1
|
Chow JCH, Chik JYK, Cheung KM, Lee LTY, Wong KH, Au KH. Phrenic Nerve Palsy after Stereotactic Body Radiotherapy for Central Lung Cancer: A Case Report. Clin Lung Cancer 2025; 26:e1-e4. [PMID: 39510939 DOI: 10.1016/j.cllc.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024]
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China.
| | - Jeannie Y K Chik
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Ka Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Luke T Y Lee
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Kam Hung Wong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Kwok Hung Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Xin X, Tang B, Wu F, Lang J, Li J, Wang X, Liu M, Zhang Q, Liao X, Yang F, Orlandini LC. Dose tracking assessment for magnetic resonance guided adaptive radiotherapy of rectal cancers. Radiat Oncol 2024; 19:114. [PMID: 39218934 PMCID: PMC11367860 DOI: 10.1186/s13014-024-02508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) at MR-Linac allows for plan optimisation on the MR-based synthetic CT (sCT) images, adjusting the target and organs at risk according to the patient's daily anatomy. Conversely, conventional linac image-guided radiotherapy (IGRT) involves rigid realignment of regions of interest to the daily anatomy, followed by the delivery of the reference computed tomography (CT) plan. This study aims to evaluate the effectiveness of MRgART versus IGRT for rectal cancer patients undergoing short-course radiotherapy, while also assessing the dose accumulation process to support the findings and determine its usefulness in enhancing treatment accuracy. METHODS Nineteen rectal cancer patients treated with a 1.5 Tesla MR-Linac with a prescription dose of 25 Gy (5 Gy x 5) and undergoing daily adapted radiotherapy by plan optimization based on online MR-based sCT images, were included in this retrospective study. For each adapted plan ([Formula: see text]), a second plan ([Formula: see text]) was generated by recalculating the reference CT plan on the daily MR-based sCT images after rigid registration with the reference CT images to simulate the IGRT workflow. Dosimetry of [Formula: see text] and[Formula: see text]was compared for each fraction. Cumulative doses on the first and last fractions were evaluated for both workflows. The dosimetry per single fraction and the cumulative doses were compared using dose-volume histogram parameters. RESULTS Ninety-five fractions delivered with MRgART were compared to corresponding simulated IGRT fractions. All MRgART fractions fulfilled the target clinical requirements. IGRT treatments did not meet the expected target coverage for 63 out of 94 fractions (67.0%), with 13 fractions showing a V95 median point percentage decrease of 2.78% (range, 1.65-4.16%), and 55 fractions exceeding the V107% threshold with a median value of 15.4 cc (range, 6.0-43.8 cc). For the bladder, the median [Formula: see text] values were 18.18 Gy for the adaptive fractions and 19.60 Gy for the IGRT fractions. Similarly the median [Formula: see text] values for the small bowel were 23.40 Gy and 25.69 Gy, respectively. No statistically significant differences were observed in the doses accumulated on the first or last fraction for the adaptive workflow, with results consistent with the single adaptive fractions. In contrast, accumulated doses in the IGRT workflow showed significant variations mitigating the high dose constraint, nevertheless, more than half of the patients still did not meet clinical requirements. CONCLUSIONS MRgART for short-course rectal cancer treatments ensures that the dose delivered matches each fraction of the planned dose and the results are confirmed by the dose accumulation process, which therefore seems redundant. In contrast, IGRT may lead to target dose discrepancies and non-compliance with organs at risk constraints and dose accumulation can still highlight notable dosimetric differences.
Collapse
Affiliation(s)
- Xin Xin
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China.
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Qingxian Zhang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Feng Yang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| |
Collapse
|
3
|
Wang H, Zhang X, Yue J. Multiple Abdominal Desmoplastic Small Round-Cell Tumors Treated With Fan Beam Computed Tomography-Guided Adaptive Radiotherapy (FBCT-gART): A Case Report. Cureus 2024; 16:e69785. [PMID: 39308846 PMCID: PMC11414420 DOI: 10.7759/cureus.69785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive soft tissue tumor that predominantly affects the abdominal and pelvic regions of adolescent males. This case report presents our clinical experience of treating a 33-year-old male with multifocal peritoneal DSRCT using fan beam computed tomography-guided adaptive radiotherapy (FBCT-gART). The patient presented with abdominal pain and was diagnosed with DSRCT following imaging and biopsy. Despite initial treatment with surgery, chemotherapy, and targeted therapy, the patient experienced multifocal peritoneal recurrence. Due to the considerable mobility of the abdominal tumors and the associated risks to adjacent critical organs, the patient underwent daily online FBCT-gART. The prescribed dose regimen was 54 Gy delivered in 27 fractions at 2 Gy per fraction; however, the patient ultimately received only 25 treatments for personal reasons. This case report evaluates the technical workflow of using FBCT-gART for DSRCT and discusses its dosimetric advantages over non-adaptive radiotherapy.
Collapse
Affiliation(s)
- Haohua Wang
- Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, CHN
| | - Xiang Zhang
- Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, CHN
| | - Jinbo Yue
- Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, CHN
| |
Collapse
|
4
|
van Goor IW, Raymakers L, Andel DS, Brosens LA, Kranenburg O, Leusen JH, Meijer GJ, Molenaar IQ, van Santvoort HC, de Vries JW, Wopereis AJ, Intven MP, Daamen LA. Radiation response assessment of organoids derived from patients with pancreatic cancer. Clin Transl Radiat Oncol 2024; 48:100829. [PMID: 39192878 PMCID: PMC11347840 DOI: 10.1016/j.ctro.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background The effectiveness of radiotherapy for pancreatic cancer is debated. Patient-derived organoids (PDOs) already mimicked clinical radiation response in other cancer types, which could be valuable in pancreatic cancer as well. This study aimed to investigate whether PDOs can be used to model RT response in pancreatic cancer and to explore the presence of a dose-response correlation. Methods PDOs derived from two pancreatic cancer patients (HUB-08-B2-022A and HUB-08-B2-026B) were irradiated with doses ranging from 0 to 40 Gray. Viability assessments were conducted after seven and 10 days by measuring ATP-levels. Results were normalized, defining the viability at 0 Gray as 100 % and an absolute viability of 0 as 0 %. The relative area under the curve (rAUC) was calculated (0 = total sensitivity, 1 = total resistance). Results With a readout time of seven days, both HUB-08-B2-022A and HUB-08-B2-026B exhibited viability above 50 % at the highest dose of 12 Gy (rAUC of 0.79 and 0.69, respectively). With a readout time of 10 days, both PDOs showed a dose-response relation although HUB-08-B2-022A was more sensitive than HUB-08-B2-026B (rAUC of 0.37 and 0.51, respectively). Increasing the radiation dose to 40 Gy did not further affect viability, but the dose-response relation remained present (rAUC of 0.13 and 0.26, respectively). In the final experiment with a readout time of 10 days and a maximum dose of 14 Gy, the dose-response correlation was paramount in both PDOs (rAUC 0.28 and 0.45, respectively), with HUB-08-B2-022A being most sensitive. Conclusions In this setup, both pancreatic cancer PDOs showed an irradiation dose-response correlation. These preliminary findings suggest that pancreatic cancer PDOs are suitable for assessing radiation response in vitro. Further experiments are needed to eventually simulate treatment responses to personalized treatment strategies.
Collapse
Affiliation(s)
- Iris W.J.M. van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Leon Raymakers
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daan S.H. Andel
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeanette H.W. Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - J.H. Wilfred de Vries
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Andre J.M. Wopereis
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Martijn P.W. Intven
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Lois A. Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Imaging Division, University Medical Center Utrecht Cancer Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Yan Z, Zhu J, Liu Y, Li Z, Liang X, Zhou S, Hou Y, Chen H, Zhou L, Wang P, Ao X, Gao S, Huang X, Zhou P, Gu Y. DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med 2024; 14:e1690. [PMID: 38760896 PMCID: PMC11101672 DOI: 10.1002/ctm2.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
INTRODUCTION Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xin Huang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
6
|
Pierrard J, Deheneffe S, Dechambre D, Sterpin E, Geets X, Van Ooteghem G. Markerless liver online adaptive stereotactic radiotherapy: feasibility analysisCervantes. Phys Med Biol 2024; 69:095015. [PMID: 38565128 DOI: 10.1088/1361-6560/ad39a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Stéphanie Deheneffe
- Radiation Oncology Department, CHU-UCL-Namur, Site Sainte-Elisabeth, B-5000 Namur, Belgium
| | - David Dechambre
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Edmond Sterpin
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| |
Collapse
|
7
|
Hall JT, Moon AM, Young M, Tan X, Darawsheh R, Danquah F, Tepper JE, Yanagihara TK. Biochemical Safety of SBRT to Multiple Intrahepatic Lesions for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:443-454. [PMID: 38476559 PMCID: PMC10928924 DOI: 10.2147/jhc.s447025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Background We aim to better characterize stereotactic body radiation therapy (SBRT)-related hepatic biochemical toxicity in patients with multiple intrahepatic lesions from hepatocellular carcinoma (HCC). Methods We conducted a retrospective analysis of patients with HCC who underwent SBRT for 2 or more synchronous or metachronous liver lesions. We collected patient characteristics and dosimetric data (mean liver dose [MLD], cumulative effective volume [Veff], cumulative volume of liver receiving 15 Gy [V15Gy], and cumulative planning target volume [PTV]) along with liver-related toxicity (measured by albumin-bilirubin [ALBI] and Child-Pugh [CP] scores). A linear mixed-effects model was used to assess the effect of multi-target SBRT on changes in ALBI. Results There were 25 patients and 56 lesions with median follow-up of 29 months. Eleven patients had synchronous lesions, and 14 had recurrent lesions treated with separate SBRT courses. Among those receiving multiple SBRT courses, there were 7 lesions with overlap of V15Gy (median V15Gy overlap: 35 mL, range: 0.5-388 mL). There was no association between cumulative MLD, Veff, V15Gy, or PTV and change in ALBI. Four of 25 patients experienced non-classic radiation-induced liver disease (RILD), due to an increase of CP score by ≥2 points 3 to 6 months after SBRT. Sixteen of 25 patients experienced an increase in ALBI grade by 1 or more points 3 to 6 months after SBRT. Comparing the groups that received SBRT in a single course versus multiple courses revealed no statistically significant differences in liver toxicity. Conclusion Liver SBRT for multiple lesions in a single or in separate courses is feasible and with acceptable risk of hepatotoxicity. Prospective studies with a larger cohort are needed to better characterize safety in this population.
