1
|
Kim C, Oh S, Im H, Gim J. Unveiling Bladder Cancer Prognostic Insights by Integrating Patient-Matched Sample and CpG Methylation Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1175. [PMID: 39064604 PMCID: PMC11279046 DOI: 10.3390/medicina60071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Bladder cancer prognosis remains a pressing clinical challenge, necessitating the identification of novel biomarkers for precise survival prediction and improved quality of life outcomes. This study proposes a comprehensive strategy to uncover key prognostic biomarkers in bladder cancer using DNA methylation analysis and extreme survival pattern observations in matched pairs of cancer and adjacent normal cells. Unlike traditional approaches that overlook cancer heterogeneity by analyzing entire samples, our methodology leverages patient-matched samples to account for this variability. Specifically, DNA methylation profiles from adjacent normal bladder tissue and bladder cancer tissue collected from the same individuals were analyzed to pinpoint critical methylation changes specific to cancer cells while mitigating confounding effects from individual genetic differences. Utilizing differential threshold settings for methylation levels within cancer-associated pathways enabled the identification of biomarkers that significantly impact patient survival. Our analysis identified distinct survival patterns associated with specific CpG sites, underscoring these sites' pivotal roles in bladder cancer outcomes. By hypothesizing and testing the influence of methylation levels on survival, we pinpointed CpG biomarkers that profoundly affect the prognosis. Notably, CpG markers, such as cg16269144 (PRKCZ), cg16624272 (PTK2), cg11304234, and cg26534425 (IL18), exhibited critical methylation thresholds that correlate with patient mortality. This study emphasizes the importance of tailored approaches to enhancing prognostic accuracy and refining therapeutic strategies for bladder cancer patients. The identified biomarkers pave the way for personalized prognostication and targeted interventions, promising advancements in bladder cancer management and patient care.
Collapse
Affiliation(s)
- Chanbyeol Kim
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Sangwon Oh
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Hamin Im
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
- BK FOUR Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea
- Well-Ageing Medicare Institute, Chosun University, Gwangju 61452, Republic of Korea
- Asian Dementia Research Initiative, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Luo D, Gong Z, Zhan Q, Lin S. Causal association of circulating cytokines with the risk of lung cancer: a Mendelian randomization study. Front Oncol 2024; 14:1373380. [PMID: 38957317 PMCID: PMC11217496 DOI: 10.3389/fonc.2024.1373380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Background Lung cancer is the deadliest and most prevalent malignancy worldwide. While smoking is an established cause, evidence to identify other causal factors remains lacking. Current research indicates chronic inflammation is involved in tumorigenesis and cancer development, though the specific mechanisms underlying the role of inflammatory cytokines in lung cancer pathogenesis remain unclear. This study implemented Mendelian randomization (MR) analysis to investigate the causal effects of circulating cytokines on lung cancer development. Methods We performed a two-sample MR analysis in Europeans utilizing publicly available genome-wide association study summary statistics. Single nucleotide polymorphisms significantly associated with cytokine were selected as genetic instrumental variables. Results Genetically predicted levels of the chemokine interleukin-18 (IL-18) (OR = 0.942, 95% CI: 0.897-0.990, P = 0.018) exerted significant negative causal effects on overall lung cancer risk in this analysis. Examining specific histologic subtypes revealed further evidence of genetic associations. Stem cell factor (SCF) (OR = 1.150, 95% CI: 1.021-1.296, P = 0.021) and interleukin-1beta (IL-1β) (OR = 1.152, 95% CI: 1.003-1.325, P = 0.046) were positively associated with lung adenocarcinoma risk, though no inflammatory factors showed causal links to squamous cell lung cancer risk. Stratified by smoking status, interferon gamma-induced protein 10 (IP-10) (OR = 0.861, 95% CI: 0.781-0.950, P = 0.003) was inversely associated while IL-1β (OR = 1.190, 95% CI: 1.023-1.384, P = 0.024) was positively associated with lung cancer risk in ever smokers. Among never smokers, a positive association was observed between lung cancer risk and SCF (OR = 1.474, 95% CI: 1.105-1.964, P = 0.008). Importantly, these causal inferences remained robust across multiple complementary MR approaches, including MR-Egger, weighted median, weighted mode and simple mode regressions. Sensitivity analyses also excluded potential bias stemming from pleiotropy. Conclusion This MR study found preliminary evidence that genetically predicted levels of four inflammatory cytokines-SCF, IL-1β, IL-18, and IP-10-may causally influence lung cancer risk in an overall and subtype-specific manner, as well as stratified by smoking status. Identifying these cytokine pathways that may promote lung carcinogenesis represents potential new targets for the prevention, early detection, and treatment of this deadly malignancy.
Collapse
Affiliation(s)
- Dachen Luo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zonglian Gong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shan Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:644-656. [PMID: 34841901 PMCID: PMC10701516 DOI: 10.1089/wound.2021.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Significance: Chronic skin wounds are a significant health problem around the world, often leading to amputation and even death. Although persistent inflammation is a hallmark of these poorly healing wounds, few available therapies have been designed to target inflammation. In this review, we summarize available evidence of the role of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in impaired wound healing and describe strategies to inhibit the inflammasome to improve wound healing. Recent Advances: The NLRP3 inflammasome plays an important physiological role in skin wound healing, during which transient inflammasome activity contributes to both epidermal and dermal healing. In contrast, sustained activity of the NLRP3 inflammasome leads to impaired epidermal and dermal healing associated with diabetes. Of importance, preclinical studies have demonstrated that inhibiting the NLRP3 inflammasome-induced resolution of inflammation, increased granulation tissue formation and collagen deposition, and accelerated reepithelialization and wound closure. Critical Issues: NLRP3 inflammasome inhibitors have appealing potential for translation into therapies for chronic wounds. Although preclinical studies have shown promising results, there is a need for human/clinical studies to evaluate dosing formulations, potential therapeutic effects, dose-response relationships, and possible side effects. Future Directions: Among strategies to inhibit the NLRP3 inflammasome, glyburide, metformin, peroxisome proliferator-activated receptor agonists, and the dipeptidyl peptidase 4 inhibitor saxagliptin appear to be closest to clinical translation, as these drugs are already Food and Drug Administration approved for other indications. Future clinical studies are needed to develop topical formulations of these drugs, and to assess the safety and efficacy of these inhibitors, to improve healing of chronic wounds.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Soliman MG, Mansour HA, Hassan WA, Shawky E. Impact of Oral Probiotics in Amelioration of Immunological and Inflammatory Responses on Experimentally Induced Acute Diverticulitis. Probiotics Antimicrob Proteins 2023; 15:1113-1123. [PMID: 35838945 PMCID: PMC10491525 DOI: 10.1007/s12602-022-09969-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
Acute diverticulitis is inflammation of a colon diverticulum; it represents a major cause of morbidity and mortality. The alteration of gut microbiota contributes to the promotion of inflammation and the development of acute diverticulitis disease. Probiotics can modify the gut microbiota, so they are considered a promising option for managing diverticulitis disease. This study aimed to investigate the potential protective effect of probiotics, alone or in combination with amoxicillin, on the experimentally induced model of acute diverticulitis disease. Forty-two rats were divided into seven groups as follows: control group: received water and food only; DSS group: received 3% dextran sulfate sodium (DSS) daily for 7 days; LPS group: injected with lipopolysaccharide (LPS) enema at the dose of (4 mg/kg); probiotics group: treated with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis) each of which (4 × 108 CFU suspended in 2 ml distilled water) orally for 7 days; DSS/LPS group: received DSS and LPS; DSS/LPS treated with probiotics group; DSS/LPS treated with probiotics and amoxicillin group. The results revealed that both treatments (probiotics and probiotics-amoxicillin) attenuated DSS/LPS-induced diverticulitis, by restoring the colonic antioxidant status, ameliorating inflammation (significantly reduced TNF-α, interleukins, interferon-γ, myeloperoxidase activity, and C-reactive protein), decreasing apoptosis (through downregulating caspase-3), and reduction of the colon aerobic bacterial count. These probiotic strains were effective in preventing the development of the experimentally induced acute diverticulitis through the anti-inflammatory and immunomodulatory effects and have affected gut microbiota, so they can be considered a potential option in treating acute diverticulitis disease.
