control the level of nucleolar activity required for producing fertilization competent oocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
37
|
Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. Nucleolar stress: Molecular mechanisms and related human diseases. Cancer Sci 2023; 114:2078-2086. [PMID: 36762786 PMCID: PMC10154868 DOI: 10.1111/cas.15755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.
Collapse
Affiliation(s)
- Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
38
|
Bari MW, Morishita Y, Kishigami S. Heterogeneity of nucleolar morphology in four-cell mouse embryos after IVF: association with developmental potential. Anim Sci J 2023; 94:e13907. [PMID: 38102887 DOI: 10.1111/asj.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In mammals, around fertilization, the nucleolus of embryos transforms into the nucleolus precursor bodies (NPBs), which continue to mature until the blastocyst stage, leading to distinct morphological changes. In our study, we observed two types of nucleolar morphology in mouse in vitro fertilized embryos at the four-cell stage, which we refer to single nucleolus (SN) and multiple nucleoli (MN). To visualize nucleolar morphology, four-cell embryos were immunostained with anti-NOPP140 antibody. These embryos were categorized into five types based on the number of blastomeres carrying SN: SN4/MN0, SN3/MN1, SN2/MN2, SN1/MN3, and SN0/MN4, with percentages of 13, 27, 21, 23 and 9, respectively. Next, using a light microscope, we divided the four-cell in vitro fertilized embryos without fixation into two groups: those with at least two blastomeres displaying SN (SN embryos) and those without (MN embryos). Notably, significantly more SN embryos developed into blastocysts and offspring at 18.5 dpc compared with MN embryos. Furthermore, SN embryos displayed a higher NANOG-positive cell number at the blastocyst stage, significantly lower body and placental weights, resulting in a higher fetal/placental ratio. These findings suggest a close association between nucleolar state at the four-cell stage and subsequent developmental potential.
Collapse
Affiliation(s)
- Md Wasim Bari
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Yoshiya Morishita
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
| | - Satoshi Kishigami
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
- Center for advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Japan
| |
Collapse
|
39
|
NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Dis 2022; 8:436. [PMCID: PMC9622906 DOI: 10.1038/s41420-022-01226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.
Collapse
|
40
|
Guan X, Wang B, Zhang Y, Qi G, Chen L, Jin Y. Monitoring Stress Response Difference in Nucleolus Morphology and ATP Content Changes during Hyperthermia Cell Apoptosis with Plasmonic Fluorescent Nanoprobes. Anal Chem 2022; 94:13842-13851. [PMID: 36174112 DOI: 10.1021/acs.analchem.2c02464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleolus, as a main "cellular stress receptor", is the hub of the stress response driving cancer development and has great research value in the field of organelle-targeting photothermal therapy. However, there are few studies focused on monitoring nucleolar stress response and revealing how the energy metabolism of cells regulates the nucleolar stress response during photothermal therapy. Herein, by designing a nucleolus-targeting and ATP- and photothermal-responsive plasmonic fluorescent nanoprobe (AuNRs-CDs) based on gold nanorods (AuNRs) and fluorescent carbon quantum dots (CDs), we achieved real-time fluorescence imaging of nucleus morphology while monitoring changes of ATP content at the subcellular level. We found that the green fluorescence diminished at 5 min of photothermal therapy, and the nucleolus morphology began to shrink and became smaller in cancerous HepG2 cells. In contrast, there is no significant change of green fluorescence in the nucleolar region of normal HL-7702 cells. ATP content monitoring also showed similar results. Apparently, in response to photothermal stimuli, cancerous cells produce more ATP (energy) along with obvious change in nucleolus morphology and state compared to normal cells under the hyperthermia-induced cell apoptosis. The developed AuNRs-CDs as a nucleolus imaging nanoprobe and effective photothermal agent present promising applications for nucleolar stress studies and targeted photothermal therapy.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
41
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|
42
|
Buszczak M. Ribosome homeostasis. Semin Cell Dev Biol 2022; 136:1-2. [PMID: 35909032 DOI: 10.1016/j.semcdb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
43
|
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance. Molecules 2022; 27:molecules27134308. [PMID: 35807553 PMCID: PMC9268307 DOI: 10.3390/molecules27134308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria.
Collapse
|
44
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|