Collapse
Affiliation(s)
- Jacob T Hall
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Michael Young
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rami Darawsheh
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Flora Danquah
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Joel E Tepper
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Ted K Yanagihara
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Liu M, Tang B, Orlandini LC, Li J, Wang X, Peng Q, Thwaites D. Potential dosimetric error in the adaptive workflow of a 1.5 T MR-Linac from patient movement relative to immobilisation systems. Phys Eng Sci Med 2024; 47:351-359. [PMID: 38227140 PMCID: PMC10963571 DOI: 10.1007/s13246-023-01369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
In magnetic resonance- (MR-) based adaptive workflows for an MR-linac, the treatment plan is optimized and recalculated online using the daily MR images. The Unity MR-linac is supplied with a patient positioning device (ppd) using pelvic and abdomen thermoplastic masks attached to a board with high-density components. This study highlights the dosimetric effect of using this in such workflows when there are relative patient-ppd displacements, as these are not visualized on MR imaging and the treatment planning system assumes the patient is fixed relative to the ppd. The online adapted plans of two example rectum cancer patients treated at a Unity MR-linac were perturbed by introducing relative patient-ppd displacements, and the effect was evaluated on plan dosimetry. Forty-eight perturbed clinical adapted plans were recalculated, based on online MR-based synthetic computed tomography, and compared with the original plans, using dose-volume histogram parameters and gamma analysis. The target volume covered by the prescribed dose ( D pre ) and by at least 107% of D pre varied up to - 1.87% and + 3.67%, respectively for 0.5 cm displacements, and to - 3.18% and + 4.96% for 2 cm displacements; whilst 2%-2 mm gamma analysis showed a median value of 92.9%. The use of a patient positioning system with high-density components in a Unity MR-based online adaptive treatment workflow can introduce unrecognized errors in plan dosimetry and it is recommended not to use such a device for such treatments, without modifying the device and the workflow, followed by careful clinical evaluation, or alternatively to use other immobilization methods.
Collapse
Affiliation(s)
- Min Liu
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China
- Institute of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Bin Tang
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China
| | - Lucia Clara Orlandini
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China
| | - Jie Li
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China.
- Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK.
| | - Xianliang Wang
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China.
- Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK.
| | - Qian Peng
- Radiation Oncology Department, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Chengdu, China
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
- Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia
- Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Bonù ML, Nicosia L, Turkaj A, Pastorello E, Vitali P, Frassine F, Toraci C, Spiazzi L, Lechiara M, Frittoli B, Grazioli L, Ghirardelli P, Costantino G, Barbera F, Borghetti P, Triggiani L, Portolani N, Buglione M, Dionisi F, Giacomelli I, Lancia A, Magrini SM, Tomasini D. High dose proton and photon-based radiation therapy for 213 liver lesions: a multi-institutional dosimetric comparison with a clinical perspective. LA RADIOLOGIA MEDICA 2024; 129:497-506. [PMID: 38345714 PMCID: PMC10942931 DOI: 10.1007/s11547-024-01788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/15/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) and Proton therapy (PT) are both options in the management of liver lesions. Limited clinical-dosimetric comparison are available. Moreover, dose-constraint routinely used in liver PT and SRT considers only the liver spared, while optimization strategies to limit the liver damaged are poorly reported. METHODS Primary endpoint was to assess and compare liver sparing of four contemporary RT techniques. Secondary endpoints were freedom from local recurrence (FFLR), overall survival (OS), acute and late toxicity. We hypothesize that Focal Liver Reaction (FLR) is determined by a similar biologic dose. FLR was delineated on follow-up MRI. Mean C.I. was computed for all the schedules used. A so-called Fall-off Volume (FOV) was defined as the area of healthy liver (liver-PTV) receiving more than the isotoxic dose. Fall-off Volume Ratio (FOVR) was defined as ratio between FOV and PTV. RESULTS 213 lesions were identified. Mean best fitting isodose (isotoxic doses) for FLR were 18Gy, 21.5 Gy and 28.5 Gy for 3, 5 and 15 fractions. Among photons, an advantage in terms of healthy liver sparing was found for Vmat FFF with 5mm jaws (p = 0.013) and Cyberknife (p = 0.03). FOV and FOVR resulted lower for PT (p < 0.001). Three years FFLR resulted 83%. Classic Radiation induced liver disease (RILD, any grade) affected 2 patients. CONCLUSIONS Cyberknife and V-MAT FFF with 5mm jaws spare more liver than V-MAT FF with 10 mm jaws. PT spare more liver compared to photons. FOV and FOVR allows a quantitative analysis of healthy tissue sparing performance showing also the quality of plan in terms of dose fall-off.
Collapse
Affiliation(s)
- Marco Lorenzo Bonù
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy.
| | - Luca Nicosia
- Department of Radiation Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | | | - Edoardo Pastorello
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paola Vitali
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Francesco Frassine
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Cristian Toraci
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Marco Lechiara
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Frittoli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Grazioli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Ghirardelli
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Gianluca Costantino
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Fernando Barbera
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paolo Borghetti
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | - Michela Buglione
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | | | - Andrea Lancia
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| |
Collapse
|
10
|
Jaksic N, Modesto A, Meillan N, Bordron A, Michalet M, Riou O, Lisbona A, Huguet F. Stereotactic body radiation therapy for liver metastases in oligometastatic disease. Cancer Radiother 2024; 28:75-82. [PMID: 37865603 DOI: 10.1016/j.canrad.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 10/23/2023]
Abstract
Oligometastatic cancers designate cancers in which the number of metastases is less than five, corresponding to a particular biological entity whose prognosis is situated between a localized and metastatic disease. The liver is one of the main sites of metastases. When patients are not suitable for surgery, stereotactic body radiotherapy provides high local control rate, although these data come mainly from retrospective studies, with no phase III study results. The need for a high therapeutic dose (biologically effective dose greater than 100Gy) while respecting the constraints on the organs at risk, and the management of respiratory movements require expertise and sufficient technical prerequisites. The emergence of new techniques such as MRI-guided radiotherapy could further increase the effectiveness of stereotactic radiotherapy of liver metastases, and thus improve the prognosis of these oligometastatic cancers.
Collapse
Affiliation(s)
- N Jaksic
- Institut de cancérologie et radiothérapie Brétillien, 35400 Saint-Malo, France.
| | - A Modesto
- Département de radiothérapie, institut régional du cancer, 31100 Toulouse, France
| | - N Meillan
- Département de radiothérapie, centre hospitalier d'Argenteuil, 95107 Argenteuil, France
| | - A Bordron
- Département de radiothérapie, centre hospitalier universitaire de Brest, 29200 Brest, France
| | - M Michalet
- Département de radiothérapie, institut régional du cancer, 34000 Montpellier, France
| | - O Riou
- Département de radiothérapie, institut régional du cancer, 34000 Montpellier, France
| | - A Lisbona
- Département de radiothérapie, institut régional du cancer, 44800 Saint-Herblain, France
| | - F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, hôpitaux universitaires Est Parisien, Sorbonne université, 75020 Paris, France
| |
Collapse
|
11
|
Bourbonne V, Lévy A, Khalifa J, Antoni D, Blais E, Darréon J, Le Péchoux C, Lerouge D, Giraud P, Marguerit A, Pourel N, Riet FG, Thureau S. Radiotherapy in the management of lung oligometastases. Cancer Radiother 2024; 28:36-48. [PMID: 38228422 DOI: 10.1016/j.canrad.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 01/18/2024]
Abstract
In recent years, the development of both medical imaging and new systemic agents (targeted therapy and immunotherapy) have revolutionized the field of oncology, leading to a new entity: oligometastatic disease. Adding local treatment of oligometastases to systemic treatment could lead to prolonged survival with no significant impact on quality of life. Given the high prevalence of lung oligometastases and the new systemic agents coming with increased pulmonary toxicity, this article provides a comprehensive review of the current state-of-art for radiotherapy of lung oligometastases. After reviewing pretreatment workup, the authors define several radiotherapy regimen based on the localization and size of the oligometastases. A comment on the synergistic combination of medical treatment and radiotherapy is also made, projecting on future steps in this specific clinical setting.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTim, Inserm, UMR 1101, université de Bretagne occidentale, Brest, France
| | - A Lévy
- Department of Radiation Oncology, Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - J Khalifa
- Department of Radiation Oncology, institut Claudius-Regaud, institut universitaire du cancer Toulouse-Oncopôle, Toulouse, France
| | - D Antoni
- Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - E Blais
- Department of Radiation Oncology, polyclinique Marzet, Pau, France
| | - J Darréon
- Department of Radiation Oncology, institut Paoli-Calmettes, Marseille, France
| | - C Le Péchoux
- Department of Radiation Oncology, Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - D Lerouge
- Department of Radiation Oncology, centre François-Baclesse, Caen, France
| | - P Giraud
- Department of Radiation Oncology, hôpital européen Georges-Pompidou, Paris, France; Université Paris Cité, Paris, France
| | - A Marguerit
- Department of Radiation Oncology, Institut de cancérologie de Montpellier, Montpellier, France
| | - N Pourel
- Department of Radiation Oncology, institut Sainte-Catherine, Avignon, France
| | - F-G Riet
- Department of Radiation Oncology, centre hospitalier privé Saint-Grégoire, 35760 Saint-Grégoire, France
| | - S Thureau
- Radiotherapy Department, centre Henri-Becquerel, Rouen, France; QuantIF-Litis EA4108, université de Rouen, Rouen, France.
| |
Collapse
|
12
|
Dong X, Wang K, Yang H, Cheng R, Li Y, Hou Y, Chang J, Yuan L. The Nomogram predicting the overall survival of patients with pancreatic cancer treated with radiotherapy: a study based on the SEER database and a Chinese cohort. Front Endocrinol (Lausanne) 2023; 14:1266318. [PMID: 37955009 PMCID: PMC10634587 DOI: 10.3389/fendo.2023.1266318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Patients with pancreatic cancer (PC) have a poor prognosis. Radiotherapy (RT) is a standard palliative treatment in clinical practice, and there is no effective clinical prediction model to predict the prognosis of PC patients receiving radiotherapy. This study aimed to analyze PC's clinical characteristics, find the factors affecting PC patients' prognosis, and construct a visual Nomogram to predict overall survival (OS). Methods SEER*Stat software was used to collect clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of 3570 patients treated with RT. At the same time, the relevant clinical data of 115 patients were collected from the Affiliated Cancer Hospital of Zhengzhou University. The SEER database data were randomly divided into the training and internal validation cohorts in a 7:3 ratio, with all patients at The Affiliated Cancer Hospital of Zhengzhou University as the external validation cohort. The lasso regression was used to screen the relevant variables. All non-zero variables were included in the multivariate analysis. Multivariate Cox proportional risk regression analysis was used to determine the independent prognostic factors. The Kaplan-Meier(K-M) method was used to plot the survival curves for different treatments (surgery, RT, chemotherapy, and combination therapy) and calculate the median OS. The Nomogram was constructed to predict the survival rates at 1, 3, and 5 years, and the time-dependent receiver operating characteristic curves (ROC) were plotted with the calculated curves. Calculate the area under the curve (AUC), the Bootstrap method was used to plot the calibration curve, and the clinical efficacy of the prediction model was evaluated using decision curve analysis (DCA). Results The median OS was 25.0, 18.0, 11.0, and 4.0 months in the surgery combined with chemoradiotherapy (SCRT), surgery combined with radiotherapy, chemoradiotherapy (CRT), and RT alone cohorts, respectively. Multivariate Cox regression analysis showed that age, N stage, M stage, chemotherapy, surgery, lymph node surgery, and Grade were independent prognostic factors for patients. Nomogram models were constructed to predict patients' OS. 1-, 3-, and 5-year Time-dependent ROC curves were plotted, and AUC values were calculated. The results suggested that the AUCs were 0.77, 0.79, and 0.79 for the training cohort, 0.79, 0.82, and 0.81 for the internal validation cohort, and 0.73, 0.93, and 0.88 for the external validation cohort. The calibration curves Show that the model prediction probability is in high agreement with the actual observation probability, and the DCA curve shows a high net return. Conclusion SCRT significantly improves the OS of PC patients. We developed and validated a Nomogram to predict the OS of PC patients receiving RT.