Collapse
Affiliation(s)
- Maha G Soliman
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Wedad A Hassan
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Eman Shawky
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
7
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
8
|
Chen YF, Hsieh AH, Fang YF, Kuo CF. Diagnostic Evaluation Using Salivary Gland Ultrasonography in Primary Sjögren's Syndrome. J Clin Med 2023; 12:jcm12062428. [PMID: 36983428 PMCID: PMC10059079 DOI: 10.3390/jcm12062428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study is to investigate the clinical manifestations in patients with early primary Sjögren's syndrome (pSS) based on the severity score found by salivary gland ultrasonography. Thirty-five newly diagnosed patients with early pSS were enrolled and divided into mild (score 0-1) and severe (score 2-3) groups according to the salivary gland ultrasonography grade (SGUS) scores at baseline. Clinical evaluation, ESSPRI and ESSDAI index values, sicca symptoms of the mouth, salivary capacity, and serum autoantibodies and cytokines were investigated. The mean age of pSS patients at diagnosis was 49.9 ± 11.9 years, and the mean duration of sicca symptoms was 0.58 years. ESSPRI (EULAR Sjögren's syndrome patient report index) and ESSDAI (EULAR Sjögren's syndrome disease index) scores were 15.97 and 4.77, respectively. Clinical manifestations, including the low production of saliva and autoantibody production, such as antinuclear antibodies, rheumatoid factor, and anti-SSA antibody, were found. A higher prevalence of rheumatoid factor (p = 0.0365) and antinuclear antibody (p = 0.0063) and a higher elevation of total IgG (p = 0.0365) were found in the severe group than in the mild group. In addition, the elevated titer of IL-25 was detected in the severe group than in the mild group. This observation indicated that salivary gland ultrasonography grade (SGUS) scans may help physicians diagnose pSS and the elevated titer of IL-25 in patients may be implicated in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ao-Ho Hsieh
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yao-Fan Fang
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
10
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Chen PK, Wey SJ, Chen DY. Interleukin-18: a biomarker with therapeutic potential in adult-onset Still's disease. Expert Rev Clin Immunol 2022; 18:823-833. [PMID: 35771972 DOI: 10.1080/1744666x.2022.2096592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Adult-onset Still's disease (AOSD) is an autoinflammatory disease driven by the innate immune response. Given the ambiguity in clinical presentation and lack of specific diagnostic biomarkers, AOSD diagnosis is usually delayed in the early stage. Because AOSD is a rare disease with clinical heterogeneity, there is no consensus on its treatment currently. This review summarizes the current research evidence regarding the pathogenic role and the diagnostic or therapeutic potential of interleukin (IL)-18 in AOSD. AREAS COVERED We searched the MEDLINE database using the PubMed interface and reviewed English-language literature from 1971 to 2022. This review focusing on IL-18 discusses its pathogenic role and clinical implications in AOSD. EXPERT OPINION NLRP3-inflammasome activation with IL-18 overproduction plays a pathogenic role in AOSD. IL-18 is closely linked to the clinical manifestations and disease activity of AOSD and may be a diagnostic biomarker. Given its pathogenic role in AOSD, IL-18 could become a potential therapeutic target. IL-18 binding protein (IL-18BP) negatively regulates the biological activity of IL-18 by inhibiting IL-18 signaling, and a clinical trial revealed that IL-18BP (Tadekinig alfa) treatment was well-tolerated and effective for AOSD. Recently, monoclonal antibodies against IL-18 have been under evaluation in a phase 1b trial.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung, Taiwan
| | - Shiow-Jiuan Wey
- Division of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing UniversityPh., Taichung, Taiwan
| |
Collapse
|
12
|
Qu HQ, Snyder J, Connolly J, Glessner J, Kao C, Sleiman P, Hakonarson H. Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. Biomedicines 2022; 10:biomedicines10020264. [PMID: 35203474 PMCID: PMC8869623 DOI: 10.3390/biomedicines10020264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The novel therapeutic target cytokine LIGHT (TNFSF14) was recently shown to play a major role in COVID-19-induced acute respiratory distress syndrome (ARDS). This study aims to investigate the associations of plasma LIGHT and another potentially targetable cytokine, interleukin-18 (IL-18), with ARDS, acute hypoxic respiratory failure (AHRF), or acute kidney injury (AKI), caused by non-COVID-19 viral or bacterial sepsis. A total of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this cohort study. Day 0 plasma LIGHT and IL-18, as well as 59 other biomarkers (cytokines, chemokines, and acute-phase reactants) were measured by sensitive bead immunoassay and associated with symptom severity. We observed significantly increased LIGHT level in both bacterial sepsis patients (p = 1.80 × 10−5) and patients with sepsis from viral infections (p = 1.78 × 10−3). In bacterial sepsis, increased LIGHT level was associated with ARDS, AKI, and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failure. IL-18 levels were highly variable across individuals and consistently correlated with Apache III scores, mortality, and AKI in both bacterial and viral sepsis. There was no correlation between LIGHT and IL-18. For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failure. The association of plasma LIGHT with AHRF suggests that targeting the pathway warrants exploration, and ongoing trials may soon elucidate whether this is beneficial. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway requires precise application.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - James Snyder
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - John Connolly
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Patrick Sleiman
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +267-426-0088
| |
Collapse
|
13
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Kim EG, Leem JS, Baek SM, Kim HR, Kim KW, Kim MN, Sohn MH. Interleukin-18 Receptor α Modulates the T Cell Response in Food Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:424-438. [PMID: 35837825 PMCID: PMC9293601 DOI: 10.4168/aair.2022.14.4.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022]
Abstract
Purpose Methods Results Conclusions
Collapse
Affiliation(s)
- Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Su Leem
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Rin Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Miao P, Ruiqing T, Yanrong L, Zhuwen S, Huan Y, Qiong W, Yongnian L, Chao S. Pyroptosis: A possible link between obesity-related inflammation and inflammatory diseases. J Cell Physiol 2021; 237:1245-1265. [PMID: 34751453 DOI: 10.1002/jcp.30627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
The main manifestation of obesity is persistent low-level inflammation and insulin resistance, which is an important factor inducing or promoting other obesity-related diseases. As a proinflammatory programmed cell death, pyroptosis plays an important role, especially in the activation and regulation of the NLRP3 inflammasome pathway. Pyroptosis is associated with the pathogenesis of many chronic inflammatory diseases and is characterized by the formation of micropores in the plasma membrane and the release of a large number of proinflammatory cytokines. This article mainly introduces the main pathways and key molecules of pyroptosis and focuses on the phenomenon of pyroptosis in obesity. It is suggested that the regulation of pyroptosis-related targets may become a new potential therapy for the prevention and treatment of systemic inflammatory response caused by obesity, and we summarize the potential molecular substances that may be beneficial to obesity-related inflammatory diseases through target pyroptosis.
Collapse
Affiliation(s)
- Pan Miao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tai Ruiqing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liu Yanrong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sun Zhuwen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Huan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wu Qiong
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Liu Yongnian
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
18
|
Conti P, Pregliasco FE, Bellomo RG, Gallenga CE, Caraffa A, Kritas SK, Lauritano D, Ronconi G. Mast Cell Cytokines IL-1, IL-33, and IL-36 Mediate Skin Inflammation in Psoriasis: A Novel Therapeutic Approach with the Anti-Inflammatory Cytokines IL-37, IL-38, and IL-1Ra. Int J Mol Sci 2021; 22:ijms22158076. [PMID: 34360845 PMCID: PMC8348737 DOI: 10.3390/ijms22158076] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PS) is a skin disease with autoimmune features mediated by immune cells, which typically presents inflammatory erythematous plaques, and is associated with many comorbidities. PS exhibits excessive keratinocyte proliferation, and a high number of immune cells, including macrophages, neutrophils, Th1 and Th17 lymphocytes, and mast cells (MCs). MCs are of hematopoietic origin, derived from bone marrow cells, which migrate, mature, and reside in vascularized tissues. They can be activated by antigen-provoking overexpression of proinflammatory cytokines, and release a number of mediators including interleukin (IL)-1 and IL-33. IL-1, released by activated keratinocytes and MCs, stimulates skin macrophages to release IL-36—a powerful proinflammatory IL-1 family member. IL-36 mediates both innate and adaptive immunity, including chronic proinflammatory diseases such as psoriasis. Suppression of IL-36 could result in a dramatic improvement in the treatment of psoriasis. IL-36 is inhibited by IL-36Ra, which binds to IL-36 receptor ligands, but suppression can also occur by binding IL-38 to the IL-36 receptor (IL-36R). IL-38 specifically binds only to IL-36R, and inhibits human mononuclear cells stimulated with IL-36 in vitro, sharing the effect with IL-36Ra. Here, we report that inflammation in psoriasis is mediated by IL-1 generated by MCs—a process that activates macrophages to secrete proinflammatory IL-36 inhibited by IL-38. IL-37 belongs to the IL-1 family, and broadly suppresses innate inflammation via IL-1 inhibition. IL-37, in murine models of inflammatory arthritis, causes the suppression of joint inflammation through the inhibition of IL-1. Therefore, it is pertinent to think that IL-37 can play an inhibitory role in inflammatory psoriasis. In this article, we confirm that IL-38 and IL-37 cytokines emerge as inhibitors of inflammation in psoriasis, and hold promise as an innovative therapeutic tool.
