1
|
Hamdi FM, Ganbat N, Altaee A, Samal AK, Ibrar I, Zhou JL, Sharif AO. Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter. J Environ Sci (China) 2025; 147:424-450. [PMID: 39003060 DOI: 10.1016/j.jes.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 07/15/2024]
Abstract
The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.
Collapse
Affiliation(s)
- Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia; Department of Civil Engineering, Jazan University, Jazan 82822, Saudi Arabia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Ramanagara, Bangalore, Karnataka 562 112, India
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Adel O Sharif
- School of Mechanical Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Australia
| |
Collapse
|
2
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
3
|
Sharma S, Shaikh S, Mohana S, Desai C, Madamwar D. Current trends in bioremediation and bio-integrated treatment of petroleum hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57397-57416. [PMID: 37861831 DOI: 10.1007/s11356-023-30479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Petroleum hydrocarbons and their derivatives constitute the leading group of environmental pollutants worldwide. In the present global scenario, petroleum and natural gas production, exploration, petroleum refining, and other anthropogenic activities produce huge amounts of hazardous petroleum wastes that accumulate in the terrestrial and marine environment. Due to their carcinogenic, neurotoxic, and mutagenic characteristics, petroleum pollutants pose severe risks to human health and exert ecotoxicological effects on the ecosystems. To mitigate petroleum hydrocarbons (PHs) contamination, implementing "green technologies" for effective cleanup and restoration of an affected environment is considered as a pragmatic approach. This review provides a comprehensive outline of newly emerging bioremediation technologies, for instance; nanobioremediation, electrokinetic bioremediation, vermiremediation, multifunctional and sustainably implemented on-site applied biotechnologies such as; natural attenuation, biostimulation, bioaugmentation, bioventing, phytoremediation and multi-process hybrid technologies. Additionally, the scope of the effectiveness and limitations of individual technologies in treating the petroleum hydrocarbon polluted sites are also evaluated.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Shabnam Shaikh
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Sarayu Mohana
- Department of Microbiology, Mount Carmel College (Autonomous), Palace Road, Bengaluru, Karnataka, 560052, India
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tech (GIFT) - City, Gandhinagar, Gujarat, 382355, India
| | - Datta Madamwar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
4
|
da Silva L, Mena IF, Saez C, Motheo AJ, Rodrigo MA. Treatment of Organics in Wastewater Using Electrogenerated Gaseous Oxidants. Ind Eng Chem Res 2024; 63:6512-6520. [PMID: 38660619 PMCID: PMC11036394 DOI: 10.1021/acs.iecr.3c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
This work focuses on the comparison of the performance of direct electrochemical oxidation with indirect electrolysis mediated by gaseous oxidants in the treatment of diluted wastewater. To do this, energy consumptions of the electrolysis using mixed metal oxide (MMO) electrodes are compared with those required for the production and use of chlorine dioxide in the degradation of methomyl contained in aqueous solutions. Results demonstrate the feasibility of the mediated oxidation process and that this process is competitive with direct oxidation. The oxidants are produced under optimized conditions using the same anodic material applied for the direct degradation of organics, thus avoiding efficiency losses associated with mass transfer limitations in the degradation of dilute organic solutions. Thus, using the ClO2 gaseous oxidant, a concentration of 0.1 mM of methomyl from a solution containing 500 mL is completely removed with an energy consumption as low as 50 Wh. The application of the same energy to a direct electrolytic process for treating the same wastewater can only reach less than half of this removal. These findings may have a very important application in the use of electrochemical technology to achieve the remediation of persistent pollutants in wastewater, where their low concentrations typically make direct processes very inefficient.