Collapse
Affiliation(s)
- Xiaotao Dong
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kunlun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruilan Cheng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital Affiliated to China Medical University, Shenzhen, China
| | - Yan Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqi Hou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiali Chang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Song Y, Zhang Y, Wang H, Zhao M, Guan F, Li Z, Yue J. Case Report: MR-LINAC-guided adaptive radiotherapy for gastric cancer. Front Oncol 2023; 13:1159197. [PMID: 37746250 PMCID: PMC10514477 DOI: 10.3389/fonc.2023.1159197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background The stomach is one of the most deformable organs. Its shape can be easily affected by breathing movements, and daily diet, and it also varies when the body position is different. The susceptibility of stomach has made it challenging to treat gastric cancer using the conventional image-guided radiotherapy, i.e., the techniques based on kilovoltage X-ray imaging. The magnetic resonance imaging guided radiotherapy (MRgRT) is usually implemented using a hybrid system MR-LINAC. It is feasible to implement adaptive radiotherapy using MR-LINAC for deformable organs such as stomach. In this case report, we present our clinical experience to treat a gastric cancer patient using MR-LINAC. Case description The patient is a 58-year-old male who started having black stools with no apparent cause a year ago. Gastroscopy result showed pancreatic cancer, pathology: adenocarcinoma on gastric cancer biopsy, adenocarcinoma on gastric body minor curvature biopsy. The patient was diagnosed with gastric cancer (adenocarcinoma, cTxN+M1, stage IV, HER-2 positive). The patient was treated in 25 fractions with radiotherapy using MR-LINAC with online adaptive treatment plans daily. The target area in daily MR images varied considerably when compared with the target area on the CT simulation images. During the course of treatment, there have even been instances where the planned target area where the patient received radiotherapy did not cover the lesion of the day. Conclusion Online adaptive MRgRT can be a meaningful innovation for treating malignancies in the upper abdomen. The results in the current study are promising and are indicative for further optimizing online adaptive MRgRT in patients with inoperable tumors of the upper abdomen.
Collapse
Affiliation(s)
- Yajun Song
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huadong Wang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyu Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Feng X, Tang B, Yao X, Liu M, Liao X, Yuan K, Peng Q, Orlandini LC. Effectiveness of bladder filling control during online MR-guided adaptive radiotherapy for rectal cancer. Radiat Oncol 2023; 18:136. [PMID: 37592338 PMCID: PMC10436664 DOI: 10.1186/s13014-023-02315-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) treatment sessions at MR-Linac are time-consuming and changes in organs at risk volumes can impact the treatment dosimetry. This study aims to evaluate the feasibility to control bladder filling during the rectum MRgART online session and its effectiveness on plan dosimetry. METHODS A total of 109 online adaptive sessions of 24 rectum cancer patients treated at Unity 1.5 T MR-Linac with a short course radiotherapy (25 Gy, 5 Gy × 5) for whom the adaptive plan was optimized and recalculated online based on the daily magnetic resonance imaging (MRI) were analysed. Patients were fitted with a bladder catheter to control bladder filling; the bladder is emptied and then partially filled with a known amount of saline at the beginning and end of the online session. A first MRI ([Formula: see text]) acquired at the beginning of the session was used for plan adaptation and the second ([Formula: see text]) was acquired while approving the adapted plan and rigidly registered with the first to ensure the appropriateness of the isodoses on the ongoing delivery treatment. For each fraction, the time interval between the two MRIs and potential bladder changes were assessed with independent metrics, and the impact on the plan dosimetry was evaluated by comparing target and organs at risk dose volume histogram cut-off points of the plan adapted on [Formula: see text] and recalculated on [Formula: see text]. RESULTS Median bladder volume variations, DSC, and HD of 8.17%, 0.922, and 2.92 mm were registered within a median time of 38 min between [Formula: see text] and [Formula: see text]; dosimetric differences < 0.65% were registered for target coverage, and < 0.5% for bladder, small bowel and femoral heads constraints, with a p value > 0.05. CONCLUSION The use of a bladder filling control procedure can help ensure the dosimetric accuracy of the online adapted treatment delivered.
Collapse
Affiliation(s)
- Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
- Institute of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Ke Yuan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Qian Peng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| |
Collapse
|
15
|
Azmoonfar R, Khosravi H, Rafieemehr H, Mirzaei F, Dastan D, Ghiasvand MR, Khorshidi L, Pashaki AS. Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat: A histopathological study. Biochem Biophys Rep 2023; 34:101455. [PMID: 36969320 PMCID: PMC10031346 DOI: 10.1016/j.bbrep.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background Ionizing radiation (IR) is widely used in the treatment of cancer in radiotherapy. One of the main concerns of patients with gastrointestinal cancers undergoing radiotherapy is the harmful side effects of IR on normal tissues. The liver, kidney, and duodenum are usually exposed to high doses of radiation in the treatment of some cancers in abdominal region radiotherapy. We aimed to assess the radioprotective effects of Malva sylvestris L. against IR damages to the abdominal region. Materials and methods This current study was conducted on 45 rats divided randomly into nine groups of five: A) negative control group, B) sham group, C) irradiation group, D) mallow treatment-1(200gr/kg), E) mallow treatment-2(400gr/kg), F) mallow treatment-3(600gr/kg), G) mallow treatment-4(200gr/kg) plus irradiation, H) mallow treatment-5(400gr/kg) plus irradiation, I) mallow treatment-6(600gr/kg) plus irradiation. Irradiation was performed with a 6Gy x-ray. Histopathological evaluations were performed 10 days after irradiation. Results The histopathological examination results confirmed that preventive therapy with the effective dose of mallow reduced the liver, kidney, and intestine damage induced by radiation. The dose of 400 mg/kg was more effective than other selected dose in improving the damage caused by irradiation in the studied tissues. Conclusion This study concludes that Malva sylvestris L. contributed to significant improvements in radiation-induced histological parameters of the liver and kidney and, to a lesser extent, in the intestine. These results collectively indicate that mallow is an effective radioprotective agent.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Khosravi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Rafieemehr
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohamad Reza Ghiasvand
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lavin Khorshidi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolazim Sedighi Pashaki
- Department of Radiooncology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
van Goor IWJM, Daamen LA, Besselink MG, Bruynzeel AME, Busch OR, Cirkel GA, Groot Koerkamp B, Haj Mohammed N, Heerkens HD, van Laarhoven HWM, Meijer GJ, Nuyttens J, van Santvoort HC, van Tienhoven G, Verkooijen HM, Wilmink JW, Molenaar IQ, Intven MPW. A nationwide randomized controlled trial on additional treatment for isolated local pancreatic cancer recurrence using stereotactic body radiation therapy (ARCADE). Trials 2022; 23:913. [PMID: 36307892 PMCID: PMC9617359 DOI: 10.1186/s13063-022-06829-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Disease recurrence is the main cause of mortality after resection of pancreatic ductal adenocarcinoma (PDAC). In 20-30% of resected patients, isolated local PDAC recurrence occurs. Retrospective studies have suggested that stereotactic body radiation therapy (SBRT) might lead to improved local control in these patients, potentially having a beneficial effect on both survival and quality of life. The "nationwide randomized controlled trial on additional treatment for isolated local pancreatic cancer recurrence using stereotactic body radiation therapy" (ARCADE) will investigate the value of SBRT in addition to standard of care in patients with isolated local PDAC recurrence compared to standard of care alone, regarding both survival and quality of life outcomes. METHODS The ARCADE trial is nested within a prospective cohort (Dutch Pancreatic Cancer Project; PACAP) according to the 'Trials within Cohorts' design. All PACAP participants with isolated local PDAC recurrence after primary resection who provided informed consent for being randomized in future studies are eligible. Patients will be randomized for local therapy (5 fractions of 8 Gy SBRT) in addition to standard of care or standard of care alone. In total, 174 patients will be included. The main study endpoint is survival after recurrence. The most important secondary endpoint is quality of life. DISCUSSION It is hypothesized that additional SBRT, compared to standard of care alone, improves survival and quality of life in patients with isolated local recurrence after PDAC resection. TRIAL REGISTRATION ClinicalTrials.gov registration NCT04881487 . Registered on May 11, 2021.
Collapse
Affiliation(s)
- I W J M van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
| | - L A Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M G Besselink
- Department of Surgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - A M E Bruynzeel
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Center, location Vrije Universiteit, Amsterdam, the Netherlands
| | - O R Busch
- Department of Surgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - G A Cirkel
- Department of Medical Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - B Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - N Haj Mohammed
- Department of Medical Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - H D Heerkens
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H W M van Laarhoven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - G J Meijer
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - J Nuyttens
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - H C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - G van Tienhoven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - H M Verkooijen
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J W Wilmink
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - I Q Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - M P W Intven
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Ferini G. Comment on Ivanov et al. Ultra-Hypofractionated vs. Moderate Fractionated Whole Breast Three Dimensional Conformal Radiotherapy during the COVID-19 Pandemic. Medicina 2022, 58, 745. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1306. [PMID: 36143983 PMCID: PMC9504136 DOI: 10.3390/medicina58091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
I read the paper by Ivanov et al. [...].
Collapse
|
18
|
Wei Z, Peng X, He L, Wang J, Liu Z, Xiao J. Treatment plan comparison of volumetric-modulated arc therapy to intensity-modulated radiotherapy in lung stereotactic body radiotherapy using either 6- or 10-MV photon energies. J Appl Clin Med Phys 2022; 23:e13714. [PMID: 35808973 PMCID: PMC9359046 DOI: 10.1002/acm2.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this study was to dosimetrically compare volumetric‐modulated arc therapy (VMAT) with intensity‐modulated radiotherapy (IMRT) techniques using either 6‐ or 10‐MV photon beam energies in lung stereotactic body radiation therapy (SBRT) plans. Methods Thirty patients with primary or metastatic lung tumors eligible for SBRT were randomly selected. VMAT and IMRT treatment plans using either 6‐ or 10‐MV photon energies were generated through automatic SBRT planning software in the RayStation treatment planning system. Results For planning target volume, there was no difference in D95% for all plans, whereas D2% and D50% were significantly increased by 5.22%–5.98% and 2.47%–2.59%, respectively, using VMAT6/10‐MV plans compared to IMRT6/10‐MV plans. When comparing the Dmax of organs at risk (OARs), VMAT6/10‐MV was 18.32%–47.95% lower than IMRT6/10‐MV for almost all OARs. VMAT6/10‐MV obviously decreased Dmean, V5Gy, V10Gy, and V20Gy of whole lung by 9.68%–20.92% than IMRT6/10‐MV. Similar results were found when comparing VMAT6‐MV with IMRT10‐MV or VMAT10‐MV with IMRT6‐MV. The differences in the D2%, heterogeneity index, and conformity index between 6‐ and 10‐MV plans are not statistically significant. Plans using 6‐MV performed 4.68%–8.91% lower levels of Dmax of spinal cord, esophagus, great vessels, and trachea and proximal bronchial tree than those using 10‐MV plans. Similarly, Dmean, V5Gy, V10Gy, and V20Gy of whole lung were also reduced by 2.79%–5.25% using 6‐MV. For dose fall‐off analysis, the D2cm and R50% of VMAT6/10‐MV were lower than those of IMRT6/10‐MV. Dose fall‐off curve based on 10 rings was steeper for VMAT plans than IMRT plans regardless of the energy used. Conclusions For lung SBRT plans, VMAT‐based plans significantly reduced OARs dose and steepened dose fall‐off curves compared to IMRT‐based plans. A 6‐MV energy level was a better choice than 10‐MV for lung SBRT. In addition, the dose differences between different techniques were more obvious than those between different energy levels.