Collapse
Affiliation(s)
- Pio Conti
- Postgraduate Medical School, University of Chieti, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-574136
| | | | - Rosa G. Bellomo
- Facoltà di Scienze dell’Educazione Motoria, Università “Carlo Bo”, 61029 Urbino, Italy;
| | - Carla E. Gallenga
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44100 Ferrara, Italy;
| | | | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54250 Macedonia, Greece;
| | - Dorina Lauritano
- Medicine and Surgery Centre of Neuroscience of Milan, University of Milan-Bicocca, 20100 Milano, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00168 Rome, Italy;
| |
Collapse
|
19
|
Qu HQ, Qu J, Dunn T, Snyder J, Miano TA, Connolly J, Glessner J, Anderson BJ, Reilly JP, Jones TK, Giannini HM, Agyekum RS, Weisman AR, Ittner CAG, Rodrigues LG, Kao C, Shashaty MGS, Sleiman P, Meyer NJ, Hakonarson H. Elevation of Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34075388 DOI: 10.1101/2021.05.25.21257799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective The cytokines, LIGHT (TNFSF14) and Interleukin-18 (IL-18), are two important therapeutic targets due to their central roles in the function of activated T cells and inflammatory injury. LIGHT was recently shown to play a major role in COVID19 induced acute respiratory distress syndrome (ARDS), reducing mortality and hospital stay. This study aims to investigate the associations of LIGHT and IL-18 with non-COVID19 related ARDS, acute hypoxic respiratory failure (AHRF) or acute kidney injury (AKI), secondary to viral or bacterial sepsis. Research Design and Methods A cohort of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this study and compared to healthy controls. Serum LIGHT, IL-18, and 59 other biomarkers (cytokines, chemokines and acute-phase reactants) were measured and associated with symptom severity. Results ARDS was observed in 36% of the patients, with 29% of the total patient cohort developing multi-organ failure (failure of two or more organs). We observed significantly increased LIGHT level (>2SD above mean of healthy subjects) in both bacterial sepsis patients (P=1.80E-05) and patients with sepsis from viral infections (P=1.78E-03). In bacterial sepsis, increased LIGHT level associated with ARDS, AKI and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failures, suggesting LIGHT may be an inflammatory driver. IL-18 levels were highly variable across individuals, and consistently correlated with Apache III scores, mortality, and AKI, in both bacterial and viral sepsis. Conclusions For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failures. LIGHT levels are significantly elevated in non-COVID19 sepsis patients with ARDS and/or multi-organ failures suggesting that anti-LIGHT therapy may be effective therapy in a subset of patients with sepsis. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway raises opportunities that require a precision application.
Collapse
|
20
|
A novel anti-human IL-1R7 antibody reduces IL-18-mediated inflammatory signaling. J Biol Chem 2021; 296:100630. [PMID: 33823154 PMCID: PMC8018910 DOI: 10.1016/j.jbc.2021.100630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans–induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
|
21
|
Zhang L, Zhou X, Dai Y, Lv C, Wu J, Wu Q, Li T, Wang Y, Xia P, Pei H, Huang B. Establishment of interleukin-18 time-resolved fluorescence immunoassay and its preliminary application in liver disease. J Clin Lab Anal 2021; 35:e23758. [PMID: 33720453 PMCID: PMC8128310 DOI: 10.1002/jcla.23758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background To establish a time‐resolved fluorescence immunoassay of interleukin (IL)‐18 (IL‐18‐TRFIA) and detect its concentration in different liver disease serum samples. Methods The IL‐18 coating antibody and the Eu3+‐labeled detection antibody were used for the IL‐18‐TRFIA to detect serum IL‐18 concentration in patients with liver cancer, hepatitis B, hepatitis C, autoimmune hepatitis, fatty liver disease, and healthy controls. The double‐antibody sandwich method was used and methodological evaluation was performed. Results The average intra‐ and inter‐assay coefficient of variation for IL‐18‐TRFIA was 4.80% and 5.90%, respectively. The average recovery rate was 106.19 ± 3.44%. The sensitivity (10.96 pg/mL) was higher than that obtained using the ELISA method (62.5 pg/mL). The detection range was 10.96–1000 pg/mL. IL‐6 and galectin‐3 did not cross‐react with IL‐18‐TRFIA. The serum concentration of IL‐18 was (776.99; 653.48–952.39 pg/mL) in hepatitis C, (911; 775.55–1130.03 pg/mL) in fatty liver, (1048.88; 730.04–1185.10 pg/mL) in liver cancer, and (949.12; 723.70–1160.28 pg/mL) in hepatitis B. Moreover, IL‐18 serum levels were significantly higher in patients than the healthy controls (483.09; 402.52–599.70/mL) (p < 0.0001). Autoimmune hepatitis with a serum IL‐18 concentration of 571.62; 502.47–730.31 pg/mL was not significantly different from the healthy controls (p > 0.05). Conclusion We established a highly sensitive IL‐18‐TRFIA method that successfully detected serum IL‐18 concentrations in different liver diseases. Furthermore, IL‐18 serum concentration was higher in patients with liver cancer, hepatitis C, hepatitis B, and fatty liver disease compared to healthy controls.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaping Dai
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Chunyan Lv
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Qingqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Penguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Pei
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
22
|
Gachpazan M, Akhlaghipour I, Rahimi HR, Saburi E, Mojarrad M, Abbaszadegan MR, Moghbeli M. Genetic and molecular biology of systemic lupus erythematosus among Iranian patients: an overview. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:2. [PMID: 33516274 PMCID: PMC7847600 DOI: 10.1186/s13317-020-00144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a clinicopathologically heterogeneous chronic autoimmune disorder affecting different organs and tissues. It has been reported that there is an increasing rate of SLE incidence among Iranian population. Moreover, the Iranian SLE patients have more severe clinical manifestations compared with other countries. Therefore, it is required to introduce novel methods for the early detection of SLE in this population. Various environmental and genetic factors are involved in SLE progression. MAIN BODY In present review we have summarized all of the reported genes which have been associated with clinicopathological features of SLE among Iranian patients. CONCLUSIONS Apart from the reported cytokines and chemokines, it was interestingly observed that the apoptosis related genes and non-coding RNAs were the most reported genetic abnormalities associated with SLE progression among Iranians. This review clarifies the genetics and molecular biology of SLE progression among Iranian cases. Moreover, this review paves the way of introducing an efficient panel of genetic markers for the early detection and better management of SLE in this population.
Collapse
Affiliation(s)
- Meisam Gachpazan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Fang X, Wang Y, Zhang Y, Li Y, Kwak-Kim J, Wu L. NLRP3 Inflammasome and Its Critical Role in Gynecological Disorders and Obstetrical Complications. Front Immunol 2021; 11:555826. [PMID: 33584639 PMCID: PMC7876052 DOI: 10.3389/fimmu.2020.555826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, intracellular, multimeric protein complexes, are assembled when damage signals stimulate nucleotide-binding oligomerization domain receptors (NLRs). Several inflammasomes have been reported, including the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), NLRP1, NLRP7, ice protease-activating factor (IPAF), absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4). Among these inflammasomes, the NLRP3 inflammasome is the most well-studied in terms of structure and function. Unlike other inflammasomes that can only be activated by a finite number of pathogenic microorganisms, the NLRP3 inflammasome can be activated by the imbalance of the internal environment and a large number of metabolites. The biochemical function of NLRP3 inflammasome is to activate cysteine-requiring aspartate proteinase-1 (caspase-1), which converts pro-IL-1β and pro-IL-18 into their active forms, namely, IL-1β and IL-18, which are then released into the extracellular space. The well-established, classic role of NLRP3 inflammasome has been implicated in many disorders. In this review, we discuss the current understanding of NLRP3 inflammasome and its critical role in gynecological disorders and obstetrical complications.