Collapse
Affiliation(s)
- Leticia
Mirella da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Ismael F. Mena
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Artur J. Motheo
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Manuel A. Rodrigo
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Akansha J, Thakur S, Chaithanya MS, Gupta BS, Das S, Das B, Rajasekar N, Priya K. Technological and economic analysis of electrokinetic remediation of contaminated soil: A global perspective and its application in Indian scenario. Heliyon 2024; 10:e24293. [PMID: 38304840 PMCID: PMC10831613 DOI: 10.1016/j.heliyon.2024.e24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Globally million hectares of land annually is getting contaminated by heavy metalloids like As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with current concentrations in soil above geo-baseline or regulatory standards. The heavy metals are highly toxic, mobile, and persistent and hence require immediate and effective mitigation. There are many available remediation techniques like surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation which have been evolved to clean up heavy metal-contaminated sites. Nevertheless, all of the technologies have some applicability and limitations making the soil remediation initiative unsustainable. Among the available technologies, electrokinetic remediation (EKR) has been comparatively recognized to mitigate contaminated sites via both in-situ and ex-situ approaches due to its efficiency, suitability for use in low permeability soil, and requirement of low potential gradient. The work critically analyzes the EKR concerning techno, economic, and sustainability aspect for evaluating its application on various substrates and environmental conditions. The current soil contamination status in India is presented and the application of EKR for the heavy metal remediation from soil has been evaluated. The present work summaries a comprehensive and exhaustive review on EKR technology proving its effectiveness for a country like India where the huge amount of waste generated could not be treated due to lack of infrastructure, technology, and economic constraints.
Collapse
Affiliation(s)
- J. Akansha
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Somil Thakur
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - M Sai Chaithanya
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Sen Gupta
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bhaskar Das
- Department of Environment and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - N. Rajasekar
- Department of Energy and Power Electronics, School of Electrical Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - K. Priya
- Department of Energy and Power Electronics, School of Electrical Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
6
|
Zhou C, Yao G, Ni X, Wang H, Mao Z, Fang X, Ma J, Liu D, Ye Z. Effects of willow and Sedum alfredii Hance planting patterns on phytoremediation efficiency under AC electric field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112813-112824. [PMID: 37845595 DOI: 10.1007/s11356-023-30341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Heavy metal contamination to soil is tricky due to its difficult removal, long retention time, and biomagnified toxicity. The green and low-cost phytoremediation with electric field treatment and planting pattern selection is an emerging and more effective approach to remove heavy metals from soils. In this study, alternating current (AC) electric field-assisted phytoremediation was examined with different planting patterns, i.e., monoculture willow (Salix sp.), monoculture Sedum alfredii Hance, and interplanting of willow and S. alfredii. AC electric field greatly increased phytoremediation efficiency to soil cadmium (Cd) regardless of planting patterns, either single plant species of willow or S. alfredii. The Cd removal capacity of willow and S. alfredii raises apparently under 0.5 V cm-1 AC electric field. Under different planting patterns of AC electric field treatment, Cd accumulation in the whole plant by interplanting was 5.63 times higher than monoculture willow, but only 0.75 times as high as monoculture S. alfredii. The results showed that AC electric field-assisted interplanting of willow and S. alfredii is a promising remediation technique for efficiently clean-up Cd-contaminated soil.
Collapse
Affiliation(s)
- Chuikang Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
| | - Guihua Yao
- Jiashan County Agricultural and Rural Bureau, Zhejiang 314000, Jiaxing, China
| | - Xing Ni
- Nvbu Subdistrict Office of Lanxi Municipal People's Government, Zhejiang 321000, Jinhua, China
| | - Huilai Wang
- Soil Fertilizer and Rural Energy, Development Center of Liandu District, Zhejiang 323000, Lishui, China
| | - Zhansheng Mao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
| | - Xianzhi Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
| | - Jiawei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang 311300, Hangzhou, China.