Collapse
Affiliation(s)
- Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianghong Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Nicosia L, Figlia V, Ricottone N, Cuccia F, Mazzola R, Giaj-Levra N, Ricchetti F, Rigo M, Jafari F, Maria Magrini S, Girlando A, Alongi F. Stereotactic body radiotherapy (SBRT) and concomitant systemic therapy in oligoprogressive breast cancer patients. Clin Exp Metastasis 2022; 39:581-588. [PMID: 35511313 DOI: 10.1007/s10585-022-10167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Breast cancer is a heterogenous disease with a deep tailoring level. Evidence is accumulating on the role of stereotactic body radiotherapy (SBRT) in the management of oligometastatic disease, however this is limited in breast cancer. The aim of the present study is to show the effectiveness of SBRT in delaying the switch to a subsequent systemic treatment in oligoprogressive breast cancer patients. Retrospective analysis from two Institutions. Primary endpoint: time to next systemic treatment (NEST). Secondary endpoints: freedom from local progression (FLP), time to the polymetastatic conversion (tPMC) and overall survival (OS). One-hundred fifty-three (153) metastases in 79 oligoprogressive breast cancer patients were treated with SBRT. Median follow-up 24 months. Median NEST 8 months. Predictive factor of NEST at the multivariate analysis (MVA) was the number of treated oligometastases (HR 1.765, 95%CI 1.322-2.355; p = < 0.01). Systemic treatment after SBRT was changed in 29 patients for polymetastatic progression and in 10 patients for oligometastatic progression < 6 months after SBRT. The 2-year FLP in the overall population was 86.7%. A biological effective dose (BED) > 70Gy10 was associated with improved FLP (90% versus 74.2%). The median tPMC was 10 months. At the MVA the only factors significantly associated with tPMC were the number of oligometastases (HR 1.172, 95%CI 1.000-1.368; p = 0.03), and the local control of the treated metastases (HR 2.726, CI95% 1.108-6.706; p = 0.02). SBRT can delay the switch to a subsequent systemic treatment, however patient selection is necessary. Several predictive factors for treatment tailoring have been identified.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy.
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Nicola Ricottone
- Unità Operativa di Radioterapia, Humanitas Istituto Clinico Catanese, Misterbianco, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy
| | - Fatemeh Jafari
- Radiation Oncology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Andrea Girlando
- Unità Operativa di Radioterapia, Humanitas Istituto Clinico Catanese, Misterbianco, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, Negrar, 37034, Verona, Italy.,University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Hu P, Li X, Liu W, Yan B, Xue X, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of gating latency in cine magnetic resonance image guided breath-hold pancreatic cancer radiotherapy. Phys Med Biol 2022; 67. [PMID: 35144247 DOI: 10.1088/1361-6560/ac53e0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Objective.We investigated dosimetry effect of gating latency in cine magnetic resonance image (cine MRI) guided breath-hold pancreatic cancer radiotherapy.Approach.The gating latency was calculated based on cine MRI obtained from 17 patients who received MRI guided radiotherapy. Because of the cine MRI-related latency, beam overshoot occurs when beam remains on while the tracking target already moves out of the target boundary. The number of beam on/off events was calculated from the cine MRI data. We generated both IMRT and VMAT plans for all 17 patients using 33 Gy prescription, and created motion plans by applying isocenter shift that corresponds to motion-induced tumor displacement. The GTV and PTV coverage and dose to nearby critical structures were compared between the motion and original plan to evaluate the dosimetry change caused by cine MRI latency.Main results.The time ratio of cine MRI imaging latency over the treatment duration is 6.6 ± 3.1%, the mean and median percentage of beam-on events <4 s are 67.0 ± 14.3% and 66.6%. When a gating boundary of 4 mm and a target-out threshold of 5% is used, there is no significant difference for GTV V33Gy between the motion and original plan (p = 0.861 and 0.397 for IMRT and VMAT planning techniques, respectively). However, the PTV V33Gy and stomach Dmax for the motion plans are significantly lower; duodenum V12.5 Gy and V18Gy are significantly higher when compared with the original plans, for both IMRT and VMAT planning techniques.Significance.The cine MRI gating latency can significantly decrease the dose delivered to the PTV, and increase the dose to the nearby critical structures. However, no significant difference is observed for the GTV coverage. The dosimetry impact can be mitigated by implementing additional beam-on control techniques which reduces unnecessary beam on events and/or by using faster cine MRI sequences which reduces the latency period.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiaoyang Li
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bing Yan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xudong Xue
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Yang
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - John Chetley Ford
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - Lorraine Portelance
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - Yidong Yang
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| |
Collapse
|
21
|
Verification of rebuild-up effect on superficial cardiac lesion of ventricular tachycardia using 3-D printed phantom in volumetric-modulated arc therapy planning. Sci Rep 2022; 12:2270. [PMID: 35145129 PMCID: PMC8831566 DOI: 10.1038/s41598-022-05149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to evaluate dose distributions on the superficial cardiac lesion surrounded by low-density lungs. Volumetric modulated arc therapy (VMAT) technique was applied to optimize the dose distribution using the anisotropic analytic algorithm (AAA) and Acuros XB algorithm (AXB) using the 3-D printed cardiac phantom. We used four full and half arcs with 6-MV and 15-MV photons to investigate the rebuild-up effect near the planning target volume (PTV). Depending on the calculation algorithm (AAA vs. AXB) for full arcs plans, V95 of PTV differed by 27% for 6-MV and 29% for 15-MV, and D95 for 6-MV and 15-MV shows 24% and 30%, respectively. The maximum doses in the AXB plans on PTV were 5.1% higher than those in AAA plans at 6-MV, and 3.8% higher at 15-MV. In addition, half arcs treatment plans showed a very similar tendency with full arcs plans. Film dosimetry showed significant differences from the planned results in the AAA plans. Particularly, the dose mismatch occurred between the cardiac PTV and the left lung interface. In the case of 6-MV plans calculated by AAA, the maximum dose increased from 4.1 to 7.7% in the PTV. Furthermore, it showed that 50% of the width of dose profiles was reduced by 1.3 cm in the 6-MV plan. Conversely, in the case of the plans using the AXB algorithm, the maximum dose increased by 2.0–5.0%. In contrast to the AAA algorithm, the dose patterns at the interface demonstrated a good agreement with the plans. Dose fluctuation on the interface between superficial cardiac lesions and low-density lungs can lead to an error in the estimation of accurate dose delivery for the case of VT SBRT.
Collapse
|
22
|
Hasegawa S, Endo I, Kubota K. Plastic or self-expandable metal stent: Which is the most suitable for patients with pancreatic head cancer in the upcoming era of neoadjuvant chemotherapy? A review. Dig Endosc 2022; 34:297-306. [PMID: 34388286 DOI: 10.1111/den.14107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
Obstructive jaundice is a major symptom of pancreatic head cancer, and although its amelioration is required before scheduling chemotherapy, the decision to perform biliary drainage for resectable pancreatic cancer has remained controversial. In recent years, the effectiveness of neoadjuvant therapy for pancreatic cancer has been reported. Preoperative biliary drainage has become increasingly necessary, making the choice of stent an important one; thus, the longer the waiting period extends through neoadjuvant chemotherapy, the more durable stents - such as self-expandable metallic stents, rather than plastic stents - would be desired as an option. Still, there is insufficient evidence regarding surgical outcomes and long-term prognosis, and further confirmatory studies are needed. Through this review, we aim to provide an update on the characteristics of biliary stents and preoperative biliary drainage for potentially resectable pancreatic cancer.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of, Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Kanagawa, Japan
| | - Itaru Endo
- Division of, Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Kanagawa, Japan
| | - Kensuke Kubota
- Division of, Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
23
|
Pancreatic Stereotactic Body Radiation Therapy With or Without Hypofractionated Elective Nodal Irradiation. Int J Radiat Oncol Biol Phys 2022; 112:131-142. [PMID: 34348171 DOI: 10.1016/j.ijrobp.2021.07.1698] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Pancreatic stereotactic body radiation therapy (SBRT) is limited to gross tumor without elective coverage for subclinical disease. Given a better understanding of recurrence patterns, we hypothesized that the addition of elective nodal irradiation (ENI) to pancreatic SBRT would be tolerable and would decrease locoregional progression. METHODS AND MATERIALS We conducted a retrospective 1:2 propensity-matched cohort study to compare toxicity and locoregional progression among patients treated with pancreatic SBRT with or without ENI. In the SBRT + ENI cohort, an elective target volume was delineated per Radiation Therapy Oncology Group guidelines and treated to 25 Gy in 5 fractions alongside 40 Gy in 5 fractions to gross disease. The primary outcome was the cumulative incidence of locoregional progression, with death as a competing risk. RESULTS Among 135 candidate controls treated with SBRT alone, 100 were propensity-matched to 50 patients treated with SBRT + ENI. All patients completed SBRT. Median potential radiographic follow-up was 28 months. The incidence of late and serious acute toxicity was similar between matched cohorts. However, SBRT + ENI was associated with a statistically significant increase in acute grade 1 to 2 nausea (60% vs 20%, P < .001). The 24-month cumulative incidences of locoregional progression with and without ENI were 22.6% (95% confidence interval [CI], 10.0%-35.1%) versus 44.6% (95% CI, 34.8%-54.4%; multivariable-adjusted hazard ratio, 0.39; 95% CI, 0.18-0.87; P = .021). This was stable in sensitivity analyses of uniform prescription dose, multiagent chemotherapy, and resectability. There were fewer peripancreatic (0% vs 7%), porta hepatis (2% vs 7%), and peri-aortic/aortocaval (5% vs 12%) recurrences after SBRT + ENI, but no difference in survival. CONCLUSIONS Pancreatic SBRT + ENI was tolerable and did not increase late or serious acute toxicity relative to a matched cohort undergoing SBRT alone, but did increase acute grade 1 to 2 nausea. The addition of ENI to SBRT was associated with decreased locoregional progression but not improved survival. Further studies are warranted to determine whether ENI offers meaningful benefit.