Collapse
Affiliation(s)
- Xuhui Fang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yanshi Wang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yu Zhang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yelin Li
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Li Wu
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1334-1344. [PMID: 33717653 PMCID: PMC7920810 DOI: 10.1016/j.omtn.2021.01.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s disease. The most important pathological feature of PD is the irreversible damage of dopamine neurons, which is related to autophagy and neuroinflammation in the substantia nigra. Previous studies found that the activation of NAcht Leucine-rich repeat Protein 3 (NLRP3) inflammasome/pyroptosis and cell division protein kinase 5 (CDK5)-mediated autophagy played an important role in PD. Bioinformatics analyses further predicted that microRNA (miR)-188-3p potentially targets NLRP3 and CDK5. Adipose-derived stem cell (ADSC)-derived exosomes were found to be excellent vectors for genetic therapy. We assessed the levels of injury, autophagy, and inflammasomes in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-induced PD mice models and neurotoxin 1-methyl-4-phenylpyridinium (MPP+)-induced cell models after treating them with miR-188-3p-enriched exosomes. miR-188-3p-enriched exosome treatment suppressed autophagy and pyroptosis, whereas increased proliferation via targeting CDK5 and NLRP3 in mice and MN9D cells. It was revealed that mir-188-3p could be a new therapeutic target for curing PD patients.
Collapse
Affiliation(s)
- Qiang Li
- The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Alpha-Lipoic Acid Plays a Role in Endometriosis: New Evidence on Inflammasome-Mediated Interleukin Production, Cellular Adhesion and Invasion. Molecules 2021; 26:molecules26020288. [PMID: 33430114 PMCID: PMC7826935 DOI: 10.3390/molecules26020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-linked gynecological disease defined by the presence of endometrial tissue on extrauterine sites where it forms invasive lesions. Alterations in estrogen-mediated cellular signaling seems to have an essential role in the pathogenesis of endometriosis. Higher estrogen receptor (ER)-β levels and enhanced ER-β activity were detected in endometriotic tissues. It is well known that ER-β interacts with components of the cytoplasmic inflammasome-3 (NALP-3), the NALP-3 activation increases interleukin (IL)-1β and IL-18, enhancing cellular adhesion and proliferation. Otherwise, the inhibition of ER-β activity suppresses the ectopic lesions growth. The present study aims to investigate the potential effect of α-lipoic acid (ALA) on NALP-3 and ER-β expression using a western blot analysis, NALP-3-induced cytokines production by ELISA, migration and invasion of immortalized epithelial (12Z) and stromal endometriotic cells (22B) using a 3D culture invasion assay, and matrix-metalloprotease (MMPs) activity using gelatin zymography. ALA significantly reduces ER-β, NALP-3 protein expression/activity and the secretion of IL-1β and IL-18 in both 12Z and 22B cells. ALA treatment reduces cellular adhesion and invasion via a lower expression of adhesion molecules and MMPs activities. These results provide convincing evidence that ALA might inhibit endometriosis progression.
Collapse
|
26
|
Gateva A, Kamenov Z, Karamfilova V, Assyov Y, Velikova T, El-Darawish Y, Okamura H. Higher levels of IL-18 in patients with prediabetes compared to obese normoglycaemic controls. Arch Physiol Biochem 2020; 126:449-452. [PMID: 30632794 DOI: 10.1080/13813455.2018.1555667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Overweight and obesity are linked to low-grade chronic inflammation that can impair normal insulin function and induce insulin resistance. The aim of this study was to compare IL-18 levels between patients with prediabetes and obese normoglycaemic controls.Patients and methods: In this study, we included 131 patients with mean age 54.9 ± 9.1 years, divided into two groups - group 1 with obesity without glycaemic disturbances (n = 66) and group 2 with prediabetes (n = 65). IL-18 was measured using enzyme-linked immunosorbent assay (ELISA) method.Results: Patients with prediabetes had significantly higher levels of IL-18 compared to obese controls (304.0 ± 220.4 vs. 233.6 ± 103.6 pg/l, p=.029). When patients with prediabetes were divided into IFG only, IGT only and IFG + IGT the highest levels of IL-18 were found in IGT only patients.Conclusions: Patients with prediabetes have higher levels of IL18 compared to obese normoglycemic controls.
Collapse
Affiliation(s)
- Antoaneta Gateva
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University - Sofia, Sofia, Bulgaria
| | - Zdravko Kamenov
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University - Sofia, Sofia, Bulgaria
| | - Vera Karamfilova
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University - Sofia, Sofia, Bulgaria
| | - Yavor Assyov
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University - Sofia, Sofia, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia, Bulgaria
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Tokyo, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Shan C, Ma T, Wang TT, Wu L, Abasijiang A, Zhao J. Association of Polymorphism in IL-18 Gene with Periodontitis in Uyghur Adults in Xinjiang and Evidence from Six Case-Control Studies with a Comprehensive Analysis. Immunol Invest 2020; 51:511-530. [PMID: 33143466 DOI: 10.1080/08820139.2020.1841222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM The aim of the study was to evaluate the association of IL-18 137 G > C, 607 C > A gene polymorphism in Uyghur population with chronic periodontitis (CP) and combine the results with the meta-analysis. METHODS In a case-control study, 200 cases with CP and 100 healthy controls were recruited; IL-18 137 G > C, 607 C > A genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In the meta-analysis, we used electronic databases, including CNKI, Wan Fang, PubMed, EMBASE databases etc.to obtain relevant research published through June 2020. Studies were considered eligible if odds ratios (ORs) and 95% confidence intervals (95% CI) were provided or calculated from the given data. The size of the combined effect was calculated using STATA 15.0. RESULTS Our study revealed significant association between CP and IL-18 137 G > C (P = .045, OR = 1.67), 607 C > A (P = .045, OR = 1.67). The overall meta-analysis revealed significant associations between IL-18 137 G > C polymorphism and CP risk in Allele, dominant, co-dominant and recessive genetic models. The subgroup analysis also showed a significant association between the IL-18 137 G > C and risk for periodontitis and aggressive periodontitis in the Asian (GC+ CC VS. GG: P = .047, OR = 1.64,95%CI = 1.01-2.68). CONCLUSIONS IL-18 137 G > C, 607 C > A could be associated with susceptibility to periodontitis in Uyghur population. Further case-control of candidate genes studies targeting larger sample sizes and different ethnic groups are needed to arrive more accurate conclusions.
Collapse
Affiliation(s)
- Chao Shan
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China
| | - Ting Ma
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China.,Department of Endodontics, Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China
| | - Ting Ting Wang
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China
| | - Long Wu
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China.,Department of Endodontics, Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China
| | - Aisaiti Abasijiang
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China.,Department of Endodontics, Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China
| | - Jin Zhao
- Department of dentistry, Xinjiang Medical University, Ürümqi, China.,Department of Endodontics, First Affiliated Hospital of Xin Jiang Medical University and College of Stomatology of Xin Jiang Medical University, Ürümqi, China.,Department of Endodontics, Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China
| |
Collapse
|
28
|
McLeod DJ, Sebastião YV, Ching CB, Greenberg JH, Furth SL, Becknell B. Longitudinal kidney injury biomarker trajectories in children with obstructive uropathy. Pediatr Nephrol 2020; 35:1907-1914. [PMID: 32444926 PMCID: PMC7502482 DOI: 10.1007/s00467-020-04602-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Congenital obstructive uropathy (OU) is a leading cause of pediatric kidney failure, representing a unique mechanism of injury, in part from renal tubular stretch and ischemia. Tubular injury biomarkers have potential to improve OU-specific risk stratification. METHODS Patients with OU were identified in the Chronic Kidney Disease in Children (CKiD) study. "Cases" were defined as individuals receiving any kidney replacement therapy (KRT), while "controls" were age- and time-on-study matched and KRT free at last study visit. Urine and plasma neutrophil gelatinase-associated lipocalin (NGAL), interleukin 18 (IL-18), and liver-type fatty acid-binding protein (L-FABP) levels were measured at enrollment and annually and compared between cases and controls. Urine values were normalized to urine creatinine. RESULTS In total, 22 cases and 22 controls were identified, with median (interquartile range) ages of 10.5 (9.0-13.0) and 15.9 (13.9-16.9) years at baseline and outcome, respectively. At enrollment there were no differences noted between cases and controls for any urine (u) or plasma (p) biomarker measured. However, the mean pNGAL and uL-FABP/creatinine increased throughout the study period in cases (15.38 ng/ml per year and 0.20 ng/ml per mg/dl per year, respectively, p = 0.01 for both) but remained stable in controls. This remained constant after controlling for baseline glomerular filtration rate (GFR). CONCLUSIONS In children with OU, pNGAL and uL-FABP levels increased over the 5 years preceding KRT; independent of baseline GFR. Future studies are necessary to identify optimal cutoff values and to determine if these markers outperform current clinical predictors.