| |
Collapse
|
7
|
Wang S, Guo S. Effects of soil organic carbon metabolism on electro-bioremediation of petroleum-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132180. [PMID: 37527589 DOI: 10.1016/j.jhazmat.2023.132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Soil organic carbon (SOC) potentially interacts with microbial metabolism and may affect the degradation of petroleum-derived carbon (PDC) in the electro-bioremediation of petroleum-contaminated soil. This study evaluated the interactions among organic carbon, soil properties, and microbial communities to explore the role of SOC during the electro-bioremediation process. The results showed that petroleum degradation exerted superposition and synergistic electrokinetic and bioremediation effects, as exemplified by the EB and EB-PR tests, owing to the maintenance and enhancement of SOC utilization (P/S value), respectively. The highest P/S value (2.0-2.4) was found in the electrochemical oxidation zone due to low SOC consumption. In the biological oxidation zones, electric stimulation enhanced the degradation of PDC and SOC, with higher average P/S values than those of the Bio test. Soil pH, Eh, inorganic ions, and bioavailable petroleum fractions were the main factors reshaping the microbial communities. SOC metabolism effectively buffered the stress of environmental factors and pollutants while maintaining functional bacterial abundance, microbial alpha diversity, and community similarity, thus saving the weakened PDC biodegradation efficiency in the EB and EB-PR tests. The study of the effect of SOC metabolism on petroleum biodegradation contributes to the development of sustainable low-carbon electro-bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
8
|
do Vale-Júnior E, de Sousa RA, Antunes RA, do Nascimento JHO, Lima Santos JE, Martínez-Huitle CA, Dos Santos EV. Evaluating the catalytic effect of Fe@Fe 2O 3-modified granulated cork as an innovative heterogeneous catalyst in electro-Fenton degradation of benzoquinone in different aqueous matrices. CHEMOSPHERE 2023:139209. [PMID: 37315857 DOI: 10.1016/j.chemosphere.2023.139209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
This study investigated the potential of a novel biomass-derived cork as a suitable catalyst after its modification with Fe@Fe2O3 for in-situ application in heterogeneous electro-Fenton (HEF) process for benzoquinone (BQ) elimination from water. No attempts on the application of modified granulated cork (GC) as a suspended heterogeneous catalyst in the HEF process for water treatment have been published yet. GC was modified by sonification approach in a FeCl3 + NaBH4 solution to reduce the ferric ions to metallic iron in order to obtain Fe@Fe2O3-modified GC (Fe@Fe2O3/GC). Results clearly demonstrated that this catalyst exhibited excellent electrocatalytic properties, such as a high conductivity as well as relatively high redox current and possessed several active sites for water depollution applications. Using Fe@Fe2O3/GC as catalyst in HEF, 100% of BQ removal was achieved in synthetic solutions by applying 33.3 mA cm-2 after 120 min. Different experimental conditions were tested to determine that best possible conditions can be as follow: 50 mmol L-1 Na2SO4 and 10 mg L-1 of Fe@Fe2O3/GC catalyst using Pt/carbon-PTFE air diffusion cell by applying 33.3 mA cm-2. Nevertheless, when Fe@Fe2O3/GC was used in the HEF approach to depollute real water matrices, no complete BQ concentration was removal achieved after 300 min of treatment, achieving between 80 and 95% of effectiveness.
Collapse
Affiliation(s)
- Edilson do Vale-Júnior
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Rainy Alves de Sousa
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Renato Altobelli Antunes
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, 09210580, Brazil
| | - Jose Heriberto Oliveira do Nascimento
- Research Group on Innovation in Micro and Nanotechnology - Department of Textile Engineering, Federal University of Rio Grande Do Norte, Campus Universitario, 59072-970, Natal, RN, Brazil
| | - José Eudes Lima Santos
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil
| | - Carlos A Martínez-Huitle
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil.
| | - Elisama Vieira Dos Santos
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil; School of Science and Technology, Federal University of Rio Grande Do Norte, Campus Universitario, 59072-970, Natal, Brazil.
| |
Collapse
|
9
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. COMPREHENSIVE STUDY OF ELECTROKINETIC-ASSISTED PHYTOEXTRACTION OF METALS FROM MINE TAILINGS BY APPLYING DIRECT AND ALTERNATE CURRENT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
11
|
Simultaneous electrokinetic removal and in situ electrochemical degradation of a high nitrogen accumulated greenhouse soil. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Wacławek S, Krawczyk K, Silvestri D, Padil VV, Řezanka M, Černík M, Jaroniec M. Cyclodextrin-based strategies for removal of persistent organic pollutants. Adv Colloid Interface Sci 2022; 310:102807. [DOI: 10.1016/j.cis.2022.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
13
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
14
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
15
|
da Silva Correa H, Blum CT, Galvão F, Maranho LT. Effects of oil contamination on plant growth and development: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43501-43515. [PMID: 35386087 DOI: 10.1007/s11356-022-19939-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and trade. In soil, oil contamination increases water and nutrient availability and compaction, directly affecting plant growth and development. Different aspects of phytotoxicity can be observed and will vary according to the characteristics of soil and plants. Oil-contaminated soil also results in negative effects on biomass and changes in leaves and roots. Investigating the effects of oil contamination on plant growth and development can aid in the conservation of plant species and in the development of techniques such as bioremediation and biomonitoring. Thus, this review aims to discuss the main effects of oil contamination on plants, such as environmental stress and morphological, physiological, and anatomical changes, and the strategies developed by plants to survive contamination, as well as to identify plants with phytoremediation potential that can assist in removing oil from the environment.