Collapse
|
24
|
Daamen LA, de Mol van Otterloo SR, van Goor IWJM, Eijkelenkamp H, Erickson BA, Hall WA, Heerkens HD, Meijer GJ, Molenaar IQ, van Santvoort HC, Verkooijen HM, Intven MPW. Online adaptive MR-guided stereotactic radiotherapy for unresectable malignancies in the upper abdomen using a 1.5T MR-linac. Acta Oncol 2022; 61:111-115. [PMID: 34879792 DOI: 10.1080/0284186x.2021.2012593] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Introduction of online adaptive MR-guided radiotherapy enables stereotactic body radiation therapy (SBRT) of upper abdominal tumors. This study aimed to evaluate the feasibility of MR-guided SBRT on a 1.5 T MR-linac in patients with unresectable upper abdominal malignancies. MATERIAL AND METHODS Patients treated at the UMC Utrecht (April 2019 to December 2020) were identified in the prospective 'Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac' (MOMENTUM) study. Feasibility of treatment was arbitrarily defined as an on-table time interval of ≤60 min for >75% of delivered fractions and completion of >95% of fractions as scheduled, reflecting patient tolerability. Acute treatment-related toxicity was assessed at 3 months of follow-up and graded according to the National Cancer Institute Common Terminology Criteria of Adverse Events version 5.0. RESULTS Twenty-five consecutive patients with a median follow-up time of 8 (range 4-23) months were treated with 35 Gray (n = 4) and 40 Gray (n = 21) in five fractions over 2 weeks. For all fractions, contours were adapted based on the daily anatomy and delivered within 47 min/fraction (range 30-74). In 98/117 fractions (84%), adapted treatment was completed within 1 h. All patients received the scheduled irradiation dose as planned. No acute grade 3 toxicity or higher was reported. Treatment resulted in pain alleviation in 11/13 patients. DISCUSSION Online adaptive MR-guided SBRT on a 1.5 T MR-linac is feasible and well-tolerated in patients with unresectable upper abdominal malignancies. Dose escalation studies, followed by comparative studies, are needed to determine the optimal radiation dose for irradiation of upper abdominal malignancies.
Collapse
Affiliation(s)
- Lois A. Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | | | - Iris W. J. M. van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Hidde Eijkelenkamp
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Beth A. Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hanne D. Heerkens
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Helena M. Verkooijen
- Division of Imaging, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Martijn P. W. Intven
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Abstract
Dose constraints are essential for performing dosimetry, especially for intensity modulation and for radiotherapy under stereotaxic conditions. We present the update of the recommendations of the French society of oncological radiotherapy for the use of these doses in classical current practice but also for reirradiation.
Collapse
Affiliation(s)
- G Noël
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - D Antoni
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
26
|
Paolani G, Strolin S, Santoro M, Della Gala G, Tolento G, Guido A, Siepe G, Morganti AG, Strigari L. A novel tool for assessing the correlation of internal/external markers during SGRT guided stereotactic ablative radiotherapy treatments. Phys Med 2021; 92:40-51. [PMID: 34856464 DOI: 10.1016/j.ejmp.2021.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION An in-house developed tool was implemented and validated to investigate the skin surface, hepatic dome, and target displacement for stereotactic ablative radiotherapy (SABR) of thoracic/abdominal lesions using a Surface Guided Radiation Therapy (SGRT) system combined with 4D- images. MATERIALS AND METHODS Fourteen consecutive patients with tumors near the hepatic dome undergoing SABR treatments were analyzed. For each patient, a planning 4D-CT and five 4D-CBCT images were acquired. The C-RAD technology was also used to register/monitor the position of the skin reference point (SRP) as an external marker representative of patient breathing. The 4D images were imported in the developed tool, and the absolute maximum height (Pmax,dome) of the hepatic dome on the ten respiratory phases was semi-automatically detected. Similarly, the contour of the skin surface was extracted in correspondence with the SRP position. The tool has been validated using an ad hoc modified moving phantom with pre-selected amplitudes and numbers of cycles. The Pearson correlation coefficients and Bland-Altman plots were calculated. RESULTS There was a strong correlation between the skin motion amplitude based on 4D-CBCT and the C-RAD in all the patients (0.90 ± 0.08). Similarly, the mean ± SD of Pearson correlation coefficients of skin and Pmax,dome movements registered by 4D-CT and 4D-CBCT were 0.90 ± 0.05 and 0.94 ± 0.05, respectively. The mean ± SD of Pearson correlation coefficients comparing the skin and Pmax,dome displacements within each imaging modality were 0.88 ± 0.05 and 0.90 ± 0.05 for 4D-CT and 4D-CBCT, respectively. The SRP displacement during the set-up imaging and the treatment delivery were similar in all the investigated patients. Similar results were obtained for the ad hoc modified phantom in the preliminary validation phase. CONCLUSION The strong correlation between the tumor/ hepatic dome and skin displacements confirms that the SGRT approach can be considered appropriate for intra- and inter-fraction motion management in SABR therapy.
Collapse
Affiliation(s)
- Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Della Gala
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giorgio Tolento
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandra Guido
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giambattista Siepe
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessio G Morganti
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, Bologna University, 40138 Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
27
|
Cha MJ, Cuculich PS, Robinson CG, Chang JH. Tailored stereotactic radiotherapy technique using deep inspiration breath-hold to reduce stomach dose for cardiac radioablation. Radiat Oncol J 2021; 39:167-173. [PMID: 34610655 PMCID: PMC8497870 DOI: 10.3857/roj.2021.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To provide a new insight on a novel safe cardiac radioablation using deep inspiration breath-hold (DIBH) to reduce gastrointestinal dose. Materials and Methods For treating incessant ventricular tachycardia (VT) originated from left ventricle inferior scar abutting the stomach, a target delineation and treatment planning for cardiac radioablation was performed. With four different computed tomography (CT) scan protocols—DIBH, full expiration breath-hold, four-dimensional (4D) CT without and with abdominal compression, the distances between the target and the stomach were compared. Results Among the protocols, the CT scan with DIBH showed largest distance between the target and the stomach and selected for the treatment planning. The prescribed dose was 25 Gy in a single fraction, and satisfactory dosimetric parameters were achieved with the DIBH. The patient was successfully treated with the DIBH, and experienced no acute toxicity. Conclusion To gain the best benefit from cardiac radioablation, understanding the possible toxicity in the adjacent organs is crucial. By moving the heart with thoraco-diaphragmatic movement by DIBH, the target could be physically separated from the stomach.
Collapse
Affiliation(s)
- Myung-Jin Cha
- Cardiovascular Division, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Phillip S Cuculich
- Cardiovascular Division, Department of Internal Medicine, Washington University, St Louis, MO, USA
| | | | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
28
|
Cuccia F, Pastorello E, Vitale C, Nicosia L, Mazzola R, Figlia V, Giaj-Levra N, Ricchetti F, Rigo M, Attinà G, Ceccaroni M, Ruggieri R, Alongi F. The use of SBRT in the management of oligometastatic gynecological cancer: report of promising results in terms of tolerability and clinical outcomes. J Cancer Res Clin Oncol 2021; 147:3613-3618. [PMID: 34545423 DOI: 10.1007/s00432-021-03802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The use of stereotactic radiotherapy (SBRT) for oligometastases is supported by several literature studies, but in the setting of gynecological malignancies, this scenario remains quite unexplored. This study reports a preliminary assessment of clinical outcomes in a cohort of 40 patients with oligometastatic gynecological neoplasms. METHODS Radiotherapy was delivered in 3-10 fractions with VMAT-IGRT technique. Toxicity was retrospectively collected according to CTCAE v4.0. Data were retrospectively collected and analyzed. Univariate and multivariate analyses were performed for assessing any potential predictive factor for clinical outcomes. RESULTS A total of 63 oligometastases were treated from December 2014 to February 2021. Median age was 63 years (range 30-89). Most frequent primary tumors were ovarian cancer in 42.5% and endometrium cancer in 42.5%. With a median follow-up of 27 months (range 6-69), no local failures were observed, our progression-free survival rates were 43.6% and 23% at one and 2 years, respectively, while 1 and 2-year overall survival rates were both 70%. No acute or late G ≥ 2 adverse events were observed. CONCLUSIONS In our experience, SBRT for oligometastatic gynecological malignancies resulted in promising results in terms of clinical outcomes, with excellent local control and no evidence of severe toxicity, highlighting the effectiveness of this therapeutic option. Prospective studies to further explore this approach in this setting are advocated.
Collapse
Affiliation(s)
- Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Edoardo Pastorello
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Claudio Vitale
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy.
| | - Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Giorgio Attinà
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Marcello Ceccaroni
- Gynecology Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, VR, Italy
- University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Abstract
Radiation therapy benefits the majority of patients across the spectrum of cancer types. However, both local and distant tumor recurrences limit its clinical success. While departing from the established tenet of fractionation in clinical radiotherapy, ablative-intensity hypofractionated radiotherapy, especially stereotactic radiosurgery and stereotactic ablative radiotherapy, has emerged as an alternative paradigm achieving unprecedented rates of local tumor control. Direct tumor cell killing has been assumed to be the primary therapeutic mode of action of such ablative radiation. But with increasing recognition that tumor responses also depend on the immunostimulatory or immunosuppressive status of the tumor microenvironment, the immunologic effect of ablative radiotherapy is emerging as a key contributor to antitumor response. More recently, novel radiation modalities, such as spatially fractionated radiotherapy and ultrahigh dose rate FLASH irradiation, that venture even further from conventional paradigms have shown promise of increasing the therapeutic index of radiation therapy with the potential of immunomodulation. Here, we review the immunomodulatory impact of novel radiation therapy paradigms, heretofore considered radiobiological heresies, a deeper understanding of which is imperative to realizing fully their potential for more curative cancer therapy.
Collapse
|
30
|
SBRT for elderly oligometastatic patients as a feasible, safe and effective treatment opportunity. Clin Exp Metastasis 2021; 38:475-481. [PMID: 34487288 DOI: 10.1007/s10585-021-10122-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
The constantly increasing life expectancy is raising the issue of treating oncological older patients, who were traditionally candidates to best supportive care or palliative treatments. Several literature data support SBRT in the treatment of the oligometastatic patient as a potentially curable therapeutic option. However, data on older patients are lacking. This study presents the outcomes of a cohort of 61 oligometastatic patients over the age of 80 years who received SBRT, that was proposed to all patients with a minimum Karnofsky Performance Status ≥ 70 and a life expectancy of at least 6 months, with up to five oligometastatic lesions. Radiotherapy was delivered in 3-10 fractions with VMAT-IGRT technique. Toxicity was retrospectively collected according to CTCAE v4.0. Data were retrospectively collected and analyzed. Univariate and multivariate analysis were performed for assessing any potential predictive factor for clinical outcomes. A total of 90 oligometastases were treated in 61 patients with median age 82 years (range, 80-90). The most frequent histology was colorectal cancer (27% of cases). Median follow-up was 20 months (range, 2-63). Local control rates at 1- and 2-years were 98.8% and 88.2%, with colorectal histology being associated with worse LC rates (p = 0.014) at univariate analysis. Progression-free survival rates at 1- and 2-years were 48.6% and 30.5%. Oligorecurrent lesions and single oligometastases were associated with better PFS rates (respectively, p = 0.04 and p = 0.011). Overall survival rates were 75% and 60.5%, polymetastatic spread being predictive of worse survival outcomes at multivariate analysis (p = 0.012). No G2 or higher adverse events were recorded. Our study supports the role of SBRT for the treatment of elderly oligometastatic patients, highlighting the possibility to further explore this therapeutic option in the management of older oncological patients.