Collapse
Affiliation(s)
- Daryl J McLeod
- Section of Urology, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Center for Surgical Outcomes Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Yuri V Sebastião
- Center for Surgical Outcomes Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christina B Ching
- Section of Urology, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Jason H Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Susan L Furth
- Department of Pediatrics, Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian Becknell
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, Section of Nephrology, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| |
Collapse
|
29
|
Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. PPARγ Cistrome Repression during Activation of Lung Monocyte-Macrophages in Severe COVID-19. iScience 2020; 23:101611. [PMID: 33015591 PMCID: PMC7518203 DOI: 10.1016/j.isci.2020.101611] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms of cytokine storm in patients with severe COVID-19 infections are poorly understood. To uncover these events, we performed transcriptome analyses of lung biopsies from patients with COVID-19, revealing a gene enrichment pattern similar to that of PPARγ-knockout macrophages. Single-cell gene expression analysis of bronchoalveolar lavage fluids revealed a characteristic trajectory of PPARγ-related disturbance in the CD14+/CD16+ cells. We identified a correlation with the disease severity and the reduced expression of several members of the PPARγ complex such as EP300, RXRA, RARA, SUMO1, NR3C1, and CCDC88A. ChIP-seq analyses confirmed repression of the PPARγ-RXRA-NR3C1 cistrome in COVID-19 lung samples. Further analysis of protein-protein networks highlighted an interaction between the PPARγ-associated protein SUMO1 and a nucleoprotein of the SARS virus. Overall, these results demonstrate for the first time the involvement of the PPARγ complex in severe COVID-19 lung disease and suggest strongly its role in the major monocyte/macrophage-mediated inflammatory storm.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Ali G Turhan
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, Villejuif 94800, France.,University Paris Saclay, Faculty of Medicine, Le Kremlin Bicêtre 94275, France
| | - Annelise Bennaceur-Griscelli
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, Villejuif 94800, France.,University Paris Saclay, Faculty of Medicine, Le Kremlin Bicêtre 94275, France
| | - Frank Griscelli
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,University of Paris, Faculty Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.,Gustave-Roussy Cancer Institute, Department of Biopathology, 94800 Villejuif, France
| |
Collapse
|
30
|
Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 2020; 217:jem.20190314. [PMID: 31611248 PMCID: PMC7037238 DOI: 10.1084/jem.20190314] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Specific IL-1 family cytokines are initially expressed as inactive, cytosolic pro-forms. Chan and Schroder review inflammasome signaling and cell death decisions, mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release, and the functions of these cytokines in protective and pathological inflammation. Specific IL-1 family cytokines are expressed by cells as cytosolic pro-forms that require cleavage for their activity and cellular release. IL-1β, IL-18, and IL-37 maturation and secretion is governed by inflammatory caspases within signaling platforms called inflammasomes. By inducing pyroptosis, inflammasomes can also drive the release of the alarmin IL-1α. Recent advances have transformed our mechanistic understanding of inflammasome signaling, cell death decisions, and cytokine activation and secretion. Here, we provide an updated view of inflammasome signaling; mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release; and the functions of these cytokines in protective and pathological inflammation.
Collapse
Affiliation(s)
- Amy H Chan
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
31
|
Khalil MR, El-Demerdash RS, Elminshawy HH, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Therapeutic effect of bone marrow mesenchymal stem cells in a rat model of carbon tetrachloride induced liver fibrosis. Biomed J 2020; 44:598-610. [PMID: 32389821 PMCID: PMC8640564 DOI: 10.1016/j.bj.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/30/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Liver fibrosis is a major medical problem with high mortality and morbidity rates where the formation of regenerative nodules and cirrhosis leads to loss of liver function and may result in the development of hepatocellular carcinoma. bone marrow mesenchymal stem cells (BM-MSCs) have drawn attention as a novel approach for treatment of liver fibrosis. This study aimed to evaluate the therapeutic effect of BM-MSCs on the liver structure in carbon tetrachloride (CCl4) induced liver fibrosis in male rats relative to resveratrol and Silybum marianum as standard drugs derived from herbal plants. Methods Fifty adult male albino rats (Sprague Dawley strain; 180–220 g mean body weight) were purchased from the Laboratory Animal Unit in the Nile Center of Experimental Research, Mansoura, Egypt. Liver function were determined, isolation and preparation of BM- MSCs and detection of cell-surface markers by flow cytometry. Results Animals exposed to CCl4 developed liver injury characterized by significant increase of liver enzymes, malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and CYP450, inhibition of antioxidant enzymes, and decreased albumin. Treatment with stem cells enhanced liver state more effectively than resveratrol and S. marianum. It significantly decreased AST, ALT, ALP, MDA, TNF-α, and CYP450 and increased albumin, SOD, GSH, GST, and CAT. Histopathological study and atomic force microscope results confirmed the therapeutic effects of MSCs. Conclusions BM-MSCs could restore liver structure and function in CCL4 induced liver fibrosis rat model, ameliorating the toxicity of CCl4 and improving liver function tests.
Collapse
Affiliation(s)
- Mohammed R Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University, Damietta, Egypt
| | - Reda S El-Demerdash
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Hazem H Elminshawy
- Department of Internal Medicine, Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
32
|
De Biase D, Piegari G, Prisco F, Cimmino I, Pirozzi C, Mattace Raso G, Oriente F, Grieco E, Papparella S, Paciello O. Autophagy and NLRP3 inflammasome crosstalk in neuroinflammation in aged bovine brains. J Cell Physiol 2020; 235:5394-5403. [PMID: 31903559 DOI: 10.1002/jcp.29426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
NLRP3 inflammasome is a multiprotein complex that can sense several stimuli such as autophagy dysregulation and increased reactive oxygen species production stimulating inflammation by priming the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 in their active form. In the aging brain, these cytokines can mediate the innate immunity response priming microglial activation. Here, we describe the results of immunohistochemical and molecular analysis carried out on bovine brains. Our results support the hypothesis that the age-related impairment in cellular housekeeping mechanisms and the increased oxidative stress can trigger the inflammatory danger sensor NLRP3. Moreover, according to the recent scientific literature, we demonstrate the presence of an age-related proinflammatory environment in aged brains consisting in an upregulation of interleukin-1β, an increased microglial activation and increased NLRP3 expression. Finally, we suggest that bovine may potentially be a pivotal animal model for brain aging studies.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Francesco Oriente
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
33
|
Hu TX, Zhang NN, Ruan Y, Tan QY, Wang J. Hydrogen sulfide modulates high glucose-induced NLRP3 inflammasome activation in 3T3-L1 adipocytes. Exp Ther Med 2019; 19:771-776. [PMID: 31885713 DOI: 10.3892/etm.2019.8242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the NACHT leucine rich repeat and pyd domains-containing 3 (NLRP3) inflammasome plays an important role in the initiation of inflammation in adipose tissue in diabetic patients. However, the mechanisms underlying this are not fully understood. Hydrogen sulfide (H2S) has been shown to have anti-inflammatory properties in various cell types. The present study aimed to investigate the effect of H2S on high glucose (HG)-induced NLRP3 inflammasome activation in adipocytes. Adipocytes were differentiated from 3T3-L1 cells and treated with low glucose (LG), HG, H2S donor sodium hydrosulfide (NaHS) or N-acetyl-tyrosyl-valyl- alanyl-aspartyl chloromethyl ketone, an inhibitor of the cysteine protease caspase-1. The expression levels of NLRP3, apoptosis-associated speck-like protein containing A CARD (ASC) and caspase-1, and the release of interleukin (IL)-1β and IL-18 were measured. The results of the present study indicated that HG increased the expression levels of NLRP3, ASC and cleaved caspase-1, and the release of IL-1β and IL-18 in adipocytes. Caspase-1 inhibition abolished HG-induced production of IL-1β and IL-18 in adipocytes. Furthermore, NaHS inhibited the expression of NLRP3, ASC and cleaved caspase-1, and the production of IL-1β and IL-18 in adipocytes treated with HG. In conclusion, HG may increase and exogenous H2S may inhibit HG-induced NLRP3 inflammasome activation in adipocytes.