Collapse
Affiliation(s)
- Hauane da Silva Correa
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Christopher Thomas Blum
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Franklin Galvão
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Leila Teresinha Maranho
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil.
| |
Collapse
|
16
|
Ahmed IB, Nwaichi EO, Ugwoha E, Ugbebor JN, Arokoyu SB. Cost reduction strategies in the remediation of petroleum hydrocarbon contaminated soil. OPEN RESEARCH AFRICA 2022; 5:21. [PMID: 36561538 PMCID: PMC9718438 DOI: 10.12688/openresafrica.13383.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
Petroleum hydrocarbon spill on land pollutes soil and reduces its ecosystem. Hydrocarbon transport in the soil is aided by several biological, physical, and chemical processes. However, pore characteristics play a major role in the distribution within the soil matrix. Restoring land use after spills necessitates remediation using cost-effective technologies. Several remediation technologies have been demonstrated at different scales, and research is ongoing to improve their performances towards the reduction of treatment costs. The process of removing the contaminants in the soil is through one or a combination of containment, separation, and degradation methods under the influence of biological, physical, chemical, and electrically-dominated processes. Generally, performance improvement is achieved through the introduction of products/materials and/or energy. Nevertheless, the technologies can be categorized based on effectiveness period as short, medium, and long term. The treatment cost of short, medium, and long-term technologies are usually in the range of $39 - 331/t (/tonne), $22 - 131/t, and $8 - 131/t, respectively. However, the total cost depends on other factors such as site location, capital cost, and permitting. This review compiles cost-saving strategies reported for different techniques used in remediating petroleum hydrocarbon polluted soil. We discuss the principles of contaminant removal, performance enhancing methods, and the cost-effectiveness analysis of selected technologies.
Collapse
Affiliation(s)
- Ismail B. Ahmed
- Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Choba, Nigeria
- National Oil Spill Detection and Response Agency (NOSDRA), Abuja, Nigeria
| | - Eucharia O. Nwaichi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
- Exchange & Linkage Programmes Unit, University of Port Harcourt, Choba, Nigeria
| | - Ejikeme Ugwoha
- Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Choba, Nigeria
- Department of Civil & Environmental Engineering, University of Port Harcourt, Choba, Nigeria
| | - John N. Ugbebor
- Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Choba, Nigeria
- Department of Civil & Environmental Engineering, University of Port Harcourt, Choba, Nigeria
| | - Samuel B. Arokoyu
- Centre for Research Management and Administration, University of Port Harcourt, Choba, Nigeria
- Department of Geography and Environmental Management, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
17
|
Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts 2022. [DOI: 10.3390/catal12010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Soil pollution has become a substantial environmental problem which is amplified by overpopulation in different regions. In this review, the state of the art regarding the use of Advanced Oxidation Processes (AOPs) for soil remediation is presented. This review aims to provide an outline of recent technologies developed for the decontamination of polluted soils by using AOPs. Depending on the decontamination process, these techniques have been presented in three categories: the Fenton process, sulfate radicals process, and coupled processes. The review presents the achievements of, and includes some reflections on, the status of these emerging technologies, the mechanisms, and influential factors. At the present, more investigation and development actions are still desirable to bring them to real full-scale implementation.
Collapse
|
18
|
Silva KN, Araújo KC, da Silva DR, Martínez-Huitle CA, Santos EVD. Persulfate-soil washing: The green use of persulfate electrochemically generated with diamond electrodes for depolluting soils. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Huang Z, Chen Q, Yao Y, Chen Z, Zhou J. Micro-bubbles enhanced removal of diesel oil from the contaminated soil in washing/flushing with surfactant and additives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112570. [PMID: 33892234 DOI: 10.1016/j.jenvman.2021.112570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Diesel removal of contaminated soil by washing/flushing was enhanced with micro-bubbles and selected surfactants based on their solubilization properties and decontamination capacities. The influencing factors were studied to aim for increasing washing/flushing efficacy. The mixture solution of saponin and cyclodextrin increased the removal efficiency significantly compared to the single-agent solution flushing with an increasing range of 20%-31%. Meanwhile, micro-bubble enhancement increased over 20% of the diesel removal for the sandy soil flushing. As the flushing process may cause soil eroded, the TDS and soil solute in flushing solution were measured to evaluate the circulation time. The 90 min flushing time ensured the cleaning goal and reserved the soil solute by circulation flushing. The soil solute, especially the electron acceptor (NO3-) , was remained in the soil, which was highly demanded for residual diesel biodegradation of loam soil. It is concluded that mixed agents, circulation of flushing solution, and micro-bubbles increased the diesel removal, and the circulation flushing could be very promising in practical applications.