Collapse
|
31
|
Significance of liver metastasis volume in breast cancer patients treated with stereotactic body radiotherapy. Strahlenther Onkol 2021; 198:247-253. [PMID: 34477885 DOI: 10.1007/s00066-021-01845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE This study analyzed the impact of liver metastasis (LM) volume on treatment outcomes in breast cancer (BC) patients treated with stereotactic body radiotherapy (SBRT). METHODS This single-institution retrospective analysis included 40 oligometastatic (≤ 5 metastases) BC patients with 58 liver metastases treated with SBRT between April 2013 and March 2021. The prognostic factors for local control (LC), overall survival (OS), and progression-free survival (PFS) rates were assessed. RESULTS Median follow-up time was 28.1 months. Isolated and solitary LM were seen in 26 (65%) and 24 (60%) patients, respectively. Median time to disease recurrence was 10.7 months post liver SBRT. The 2‑year OS, PFS, and LC rates were 71.4%, 27.5%, and 86.8%, respectively. In univariate analysis, patients with a gross tumor volume (GTV) of ≤ 6 cc and a planning target volume (PTV) of ≤ 38 cc demonstrated a significantly better median OS than those with GTV > 6 cc and PTV > 38 cc. In multivariate analysis, the predictive factors for worse OS were GTV > 6 cc (HR = 3.07 [95% CI, 1.14-8.22; p = 0.03]) and PTV > 38 cc (HR = 5.91 [95% CI, 1.92-18.21; p = 0.002]). No significant factor for PFS was found. Only 2 patients experienced rib fracture at 4 and 6 months post treatment, and 1 patient had a grade II duodenal ulcer. CONCLUSION Liver SBRT is an effective and safe treatment option for oligometastatic BC patients with excellent LC, promising survival, and limited toxicity. Patients with smaller tumors displayed better OS than their counterparts, validating the effectiveness of a local treatment for this group.
Collapse
|
32
|
Wang K, Tepper JE. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin 2021; 71:437-454. [PMID: 34255347 DOI: 10.3322/caac.21689] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is a curative treatment for many malignancies and provides effective palliation in patients with tumor-related symptoms. However, the biophysical effects of RT are not specific to tumor cells and may produce toxicity due to exposure of surrounding organs and tissues. In this article, the authors review the clinical context, pathophysiology, risk factors, presentation, and management of RT side effects in each human organ system. Ionizing radiation works by producing DNA damage leading to tumor death, but effects on normal tissue may result in acute and/or late toxicity. The manifestation of toxicity depends on both cellular characteristics and affected organs' anatomy and physiology. There is usually a direct relationship between the radiation dose and volume to normal tissues and the risk of toxicity, which has led to guidelines and recommended dose limits for most tissues. Side effects are multifactorial, with contributions from baseline patient characteristics and other oncologic treatments. Technological advances in recent decades have decreased RT toxicity by dramatically improving the ability to deliver RT that maximizes tumor dose and minimizes organ dose. Thus the study of RT-associated toxicity is a complex, core component of radiation oncology training that continues to evolve alongside advances in cancer management. Because RT is used in up to one-half of all patients with cancer, an understanding of its acute and late effects in different organ systems is clinically pertinent to both oncologists and nononcologists.
Collapse
Affiliation(s)
- Kyle Wang
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Joel E Tepper
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
33
|
Wei Z, Peng X, Wang Y, Yang L, He L, Liu Z, Wang J, Mu X, Li R, Xiao J. Influence of target dose heterogeneity on dose sparing of normal tissue in peripheral lung tumor stereotactic body radiation therapy. Radiat Oncol 2021; 16:167. [PMID: 34461954 PMCID: PMC8404286 DOI: 10.1186/s13014-021-01891-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To evaluate the influence of target dose heterogeneity on normal tissue dose sparing for peripheral lung tumor stereotactic body radiation therapy (SBRT). METHODS Based on the volumetric-modulated arc therapy (VMAT) technique, three SBRT plans with homogeneous, moderate heterogeneous, and heterogeneous (HO, MHE, and HE) target doses were compared in 30 peripheral lung tumor patients. The prescription dose was 48 Gy in 4 fractions. Ten rings outside the PTV were created to limit normal tissue dosage and evaluate dose falloff. RESULTS When MHE and HE plans were compared to HO plans, the conformity index of the PTV was increased by approximately 0.08. The median mean lung dose (MLD), V5, V10, V20 of whole lung, D2%, D1cc, D2cc of the rib, V30 of the rib, D2% and the maximum dose (Dmax) of the skin, and D2% and Dmax of most mediastinal organs at risk (OARs) and spinal cord were reduced by up to 4.51 Gy or 2.8%. Analogously, the median Dmax, D2% and mean dose of rings were reduced by 0.71 to 8.46 Gy; and the median R50% and D2cm were reduced by 2.1 to 2.3 and 7.4% to 8.0%, respectively. Between MHE and HE plans there was little to no difference in OARs dose and dose falloff beyond the target. Furthermore, the dose sparing of rib V30 and the mean dose of rings were negatively correlated with the rib and rings distance from tumor, respectively. CONCLUSIONS For peripheral lung tumor SBRT, target conformity, normal tissue dose, and dose falloff around the target could be improved by loosening or abandoning homogeneity. While there was negligible further dose benefit for the maximum target dose above 125% of the prescription, dose sparing of normal tissue derived from a heterogeneous target decreased as the distance from the tumor increased.
Collapse
Affiliation(s)
- Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- School of Computer Science, Sichuan University, Chengdu, 610000, China
| | - Lianlian Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoli Mu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianghong Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Lei X, Du L, Yu W, Wang Y, Ma N, Qu B. GSTP1 as a novel target in radiation induced lung injury. J Transl Med 2021; 19:297. [PMID: 34238333 PMCID: PMC8268607 DOI: 10.1186/s12967-021-02978-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
The glutathione S-transferase P1(GSTP1) is an isoenzyme in the glutathione-S transferases (GSTs) enzyme system, which is the most abundant GSTs expressed in adult lungs. Recent research shows that GSTP1 is closely related to the regulation of cell oxidative stress, inhibition of cell apoptosis and promotion of cytotoxic metabolism. Interestingly, there is evidence that GSTP1 single nucleotide polymorphisms (SNP) 105Ile/Val related to the risk of radiation induced lung injury (RILI) development, which strongly suggests that GSTP1 is closely associated with the occurrence and development of RILI. In this review, we discuss our understanding of the role of GSTP1 in RILI and its possible mechanism.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Wei Yu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Yao Wang
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China.
| |
Collapse
|
35
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
36
|
Fakir H, Randhawa GK, Millman B, Laba J. Improving geometric sparing and therapeutic effectiveness of lung SBRT for central and ultra-central tumors. Med Dosim 2021; 46:398-403. [PMID: 34172369 DOI: 10.1016/j.meddos.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
The use of stereotactic body radiotherapy (SBRT) for central- and ultra-central lung tumors is a major therapeutic challenge since there are trade-offs between delivering adequate dose to the tumor and minimizing toxicity to critical mediastinal organs. This work investigates improving the therapeutic effectiveness of such SBRT treatments by enhancing the geometric sparing of normal tissue and systematically applying a planning target volume (PTV) margin smaller than the conventional values. Using plans from 10 previously SBRT-treated patients, we retrospectively created highly conformal plans with a reduced PTV margin of 2 mm and compared them to the clinical plans with a standard 5 mm PTV margin. We compared various dosimetric and biological parameters. We calculated the geometrical sparing factor (GSF) (ratio of biological dose between normal tissue and targets) for the mediastinal organs and the uncomplicated tumor control probability (UTCP) for the esophagus. We tracked tumor fraction doses using cone-beam computed tomography (CBCT) images. With geometric sparing, the median dose for critical mediastinal organs (proximal bronchial tree, great vessels, esophagus, and heart) dropped by 10 Gy (p ≤ 0.006). Dose sparing for the spinal cord and chest wall was 5 Gy and 8 Gy, respectively (p = 0.002). The geometrical sparing factor (GSF) dropped by 50% for the esophagus and the proximal bronchial tree (PBT) and 40% for the great vessels (p < 0.05). The CBCT fractional tumor dose varied by 2.7% (0.2 Gy) for the initially intended treatment volume and 4% (0.3 Gy) when accounting for daily volume changes. The expected delivered dose was above the prescribed value. Systematically reducing the PTV margin to 2 mm in lung SBRT of central and ultra-central tumors is feasible and ensures consistency in contouring and dose prescribing. It allows safe delivery of highly conformal treatments with significantly higher therapeutic effectiveness, potentially reducing treatment-related complications. Consequently, it may enable safer dose escalation, more effective fractionations, and safer management of retreatments and treatments of multiple synchronous lung tumors.
Collapse
Affiliation(s)
- Hatim Fakir
- London Health Sciences Centre, London, ON, Canada; Department of Medical Biophysics, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada.
| | - Gurpreet K Randhawa
- London Health Sciences Centre, London, ON, Canada; Gurpreet Randhawa current address: University of Waterloo, ON, Canada
| | | | - Joanna Laba
- London Health Sciences Centre, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
37
|
Zhang C, Liang Z, Ma S, Liu X. Radiotherapy and Cytokine Storm: Risk and Mechanism. Front Oncol 2021; 11:670464. [PMID: 34094967 PMCID: PMC8173139 DOI: 10.3389/fonc.2021.670464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Radiotherapy (RT) shows advantages as one of the most important precise therapy strategies for cancer treatment, especially high-dose hypofractionated RT which is widely used in clinical applications due to the protection of local anatomical structure and relatively mild impairment. With the increase of single dose, ranging from 2~20 Gy, and the decrease of fractionation, the question that if there is any uniform standard of dose limits for different therapeutic regimens attracts more and more attention, and the potential adverse effects of higher dose radiation have not been elucidated. In this study, the immunological adverse responses induced by radiation, especially the cytokine storm and the underlying mechanisms such as DAMPs release, pro-inflammatory cytokine secretion and cGAS-STING pathway activation, will be elucidated, which contributes to achieving optimal hypofractionated RT regimen, improving the killing of cancer cells and avoiding the severe side effects.
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Mastella E, Mirandola A, Russo S, Vai A, Magro G, Molinelli S, Barcellini A, Vitolo V, Orlandi E, Ciocca M. High-dose hypofractionated pencil beam scanning carbon ion radiotherapy for lung tumors: Dosimetric impact of different spot sizes and robustness to interfractional uncertainties. Phys Med 2021; 85:79-86. [PMID: 33984821 DOI: 10.1016/j.ejmp.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The robustness against setup and motion uncertainties of gated four-dimensional restricted robust optimization (4DRRO) was investigated for hypofractionated carbon ion radiotherapy (CIRT) of lung tumors. METHODS CIRT plans of 9 patients were optimized using 4DRRO strategy with 3 mm setup errors, 3% density errors and 3 breathing phases related to the gate window. The prescription was 60 Gy(RBE) in 4 fractions. Standard spots (SS) were compared to big spots (BS). Plans were recalculated on multiple 4DCTs acquired within 3 weeks from treatment simulation and rigidly registered with planning images using bone matching. Warped dose distributions were generated using deformable image registration and accumulated on the planning 4DCTs. Target coverage (D98%, D95% and V95%) and dose to lung were evaluated in the recalculated and accumulated dose distributions. RESULTS Comparable target coverage was obtained with both spot sizes (p = 0.53 for D95%). The mean lung dose increased of 0.6 Gy(RBE) with BS (p = 0.0078), still respecting the dose constraint of a 4-fraction stereotactic treatment for the risk of radiation pneumonitis. Statistically significant differences were found in the recalculated and accumulated D95% (p = 0.048 and p = 0.024), with BS showing to be more robust. Using BS, the average degradations of the D98%, D95% and V95% in the accumulated doses were -2.7%, -1.6% and -1.5%. CONCLUSIONS Gated 4DRRO was highly robust against setup and motion uncertainties. BS increased the dose to healthy tissues but were more robust than SS. The selected optimization settings guaranteed adequate target coverage during the simulated treatment course with acceptable risk of toxicity.