Collapse
Affiliation(s)
- Tian-Xiao Hu
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Ning-Ning Zhang
- Department of Physiology, Naval Medical University, Shanghai 200433, P.R. China
| | - Yun Ruan
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Qing-Ying Tan
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Wang
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
34
|
Guan Q, Warrington R, Moreno S, Qing G, Weiss C, Peng Z. Sustained suppression of IL-18 by employing a vaccine ameliorates intestinal inflammation in TNBS-induced murine colitis. Future Sci OA 2019; 5:FSO405. [PMID: 31428451 PMCID: PMC6695525 DOI: 10.2144/fsoa-2018-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim To develop IL-18 peptide-based virus-like particle vaccines that elicit autoantibodies against IL-18 and to evaluate the in vivo effects of the vaccines in murine colitis. Methods Recombinant IL-18 vaccines were constructed, and the effects of the vaccines were evaluated in trinitrobenzene sulfonic acid-induced acute and chronic colitis in mice. Results Two murine IL-18 peptide-based vaccines (A and D) were developed, which induced relative long-lasting specific antibodies against IL-18. Vaccine-immunized mouse antisera could partially block IL-18-induced IFN-γ production in vitro. Mice receiving vaccine D, not vaccine A, had a significant decrease in intestinal inflammation, collagen deposition and pro-inflammatory cytokine levels in colon tissue. Conclusion IL-18 vaccine may provide a potential therapeutic approach in the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Qingdong Guan
- Department of Immunology, University of Manitoba, Winnipeg R3E 3P4, Canada.,Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada.,Department of Internal Medicine, University of Manitoba, Winnipeg, R3E 3P4, Canada.,Cellular Therapy Laboratory, CancerCare Manitoba, Winnipeg, R3A 1R9, Canada
| | - Richard Warrington
- Department of Immunology, University of Manitoba, Winnipeg R3E 3P4, Canada.,Department of Internal Medicine, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Sem Moreno
- Department of Immunology, University of Manitoba, Winnipeg R3E 3P4, Canada.,Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Gefei Qing
- Department of Pathology, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Carolyn Weiss
- Department of Immunology, University of Manitoba, Winnipeg R3E 3P4, Canada.,Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada
| | - Zhikang Peng
- Department of Immunology, University of Manitoba, Winnipeg R3E 3P4, Canada.,Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, R3E 3P4, Canada
| |
Collapse
|
35
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral hemorrhage induces monocyte-related gene expression within six hours: Global transcriptional profiling in swine ICH. Metab Brain Dis 2019; 34:763-774. [PMID: 30796715 PMCID: PMC6910870 DOI: 10.1007/s11011-019-00399-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Our prior research identified a significant association with monocyte level and ICH mortality. To advance our understanding, we sought to identify gene expression after ICH using a swine model to test the hypothesis that ICH would induce peripheral blood mononuclear cell (PBMC) gene expression. In 10 pigs with ICH, two PBMC samples were drawn from each with the first immediately prior to ICH induction and the second six hours later. RNA-seq was performed with subsequent bioinformatics analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity® Pathway Analysis (IPA). There were 182 significantly upregulated and 153 significantly down-regulated differentially expressed genes (DEGs) after ICH. Consistent with findings in humans, significant GO and KEGG pathways were primarily related to inflammation and the immune response. Five genes, all upregulated post-ICH and known to be associated with monocyte activation, were repeatedly DEGs in the significant KEGG pathways: CD14, TLR4, CXCL8, IL-18, and CXCL2. In IPA, the majority of upregulated disease/function categories were related to inflammation and immune cell activation. TNF and LPS were the most significantly activated upstream regulators, and ERK was the most highly connected node in the top network. ICH induced changes in PBMC gene expression within 6 h of onset related to inflammation, the immune response, and, more specifically, monocyte activation. Further research is needed to determine if these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA.
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA
| |
Collapse
|
36
|
Chew STH, Hwang NC. Acute Kidney Injury After Cardiac Surgery: A Narrative Review of the Literature. J Cardiothorac Vasc Anesth 2019; 33:1122-1138. [DOI: 10.1053/j.jvca.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 02/07/2023]
|
37
|
Lissoni P, Rovelli F, Vigorè L, Messina G, Lissoni A, Porro G, Di Fede G. How to Monitor the Neuroimmune Biological Response in Patients Affected by Immune Alteration-Related Systemic Diseases. Methods Mol Biol 2019; 1781:171-191. [PMID: 29705848 DOI: 10.1007/978-1-4939-7828-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The clinical management of patients affected by systemic diseases, including cancer and autoimmune diseases, is generally founded on the evaluation of the only markers related to the single disease rather than the biological immuno-inflammatory response of patients, despite the fundamental role of cytokine network in the pathogenesis of cancer and autoimmunity is well known. Cancer progression has appeared to be associated with a progressive decline in the blood levels of the main antitumor cytokines, including IL-2 and IL-12, in association with an increase in those of inflammatory cytokines, including IL-6, TNF-alpha, and IL-1-beta, and immunosuppressive cytokines, namely TGF-beta and IL-10. On the other hand, the severity of the autoimmune diseases has been proven to be greater in the presence of high blood levels of IL-17, TNF-alpha, IL-6, IL-1-beta, IFN-gamma, and IL-18, in association with low levels of TGF-beta and IL-10. However, because of excessive cost and complexity of analyzing the data regarding the secretion of the single cytokines, the relation between lymphocyte-induced immune activation and monocyte-macrophage-mediated immunosuppression has been recently proven to be expressed by the simple lymphocyte-to-monocyte ratio (LMR). The evidence of low LMR values has appeared to correlate with a poor prognosis in cancer and with a disease control in the autoimmune diseases. Moreover, since the in vivo immunoinflammatory response is physiologically under a neuroendocrine modulation, for the evaluation of patient biological response it would be necessary to investigate the function of at least the two main neuroendocrine structures involved in the neuroendocrine modulation of the immune responses, consisting of the hypothalamic-pituitary-adrenal axis and the pineal gland, since the lack of physiological circadian rhythm of cortisol and pineal hormone melatonin has appeared to be associated with a worse prognosis in the human systemic diseases.
Collapse
|
38
|
Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity. Toxicol Sci 2018; 158:227-239. [PMID: 28453771 DOI: 10.1093/toxsci/kfx083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Gabrielle Cauvi
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92037
| | - Christopher B Toomey
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California 92037
| | | | - Kenneth Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
39
|
Mast cells participate in allograft rejection: can IL-37 play an inhibitory role? Inflamm Res 2018; 67:747-755. [PMID: 29961151 DOI: 10.1007/s00011-018-1166-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the role of mast cells (MCs) in allograft rejection, eventually inhibited by IL-37. Immune cells including MCs participate in allograft rejection by generating IL-1, IL-33, TNF and other cytokines. METHODS We evaluated allograft rejection on the experience of our experimental data and using the relevant literature. RESULTS MCs are involved in initiation and regulation of innate and adaptive immune responses-pathways. MCs are important pro-inflammatory cells which express high-affinity receptor FceRI and can be activated by IgE and some pro-inflammatory cytokines, such as IL-1 and IL-33. The cross-linkage of high affinity IgE receptor on MCs by antigen ligation has a crucial role in allergy, asthma, anaphylaxis, cancer and allograft rejection. MCs mediate immunity in organ transplant, leading to the activation of allospecific T cells implicated in the rejection and generate pro-inflammatory cytokines/chemokines. IL-1 pro-inflammatory cytokine family members released by MCs mediate allograft rejection and inflammation. IL-37 is also an IL-1 family member generated by macrophage cell line in small amounts, which binds to IL-18Rα and produces an anti-inflammatory effect. IL-37 provokes the inhibition of TLR signaling, TLR-induced mTOR and (MyD88)-mediated responses, suppressing pro-inflammatory IL-1 family members and increasing IL-10. CONCLUSION IL-37 inhibition offers the opportunity to immunologically modulate MCs, by suppressing their production of IL-1 family members and reducing the risk of allograft rejection, resulting as a potential good therapeutic new cytokine. Here, we report the relationship between inflammatory MCs, allograft rejection and pro-inflammatory and anti-inflammatory IL-37.