Collapse
Affiliation(s)
- Zhaolu Huang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 201620, China; Departments of Bioengineering, Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA; Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL, 61820, USA
| | - Quanyuan Chen
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 201620, China.
| | - Yuan Yao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 201620, China
| | - Zhao Chen
- School of Computer Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Juan Zhou
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 201620, China
| |
Collapse
|
20
|
Purkis JM, Warwick PE, Graham J, Hemming SD, Cundy AB. Towards the application of electrokinetic remediation for nuclear site decommissioning. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125274. [PMID: 33609867 DOI: 10.1016/j.jhazmat.2021.125274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Contamination encountered on nuclear sites includes radionuclides as well as a range of non-radioactive co-contaminants, often in low-permeability substrates such as concretes or clays. However, many commercial remediation techniques are ineffective in these substrates. By contrast, electrokinetic remediation (EKR), where an electric current is applied to remove contaminants from the treated media, retains high removal efficiencies in low permeability substrates. Here, we evaluate recent developments in EKR for the removal of radionuclides in contaminated substrates, including caesium, uranium and others, and the current benefits and limitations of this technology. Further, we assess the present state of EKR for nuclear site applications using real-world examples, and outline key areas for future application.
Collapse
Affiliation(s)
- Jamie M Purkis
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton SO14 3ZH, UK
| | - Phil E Warwick
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton SO14 3ZH, UK
| | - James Graham
- National Nuclear Laboratory, Sellafield, Cumbria CA20 1PG, UK
| | - Shaun D Hemming
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton SO14 3ZH, UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton SO14 3ZH, UK.
| |
Collapse
|
21
|
Chen Y, Zhi D, Zhou Y, Huang A, Wu S, Yao B, Tang Y, Sun C. Electrokinetic techniques, their enhancement techniques and composite techniques with other processes for persistent organic pollutants remediation in soil: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Vidal J, Báez ME, Salazar R. Electro-kinetic washing of a soil contaminated with quinclorac and subsequent electro-oxidation of wash water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143204. [PMID: 33162125 DOI: 10.1016/j.scitotenv.2020.143204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system (EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm-1 between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of •OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process.
Collapse
Affiliation(s)
- J Vidal
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - R Salazar
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| |
Collapse
|
23
|
Sustainability in ElectroKinetic Remediation Processes: A Critical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13020770] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, the development of suitable technologies for the remediation of environmental contaminations has attracted considerable attention. Among these, electrochemical approaches have gained prominence thanks to the many possible applications and their proven effectiveness. This is particularly evident in the case of inorganic/ionic contaminants, which are not subject to natural attenuation (biological degradation) and are difficult to treat adequately with conventional methods. The purpose of this contribution is to present a critical overview of electrokinetic remediation with particular attention on the sustainability of the various applications. The basis of technology will be briefly mentioned, together with the phenomena that occur in the soil and how that will allow its effectiveness. The main critical issues related to this approach will then be presented, highlighting the problems in terms of sustainability, and discussing some possible solutions to reduce the environmental impact and increase the cost-effectiveness and sustainability of this promising technology.