Collapse
Affiliation(s)
- Edoardo Mastella
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy.
| | - Alfredo Mirandola
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Stefania Russo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Alessandro Vai
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Silvia Molinelli
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Amelia Barcellini
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Viviana Vitolo
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Ester Orlandi
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| | - Mario Ciocca
- CNAO, National Center for Oncological Hadrontherapy, Strada Campeggi 53, I-27100 Pavia, Italy
| |
Collapse
|
39
|
Hasegawa S, Kubota K, Yagi S, Kurita Y, Sato T, Hosono K, Matsuyama R, Endo I, Kobayashi N, Nakajima A. Covered metallic stent placement for biliary drainage could be promising in the coming era of neoadjuvant chemo-radiation therapy for all pancreatic cancer. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:617-624. [PMID: 33788414 DOI: 10.1002/jhbp.958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND/PURPOSE The role of endoscopic preoperative biliary drainage for pancreatic head cancer is controversial because of the high incidence of stent occlusion before surgery. We sought to validate a suitable stent for biliary drainage in patients with pancreatic cancer undergoing neoadjuvant chemotherapy (NAC)/neoadjuvant chemoradiotherapy (NAC-RT). METHODS We evaluated patients who received preoperative neoadjuvant therapy for pancreatic head cancer between January 2013 and December 2019. A covered metal (CMS) or plastic stent (PS) was inserted in symptomatic patients for biliary drainage. Recurrent biliary obstruction (RBO), success rate of endoscopic drainage, adverse events, and surgical outcomes were compared between the CMS and PS groups. RESULTS Occurrence rate of RBO was significantly higher with PS (97%) vs CMS (15%, P < .001), and time to RBO was significantly longer with CMS vs PS (not reached vs 40.5 days, P < .001). Delayed schedule associated with RBO for neoadjuvant chemotherapy was significantly lower in CMS vs PS (14% vs 50%, P < .05). There was no difference in postoperative bleeding, operation time, complications, and rate of a microscopically margin-negative resection between groups. CONCLUSIONS Use of CMS during NAC/NAC-RT allows for safe chemotherapy without causing cholangitis or biliary obstruction and for surgery to be performed.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Kensuke Kubota
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Shin Yagi
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Kurita
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Takamitsu Sato
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Kunihiro Hosono
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Ryusei Matsuyama
- Division of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Division of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Noritoshi Kobayashi
- Division of Oncology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Division of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
40
|
El Haddi J, Layton CR, Negmadjanov U, Roberts J. Gamma Radiation-Induced Rib Necrosis and Stereotactic Radiosurgery Failure. Cureus 2021; 13:e14302. [PMID: 33968514 PMCID: PMC8099002 DOI: 10.7759/cureus.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Stereotactic radiosurgery, or SRS, uses focused beams of gamma radiation targeted to specific areas of the body and has been used for multiple forms of non-small cell lung cancer. In this article, the authors describe two incidental cases of osteonecrosis in patients who had previously undergone stereotactic radiosurgery with recurrence of tumor. While this is a known side effect of traditional radiation therapy, it has not been described in the context of stereotactic radiosurgery. Further, these lesions were immediately deep to a rib, which may have shielded the lesion, and led to SRS failure. Osteonecrosis of the rib is a rare clinical entity but has been found to occur with glucocorticoid use, bisphosphonates, radiation therapy, and radiofrequency ablation. In the authors' review of the literature on SRS for lung cancer and intrathoracic pathology, rib osteonecrosis was not described and has not been mentioned as a possible side effect. Patients who have undergone thoracic stereotactic radiotherapy may develop side effects of traditional radiotherapy. We identified two patients who developed rib osteonecrosis though that has not been previously described as an adverse effect of stereotactic radiotherapy. The patients described in this case did not have any radiographic evidence of disease on imaging, suggesting that further research is warranted on the diagnosis and management of this rare disease entity.
Collapse
Affiliation(s)
| | | | | | - John Roberts
- Thoracic Surgery, Boca Raton Regional Hospital/Lynn Cancer Institute, Boca Raton, USA
| |
Collapse
|
41
|
Liauw SL, Ni L, Wu T, Arif F, Cloutier D, Posner MC, Kozloff M, Kindler HL. A prospective trial of stereotactic body radiation therapy for unresectable pancreatic cancer testing ablative doses. J Gastrointest Oncol 2020; 11:1399-1407. [PMID: 33457009 DOI: 10.21037/jgo-20-187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We explored the safety and efficacy of ablative doses of stereotactic body radiation therapy (SBRT) for unresectable pancreatic cancer. Methods This phase I/II trial included patients with unresectable pancreatic cancer previously treated with any number of cycles of induction chemotherapy. Patients were enrolled according to a 3+3 dose escalation design at 10, 12.5, and 15 Gy ×3, with subsequent patients at the maximally tolerated dose (MTD). Treatment was delivered to gross tumor delineated with MRI fusion using image-guidance to fiducial markers. Dose-limiting toxicity (DLT) was defined as grade 3+ toxicity within 30 days. Secondary endpoints included late gastrointestinal (GI) toxicity, freedom from local failure (FFLF), and survival. Results Fifteen patients received a median 10 cycles of chemotherapy. There were no DLTs, and the MTD was 15 Gy ×3. Thirty-day toxicity included grade 2 nausea (46%) and grade 2 diarrhea (7%). Median survival after SBRT was 12.8 months (23 months after diagnosis) and median relapse-free survival was 7 months. At 1-year, FFLF was 80%. Four patients had grade 3+ GI bleeding after 30 days (median 6 months). Grade 3+ GI bleeding was associated with tumor volume (P=0.01), heterogeneity of dose within the planning target volume (PTV) (V120, P=0.03), and duodenal dose (V26-30 Gy, P<0.2). Conclusions This aggressive SBRT regimen demonstrated limited 30-day morbidity, a moderate degree of local control, and a moderate risk for late GI bleeding. Further work is necessary to define the most appropriate hypofractionated radiation therapy (RT) regimen in the ablative dose range.
Collapse
Affiliation(s)
- Stanley L Liauw
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Lisa Ni
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Tianming Wu
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Fauzia Arif
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Denise Cloutier
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Mitchell C Posner
- Department of Surgical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Mark Kozloff
- Department of Medical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Hedy L Kindler
- Department of Medical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Impact of a vacuum cushion on intrafraction motion during online adaptive MR-guided SBRT for pelvic and para-aortic lymph node oligometastases. Radiother Oncol 2020; 154:110-117. [PMID: 32950531 DOI: 10.1016/j.radonc.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Vacuum cushion immobilization is commonly used during stereotactic body radiotherapy (SBRT) to reduce intrafraction motion. We investigated target and bony anatomy intrafraction motion (translations and rotations) during online adaptive SBRT on an MR-linac for pelvic/para-aortic lymph node metastases with and without vacuum cushion. MATERIALS AND METHODS Thirty-nine patients underwent 5x7 Gy SBRT on a 1.5T MR-linac, 19 patients were treated with vacuum cushion, 19 without and 1 patient sequentially with and without. Intrafraction motion was calculated for target lymph nodes (GTVs) and nearby bony anatomy, for three time intervals (pre-position verification (PV), pre-post, PV-post, relating to the online MRI scans) per treatment fraction. RESULTS Vacuum cushion immobilization significantly reduced anterior-posterior translations for the pre-PV and pre-post intervals, for bony anatomy and pre-post interval for GTV (p < 0.05). Mean GTV intrafraction motion reduction in posterior direction was 0.7 mm (95% confidence interval 0.3-1.1 mm) for pre-post interval (mean time = 32 min). Shifts in other directions were not significantly reduced. More motion occurred in pre-PV interval than in PV-post interval (mean time = 16 min for both); vacuum cushion immobilization did not reduce intrafraction motion during the beam-on period. CONCLUSION A vacuum cushion reduces GTV and bony anatomy intrafraction motion in posterior direction during pelvic/para-aortic lymph node SBRT. This motion reduction was found for the first 16 min per session. For single targets this motion can be corrected for directly with an MR-linac. Intrafraction motion was not reduced during the second half of the session, the period of radiotherapy delivery on an MR-linac. Vacuum cushion immobilization may not be necessary for patients with single lymph node oligometastases undergoing SBRT on an MR-linac.
Collapse
|
43
|
Couñago F, Navarro-Martin A, Luna J, Rodríguez de Dios N, Rodríguez A, Casas F, García R, Gómez-Caamaño A, Contreras J, Serrano J. GOECP/SEOR clinical recommendations for lung cancer radiotherapy during the COVID-19 pandemic. World J Clin Oncol 2020; 11:510-527. [PMID: 32879841 PMCID: PMC7443829 DOI: 10.5306/wjco.v11.i8.510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 crisis has had a major and highly complex impact on the clinical practice of radiation oncology worldwide. Spain is one of the countries hardest hit by the virus, with devastating consequences. There is an urgent need to share experiences and offer guidance on decision-making with regard to the indications and standards for radiation therapy in the treatment of lung cancer. In the present article, the Oncological Group for the Study of Lung Cancer of the Spanish Society of Radiation Oncology reviews the literature and establishes a series of consensus-based recommendations for the treatment of patients with lung cancer in different clinical scenarios during the present pandemic.
Collapse
Affiliation(s)
- Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Clinical Department, Hospital La Luz, Madrid, Faculty of Biomedicine, Universidad Europea, Madrid 28223, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Institut Catalá d’Oncologia, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Javier Luna
- Department of Radiation Oncology, Hospital Fundación Jiménez Díaz, Madrid 28040, Spain
| | | | - Aurora Rodríguez
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Francesc Casas
- Department of Radiation Oncology, Thoracic Unit, Hospital Clínic, Barcelona 08036, Spain
| | - Rafael García
- Department of Radiaiton Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, A Coruña 15706, Spain
| | - Jorge Contreras
- Department of Radiation Oncology, Hospital Regional Universitario de Málaga, 29010, Spain
| | - Javier Serrano
- Department of Radiation Oncology, Clínica Universidad de Navarra, Madrid 28027, Spain
| |
Collapse
|
44
|
Walburn T, Moon AM, Hayashi PH, Gerber D, Sanoff HK, McGinty KA, Mauro D, Tepper J, Wang K. Stereotactic Body Radiation Therapy for Recurrent, Isolated Hepatocellular Carcinoma Lymph Node Metastasis With or Without Prior Liver Transplantation. Cureus 2020; 12:e9988. [PMID: 32983688 PMCID: PMC7511077 DOI: 10.7759/cureus.9988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymph node metastases from hepatocellular carcinoma (HCC) represents a challenging clinical scenario with a poor prognosis, especially in the setting of prior liver transplant. Long-term survival is achievable in select patients with isolated lymph node metastases who undergo surgical resection, but little data exist regarding non-surgical options. For intrahepatic HCC, stereotactic body radiation therapy (SBRT) has emerged as a standard and effective nonsurgical treatment option. Here, we present three patients (two with prior liver transplant) with isolated lymph node metastases treated with curative intent using SBRT to doses of 30-45 Gy in three to five fractions. Two patients (with follow-up of 27 and 31 months) had a complete or near-complete response and remain cancer-free. One patient had intrahepatic HCC recurrence shortly after SBRT but stable disease in the treated lymph node metastasis at 20 months. Liver function remained excellent after radiation in all three patients, but one patient developed a grade 3 duodenal ulcer at 20 months that resolved with medical management. These cases illustrate the potential utility of SBRT as a non-invasive, definitive treatment option for patients with isolated lymph node metastases from HCC.