Collapse
|
40
|
Angelova P, Kamenov Z, Tsakova A, El-Darawish Y, Okamura H. Interleukin-18 and testosterone levels in men with metabolic syndrome. Aging Male 2018; 21:130-137. [PMID: 29168426 DOI: 10.1080/13685538.2017.1401993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Interleukin 18 (IL-18) is an adipokine associated with obesity. Data about the relationship of IL-18 to the metabolic syndrome (MS) are still scarce. Low testosterone (T) levels are common in men with MS, but we did not find data about the levels of IL-18 in men with low T. The aim of this study was to determine the levels of IL-18 in men with MS with or without low T. PATIENTS AND METHODS A total of 251 men were included in the study. Of them 218 had MS (IDF 2005) and they were divided according to their morning total testosterone (TT) level (cutoff 10.4 nmol/l) into two groups: MS-low T (N = 84) and MS-normal T (N = 134). The control group consisted of 33 men without MS and low T. IL-18 was determined in serum using enzyme-linked immunosorbent assay. A small group of eight men with MS and low T levels received testosterone therapy for three months and physical and laboratory parameters were monitored at the end of that period. RESULTS MS men were at mean age (±SD) = 53.77 ± 9.59 years; body mass index (BMI) = 34.0 ± 6.3 kg/m2; and TT = 12.59 ± 5.66 nmol/l. The control group was at age = 52.12 ± 5.2 years (NS); BMI = 25.6 ± 2.4 kg/m2 (p < .001); and TT = 17.8 ± 5.68 nmol/l (p < .001), respectively. The levels of IL-18 were higher in the MS group - 345 pg/ml compared to the control one - 264 pg/ml (p < .01). There was no significant difference between MS-low T (330.6 pg/ml) and MS-normal T (350.2 pg/ml) subgroups. The MS-normal T differed more significantly from the control group (p < .001). Significant correlation of testosterone with IL-18 levels was not found. IL-18 correlated with parameters of obesity, lipids, fasting blood sugar (p < .05) and the number of criteria for MS (p < .001). Three months on T treatment showed improvement in obesity parameters and only in one patient IL-18 had clear reduction while the rest showed no change. CONCLUSIONS In this study, higher IL-18 levels were found in the presence of MS compared to healthy men, but they did not differ between men having MS with or without LOH.
Collapse
Affiliation(s)
- Petya Angelova
- a Clinic of Endocrinology , Alexandrovska University Hospital, Medical University-Sofia , Sofia , Bulgaria
| | - Zdravko Kamenov
- a Clinic of Endocrinology , Alexandrovska University Hospital, Medical University-Sofia , Sofia , Bulgaria
| | - Adelina Tsakova
- b Central Clinical Laboratory , Alexandrovska University Hospital, Medical University-Sofia , Sofia , Bulgaria
| | - Yosif El-Darawish
- c Laboratory of Tumor Immunology and Immunotherapy , Hyogo College of Medicine , Hyogo , Japan
| | - Haruki Okamura
- d Laboratory of Host Defense , Hyogo College of Medicine , Hyogo , Japan
| |
Collapse
|
41
|
Dai Q, Li Y, Yu H, Wang X. Suppression of Th1 and Th17 Responses and Induction of Treg Responses by IL-18-Expressing Plasmid Gene Combined with IL-4 on Collagen-Induced Arthritis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5164715. [PMID: 29854762 PMCID: PMC5964485 DOI: 10.1155/2018/5164715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/22/2018] [Accepted: 03/29/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES IL-18 is a proinflammatory cytokine with multiple immunoregulatory properties. We studied the effect of IL-18 gene therapy on the development of murine collagen-induced arthritis (CIA). METHODS Plasmid pCAGGS-IL-18 along or in combination with IL-10 or IL-4 was administered to CIA mice. The incidence and severity of arthritis of the paws were determined by a visual scale. Joint destruction was determined by histology. The levels of a panel of cytokines and transcription factors in the synovium were determined by reverse transcription polymerase chain reaction and quantitative RT-PCR. Quantitative RT-PCR was employed to detect the mRNA expression of TLRs and their pathway on the surface of DCs. RESULTS IL-18 gene therapy had no therapeutic effect on CIA mice. Additional coadministration with low dosage of recombinant IL-4 ameliorated the disease progression. Histopathological examination of the joints showed intact cartilage surface in IL-18 gene combined with IL-4-treated mice. The synovium of IL-18 gene combined with rIL4-treated mice had lower expression of TNF-α, IFN-γ, and IL-17 and higher expression of IL-10. The mechanism of this response appeared to involve modulation of transcription factors FoxP3 and GATA-3. The DCs in the spleen and lymph nodes of IL-18 gene combined with rIL4-treated mice had lower expression of TLR2, MyD88, and NF-kB. CONCLUSIONS Our findings indicate that pIL-18 gene combined with IL-4 ameliorates arthritis in the CIA mouse by suppression of Th1 and Th17 cytokines and increasing expression of FoxP3 and GATA-3. The plasmid backbone and multiple immunoregulatory properties of IL-18 appear to play a major role in the pIL-18 coadministration with rIL-4-mediated immunomodulation of arthritis through blocking the TLR2/MyD88/NF-kappa B signaling pathway.
Collapse
Affiliation(s)
- Qiaomei Dai
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pathology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyue Yu
- Department of Rheumatology, Qiqihar First Hospital, Qiqihar, China
| | - Xiaoyan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Predictive Role of Interleukin-18 in Liver Steatosis in Obese Children. Can J Gastroenterol Hepatol 2018; 2018:3870454. [PMID: 29854715 PMCID: PMC5944203 DOI: 10.1155/2018/3870454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Interleukin-18 (IL-18) is a proinflammatory cytokine associated with metabolic syndrome (MS). Nonalcoholic fatty liver disease (NAFLD) can be recognized as a feature of MS. MATERIAL AND METHODS Serum IL-18 concentration was evaluated in serum of 108 obese children, determined with ELISA, and referred to degree of liver steatosis in USG or total intrahepatic lipid content assessed by magnetic resonance proton spectroscopy (1HMRS). RESULTS Fatty liver was confirmed in 89 children with USG and in 72 with 1HMRS. IL-18 concentration demonstrated significantly higher values in patients than in controls. Significant correlations between IL-18 and ALT, GGT, triglycerides, hsCRP, and the degree of liver steatosis were demonstrated. NAFLD children had significantly higher level of IL-18, ALT, GGT, HOMA-IR, waist circumference, and total lipids content in 1HMRS than other obese children. IL-18 level was also significantly higher in obese children with advanced liver steatosis. Measurement of serum IL-18 showed ability to differentiate children with fatty liver from those without steatosis. CONCLUSION Elevated serum IL-18 concentration and its correlation with hepatocyte injury, systemic inflammation, and degree of liver steatosis support role in NAFLD pathomechanism. IL-18 can be considered to play a role in predicting advanced liver steatosis and fatty liver in obese children.
Collapse
|
43
|
Ragab G, Atkinson TP, Stoll ML. Macrophage Activation Syndrome. THE MICROBIOME IN RHEUMATIC DISEASES AND INFECTION 2018. [PMCID: PMC7123081 DOI: 10.1007/978-3-319-79026-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH), or termed macrophage activation syndrome (MAS) when associated with rheumatic disorders, is a frequently fatal complication of infections, rheumatic disorders, and hematopoietic malignancies. Clinically, HLH/MAS is a life-threatening condition that is usually diagnosed among febrile hospitalized patients (children and adults) who commonly present with unremitting fever and a shock-like multiorgan dysfunction scenario. Laboratory studies reveal pancytopenia, elevated liver enzymes, elevated markers of inflammation (ESR, CRP), hyperferritinemia, and features of coagulopathy. In about 60% of cases, excess hemophagocytosis (macrophages/histiocytes engulfing other hematopoietic cell types) is noted on biopsy specimens from the bone marrow, liver, lymph nodes, and other organs. HLH/MAS has been hypothesized to occur when a threshold level of inflammation has been achieved, and genetic and environmental risk factors are believed to contribute to the hyperinflammatory state. A broad variety of infections, from viruses to fungi to bacteria, have been identified as triggers of HLH/MAS, either in isolation or in addition to an underlying inflammatory disease state. Certain infections, particularly by members of the herpesvirus family, are the most notorious triggers of HLH/MAS. Treatment for infection-triggered MAS requires therapy for both the underlying infection and dampening of the hyperactive immune response.
Collapse
Affiliation(s)
- Gaafar Ragab
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
44
|
Ramachandran RA, Lupfer C, Zaki H. The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Adv Microb Physiol 2018; 72:65-115. [PMID: 29778217 DOI: 10.1016/bs.ampbs.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.
Collapse
Affiliation(s)
| | | | - Hasan Zaki
- UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
45
|
Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol 2018; 48:584-592. [PMID: 29274245 DOI: 10.1002/eji.201747404] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
The pro-inflammatory cytokine IL-1β is well known for its role in host defense and the initiation of potent inflammatory responses. It is processed from its inactive pro-form by the inflammatory caspase-1 into its mature bioactive form, which is then released from the cell via an unconventional secretion mechanism. Recently, gasdermin-D has been identified as a new target of caspase-1. After proteolytical cleavage of gasdermin-D, the N-terminal fragment induces pyroptosis, a lytic cell death, by forming large permeability pores in the plasma membrane. Here we show using the murine system that gasdermin-D is required for IL-1β secretion by macrophages, dendritic cells and partially in neutrophils, and that secretion is a cell-lysis-independent event. Liposome transport assays in vitro further demonstrate that gasdermin-D pores are large enough to allow the direct release of IL-1β. Moreover, IL-18 and other small soluble cytosolic proteins can also be released in a lysis-independent but gasdermin-D-dependent mode, suggesting that the gasdermin-D pores allow passive the release of cytosolic proteins in a size-dependent manner.
Collapse
Affiliation(s)
- Rosalie Heilig
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Mathias S Dick
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Lorenzo Sborgi
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, France
| | - Sebastian Hiller
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
46
|
Abstract
The interleukin-1 (IL-1) family of cytokines and receptors is unique in immunology because the IL-1 family and Toll-like receptor (TLR) families share similar functions. More than any other cytokine family, the IL-1 family is primarily associated with innate immunity. More than 95% of living organisms use innate immune mechanisms for survival whereas less than 5% depend on T- and B-cell functions. Innate immunity is manifested by inflammation, which can function as a mechanism of host defense but when uncontrolled is detrimental to survival. Each member of the IL-1 receptor and TLR family contains the cytoplasmic Toll-IL-1-Receptor (TIR) domain. The 50 amino acid TIR domains are highly homologous with the Toll protein in Drosophila. The TIR domain is nearly the same and present in each TLR and each IL-1 receptor family. Whereas IL-1 family cytokine members trigger innate inflammation via IL-1 family of receptors, TLRs trigger inflammation via bacteria, microbial products, viruses, nucleic acids, and damage-associated molecular patterns (DAMPs). In fact, IL-1 family member IL-1a and IL-33 also function as DAMPs. Although the inflammatory properties of the IL-1 family dominate in innate immunity, IL-1 family member can play a role in acquired immunity. This overview is a condensed update of the IL-1 family of cytokines and receptors.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Chin LH, Hsu YJ, Hsu SC, Chen YH, Chang YL, Huang SM, Tsai CS, Lin CY. The regulation of NLRP3 inflammasome expression during the development of cardiac contractile dysfunction in chronic kidney disease. Oncotarget 2017; 8:113303-113317. [PMID: 29371912 PMCID: PMC5768329 DOI: 10.18632/oncotarget.22964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation plays a crucial role in the long-term complications in patients with chronic kidney disease (CKD). This study aimed to assess the role of NLR pyrin domain-containing protein (NLRP3) inflammasome in cardiac contractile dysfunctions in CKD. The cardiac contractile function was evaluated and the expression of NLRP3 inflammasome and related cytokines in the heart was assessed in a murine sham-operated and 5/6 nephrectomy CKD model in vivo. In vitro, H9c2 cells were treated with uremic toxin indoxyl sulfate (IS), with or without NLRP3 inflammasome inhibition, which was achieved by using small interfering RNA (siRNA)-mediated knockdown of the NLRP3 gene. Moreover, the activation of nuclear factor κB (NF-κB) signaling and apoptosis marker levels were assessed in the IS-treated H9c2 cells. The results demonstrated that CKD can lead to the development of cardiac contractile dysfunction in vivo associated with the upregulation of NLRP3 inflammasome, IL-1β, IL-18, and contribute to the myocardial apoptosis. In vitro experiments showed the upregulation of inflammasome, IL-1β, and IL-18 levels, and cell apoptosis in the IS-treated H9c2 cells through the activation of NF-κB signaling pathway. The transfection of cells with si-NLRP3 was shown to alleviate IL-1β, IL-18, and cell apoptosis. Moreover, decreased cell viability induced by IS was shown to be attenuated by IL-1β or IL-18-neutralizing antibody. In summary, CKD can result in the development of cardiac contractile dysfunction associated with the upregulation of NLRP3 inflammasome/IL-1β/IL-18 axis induced by the uremic toxins.
Collapse
Affiliation(s)
- Li-Han Chin
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Superintendent's Office, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
48
|
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55:1074-1089. [PMID: 28076311 DOI: 10.1515/cclm-2016-0973] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a common complication of critical illnesses and has a significant impact on outcomes, including mortality and morbidities. Unfortunately, apart from prophylactic measures, no effective treatment for this syndrome is known. Therefore, early recognition of AKI not only can provide better opportunities for preventive interventions, but also opens many gates for research and development of effective therapeutic options. Over the last few years, several new AKI biomarkers have been discovered and validated to improve early detection, differential diagnosis, and differentiation of patients into risk groups for progressive renal failure, need for renal replacement therapy (RRT), or death. These novel AKI biomarkers complement serum creatinine (SCr) and urine output, which are the standard diagnostic tools for AKI detection. In this article, we review the available literature on characteristics of promising AKI biomarkers that are currently the focus of preclinical and clinical investigations. These biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein, interleukin 18 (lL-18), insulin-like growth factor-binding protein 7, tissue inhibitor of metalloproteinase 2 (TIMP-2), calprotectin, urine angiotensinogen (AGT), and urine microRNA. We then describe the clinical performance of these biomarkers for diagnosis and prognostication. We also appraise each AKI biomarker's advantages and limitations as a tool for early AKI recognition and prediction of clinical outcomes after AKI. Finally, we review the current and future states of implementation of biomarkers in the clinical practice.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Inflammasomes are major actors of the innate immune system, through their regulation of inflammatory caspases and maturation of IL-1β and IL-18. These multiprotein complexes have been shown to play major roles in inflammatory and metabolic diseases and have more recently been implicated in tumor development and dissemination. In this review, we address these recent findings, focusing particularly on colorectal cancer (CRC) initiation and tumor dissemination. RECENT FINDINGS Based mostly on loss-of-function experiments in mouse models, paradoxical results were obtained as both protumoral and antitumoral activities were reported. Moreover, several studies report major inflammasome-independent functions for some of these innate receptor proteins such as absent in melanoma 2, nod-like receptor family pyrin containing 3 (NLRP3) or nod-like receptor family CARD containing 4 (NLRC4), functions exerted in epithelial cells as well as in immune cells. SUMMARY The current review summarizes recent findings on the implication of inflammasomes and of absent in melanoma 2, NLRC4 and NLRP3 inflammasome-independent functions in cancer development and dissemination. Although contradictory in certain aspects, these studies highlight a lack of understanding of their mechanistic functions and regulations in cancer and the need for further investigations.
Collapse
|
50
|
Abstract
Systemic juvenile idiopathic arthritis (sJIA) and its most significant complication, macrophage activation syndrome (MAS), have traditionally been treated with steroids and non-steroidal anti-inflammatory medications. However, the introduction of biologic medications that inhibit specific cytokines, such interleukins 1 and 6, has changed the treatment paradigm for sJIA patients. In this review, we discuss the therapies currently used in the treatment of sJIA as well as novel targets and approaches under consideration, including mesenchymal stromal cell therapy and JAK inhibitors. We also discuss targeting cytokines that have been implicated in MAS, such as interferon gamma and interleukin 18.
Collapse
Affiliation(s)
- Susan Canny
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elizabeth Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|