Collapse
Affiliation(s)
- Tyler Walburn
- Department of Radiation Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Paul H Hayashi
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - David Gerber
- Division of Abdominal Transplant, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Hanna K Sanoff
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Katrina A McGinty
- Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - David Mauro
- Division of Vascular Interventional Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Joel Tepper
- Department of Radiation Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Kyle Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| |
Collapse
|
45
|
Conformal Avoidance of Normal Organs at Risk by Perfusion-Modulated Dose Sculpting in Tumor Single-Dose Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 109:288-297. [PMID: 32777335 DOI: 10.1016/j.ijrobp.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Although 24 Gy single-dose radiation therapy (SDRT) renders >90% 5-year local relapse-free survival in human solid tumor lesions, SDRT delivery is not feasible in ∼50% of oligometastatic lesions owing to interference by dose/volume constraints of a serial organ at risk (OAR). Conformal OAR avoidance is based on a hypothetical model positing that the recently described SDRT biology specifically permits volumetric subdivision of the SDRT dose, such that high-intensity vascular drivers of SDRT lethality, generated within a major tumor subvolume exposed to a high 24 Gy dose (high-dose planning target volume [PTVHD]), would equilibrate SDRT signaling intensity throughout the tumor interstitial space, rendering bystander radiosensitization of a minor subvolume (perfusion-modulated dose sculpting PTV [PTVPMDS]), dose-sculpted to meet a serial OAR dose/volume constraint. An engineered PTVPMDS may thus yield tumor ablation despite PMDS dose reduction and conformally avoiding OAR exposure to a toxic dose. METHODS AND MATERIALS Dose fall-off within the PTVPMDS penumbra of oligometastatic lesions was planned and delivered by intensity modulated inverse dose painting. SDRT- and SDRT-PMDS-treated lesions were followed with periodic positron emission tomography/computed tomography imaging to assess local tumor control. RESULTS Cumulative baseline 5-year local relapse rates of oligometastases treated with 24 Gy SDRT alone (8% relapses, n = 292) were similar in moderate PTVPMDS dose-sculpted (23-18 Gy, n = 76, 11% relapses, P = .36) and extreme dose-sculpted (<18 Gy, n = 61, 14% relapses, P = .29) lesions, provided the major 24 Gy PTVHD constituted ≥60% of the total PTV. In contrast, 28% of local relapses occurred in 26 extreme dose-sculpted PTVPMDS lesions when PTVHD constituted <60% of the total PTV (P = .004), suggesting a threshold for the PTVPMDS bystander effect. CONCLUSION The study provides compelling clinical support for the bystander radiosensitization hypothesis, rendering local cure of tumor lesions despite a ≥25% PTVPMDS dose reduction of the 24 Gy PTVHD dose, adapted to conformally meet OAR dose/volume constraints. The SDRT-PMDS approach thus provides a therapeutic resolution to otherwise radioablation-intractable oligometastatic disease.
Collapse
|
46
|
Liu M, Cygler JE, Vandervoort E. Patient-specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation. Med Phys 2020; 47:5172-5182. [PMID: 32740935 DOI: 10.1002/mp.14419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE An adaptive planning target volume (PTV) margin strategy incorporating a volumetric tracking error assessment after each fraction is proposed for robotic stereotactic body radiation therapy (SBRT) liver treatments. METHODS AND MATERIALS A supervised machine learning algorithm employing retrospective data, which emulates a dry-run session prior to planning, is used to investigate if motion tracking errors are <2 mm, and consequently, planning target volume (PTV) margins can be reduced. A fraction of data collected during the beginning of a treatment course emulates a dry-run session (mock) before planning. Twenty features are calculated using mock data and used for support vector classification (SVC). A treatment course is labeled as Class 1 if the maximum root-mean-square radial tracking error for all remaining fractions is below 2 mm, or Class 2 otherwise. We evaluate the classification using fivefold cross-validation, leave-one-out cross-validation, 500 repeated random subsampling cross-validation, and the receiver operating characteristic (ROC) metric. The classification is independently cross-validated on a cohort of 48 treatment plans for other anatomical sites. A per fraction assessment of volumetric tracking errors is performed for the standard 5 mm PTV margin (PTVstd ) for courses predicted as Class 2; or for a margin reduced by 2 mm (PTVstd-2mm ) for those predicted as Class 1. We perturb the gross tumor volume (GTV) by the tracking errors for each x-ray image acquisition and calculate the fractional GTV voxel occupancy probability (Pi ) inside the PTV for each treatment fraction i. For treatment courses classified as Class 1, an early warning system flags treatment courses having any Pi < 0.99, and the subsequent treatments are proposed to be replanned using PTVstd . RESULTS The classification accuracies are 0.84 ± 0.06 using fivefold cross-validation, and 0.77 when validated using an independent testing set (other anatomical sites). Eighty percent of treatment courses are correctly classified using leave-one-out cross-validation. The sensitivity, precision, specificity, F1 score, and accuracy are 0.81 ± 0.09, 0.85 ± 0.08, 0.80 ± 0.11, 0.83 ± 0.06, and 0.80 ± 0.07, respectively, using 500 repeated random subsampling cross-validation. The area under the curve for the ROC metric is 0.87 ± 0.05. The four most important features for classification are related to standard deviations of motion tracking errors, the linearity between the target location and external LED marker positions, and marker radial motion amplitudes. Eleven of 64 cases predicted to be of Class 1 have 0.96 < Pi < 0.99 for each treatment fraction, and require replanning using PTVstd . In comparison, the PTVstd always covers the perturbed GTVs with Pi > 0.99 for all patients. CONCLUSIONS Support vector classification is proposed for the classification of different motion tracking errors for patient courses based on a mock session before planning for SBRT liver treatments. It is feasible to implement patient-specific PTV margins in the clinic, assisted with an early warning system to flag treatment courses that require replanning using larger PTV margins in an adaptive treatment strategy.
Collapse
Affiliation(s)
- Ming Liu
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Joanna E Cygler
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, ON, K1H 8L6, Canada.,Department of Radiology, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Eric Vandervoort
- Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, ON, K1H 8L6, Canada.,Department of Radiology, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
47
|
Kuwatani M, Nakamura T, Hayashi T, Kimura Y, Ono M, Motoya M, Imai K, Yamakita K, Goto T, Takahashi K, Maguchi H, Hirano S. Clinical Outcomes of Biliary Drainage during a Neoadjuvant Therapy for Pancreatic Cancer: Metal versus Plastic Stents. Gut Liver 2020; 14:269-273. [PMID: 31060118 PMCID: PMC7096233 DOI: 10.5009/gnl18573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Neoadjuvant chemotherapy/neoadjuvant chemoradiotherapy (NAC/NACRT) can be performed in patients with pancreatic cancer to improve survival. We aimed to clarify the clinical outcomes of biliary drainage with a metal stent (MS) or a plastic stent (PS) during NAC/NACRT. Between October 2013 and April 2016, 96 patients with pancreatic cancer were registered for NAC/NACRT. Of these, 29 patients who underwent biliary drainage with MS or PS before NAC/NACRT and a subsequent pancreatoduodenectomy were retrospectively analyzed with regard to patient characteristics, preoperative recurrent biliary obstruction rate, NAC/NACRT delay or discontinuation rate, and operative characteristics. The median age of the patients was 67 years. NAC and NACRT were performed in 14 and 15 patients, respectively, and MS and PS were used in 17 and 12 patients, respectively. Recurrent biliary obstruction occurred in 6% and 83% of the patients in the MS and PS groups, respectively (p<0.001). NAC/NACRT delay was observed in 35% and 50% of the patients in the MS and PS groups, respectively (p=0.680). NAC/NACRT discontinuation was observed in 12% and 17% of the patients in the MS and PS groups, respectively (p=1.000). The operative time in the MS group tended to be longer than that in the PS group (625 minutes vs 497 minutes, p=0.051), and the operative blood loss volumes and postoperative adverse event rates were not different between the two groups. MS was better than PS from the viewpoint of preventing recurrent biliary obstruction, although MS was similar to PS with regards to perioperative outcomes.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tsuyoshi Hayashi
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michihiro Ono
- Departments of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayo Motoya
- Departments of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Imai
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Yamakita
- Divisions of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Japan
| | - Takuma Goto
- Divisions of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
| | | | - Hiroyuki Maguchi
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | |
Collapse
|
48
|
Pasquier D, Lacornerie T, Mirabel X, Brassart C, Vanquin L, Lartigau E. [Stereotactic body radiotherapy. How to better protect normal tissues?]. Cancer Radiother 2019; 23:630-635. [PMID: 31447339 DOI: 10.1016/j.canrad.2019.07.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022]
Abstract
The use of stereotactic body radiotherapy (SBRT) has increased rapidly over the past decade. Optimal preservation of normal tissues is a major issue because of their high sensitivity to high doses per session. Extreme hypofractionation can convert random errors into systematic errors. Optimal preservation of organs at risk requires first of all a rigorous implementation of this technique according to published guidelines. The robustness of the imaging modalities used for planning, and training medical and paramedical staff are an integral part of these guidelines too. The choice of SBRT indications, dose fractionation, dose heterogeneity, ballistics, are also means of optimizing the protection of normal tissues. Non-coplanarity and tracking of moving targets allow dosimetric improvement in some clinical settings. Automatic planning could also improve normal tissue protection. Adaptive SBRT, with new image guided radiotherapy modalities such as MRI, could further reduce the risk of toxicity.
Collapse
Affiliation(s)
- D Pasquier
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France; Centre de recherche en informatique, signal et automatique de Lille UMR CNRS 9189, université de Lille, M3, avenue Carl-Gauss, 59650 Villeneuve-d'Ascq, France.
| | - T Lacornerie
- Service de physique médicale, centre Oscar-Lambret, 3, rue Combemale, 59020 Lille cedex, France
| | - X Mirabel
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France
| | - C Brassart
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France
| | - L Vanquin
- Service de physique médicale, centre Oscar-Lambret, 3, rue Combemale, 59020 Lille cedex, France
| | - E Lartigau
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France; Centre de recherche en informatique, signal et automatique de Lille UMR CNRS 9189, université de Lille, M3, avenue Carl-Gauss, 59650 Villeneuve-d'Ascq, France
| |
Collapse
|
49
|
Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Int J Radiat Oncol Biol Phys 2019; 104:1114-1123. [DOI: 10.1016/j.ijrobp.2019.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022]
|
50
|
Greco C, Pares O, Pimentel N, Louro V, Morales J, Nunes B, Castanheira J, Oliveira C, Silva A, Vaz S, Costa D, Zelefsky M, Kolesnick R, Fuks Z. Phenotype-Oriented Ablation of Oligometastatic Cancer with Single Dose Radiation Therapy. Int J Radiat Oncol Biol Phys 2019; 104:593-603. [DOI: 10.1016/j.ijrobp.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
|