Collapse
|
24
|
Fardin AB, Jamshidi-Zanjani A, Darban AK. Application of enhanced electrokinetic remediation by coupling surfactants for kerosene-contaminated soils: Effect of ionic and nonionic surfactants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111422. [PMID: 33010658 DOI: 10.1016/j.jenvman.2020.111422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Electrokinetic (EK) by coupling surfactants is an enhanced promising remediation technology to eliminate hydrophobic organic contaminants (HOCs) from low-permeable soils. It is also applied to remediate kerosene-contaminated soils using anionic (SDS) and non-ionic (Tween 80) surfactants at different concentrations. There was negligible removal efficiency (40%) of kerosene during traditional EK without any enhancement technique. In the present study, the application of 0.005M and 0.01M SDS in EK-SDS-1 and EK-SDS-2 improved the removal efficiency to 50 and 55%, respectively towards the anode. Furthermore, the use of Tween 80 in EK-Tw80-1 and EK-Tw80-2 at 0.1 and 1% concentrations was able to raise kerosene removal gradually from 45% to 52% towards the cathode. These findings suggest that higher concentrations of SDS and Tween 80 contribute to the more effective elimination of kerosene. Thus, in EK-SDS-Tw80-V1.5 and EK-SDS-Tw80-V2, SDS and Tween 80 were used simultaneously at higher concentrations, which led to 63 and 67% kerosene removal, respectively. Considering the maximum removal in EK-SDS-Tw80-V2, the energy consumption in EK-SDS-Tw80-V2 was 178 KWh/m3 due to the higher voltage gradient; whereas without increased voltage in EK-SDS-Tw80-V1.5, this amount was decreased to 84 KWh/m3. It is to be mentioned that the electro-osmotic flow (EOF) played a significant role in minimizing kerosene concentration during the EK process, particularly when combined with surfactants.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining, Mining and Environment, Tarbiat Modares University, Iran.
| | | | | |
Collapse
|
25
|
Kuang C, Xu Y, Xie G, Pan Z, Zheng L, Lai W, Ling J, Talawar M, Zhou X. Preparation of CeO 2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater. CHEMOSPHERE 2021; 262:128215. [PMID: 33182126 DOI: 10.1016/j.chemosphere.2020.128215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The effluent from conventional treatment process (including anaerobic digestion and anoxic-oxic treatment) for pig farm wastewater was difficult to treat due to its low ratio of biochemical oxygen demand to chemical oxygen demand (BOD5/CODCr) (<0.1). In the present study, electro-Fenton (EF) was used to improve the biodegradability of the mentioned effluent and the properties of self-prepared CeO2-doped multi-wall carbon nanotubes (MWCNTs) electrodes were also studied. An excellent H2O2 production (165 mg L-1) was recorded, after an 80-min electrolysis, when the mass ratio of MWCNTs, CeO2 and pore-forming agent (NH4HCO3) was 6:1:1. Results of scanning electron microscopy (SEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS) showed that addition of NH4HCO3 and the doping of CeO2 could increase the superficial area of the electrode as well as the oxygen reduction reaction (ORR) electro-catalytic performance. The BOD5/CODCr of the wastewater from the first stage AO process increased from 0.08 to 0.45 and CODCr reduced 71.5% after an 80-min electrolysis, with 0.3 mM Fe2+ solution. The non-biodegradable chemical pollutants from the first stage AO process were degraded by EF. The non-biodegradable pollutants identified by LC-MS/MS in the effluent from AO process including aminopyrine, oxadixyl and 3-methyl-2-quinoxalinecarboxylic acid could be degraded by EF process, with the removal rates of 81.86%, 34.39% and 7.13% in 80 min, and oxytetracycline with the removal rate of 100% in 20 min. Therefore, electro-Fenton with the new CeO2-doped MWCNTs cathode electrode will be a promising supplement for advanced treatment of pig farm wastewater.
Collapse
Affiliation(s)
- Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Zhanchang Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Manjunatha Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Xiao Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| |
Collapse
|
26
|
Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116822] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Paixão IC, López-Vizcaíno R, Solano AMS, Martínez-Huitle CA, Navarro V, Rodrigo MA, Dos Santos EV. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. CHEMOSPHERE 2020; 248:126029. [PMID: 32035385 DOI: 10.1016/j.chemosphere.2020.126029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 05/25/2023]
Abstract
The use of electrokinetic Fenton (EK Fenton) process, as promising soil remediation approach, was investigated by using an iron electrode with different supporting electrolytes (tap water, H2O2, and citric acid) to depollute soil spiked with petroleum where kaolin was selected as low hydraulic conductivity. The results clearly confirm that, the combination of electrokinetic remediation (EK) and Fenton technologies, is an efficient oxidizing approach for removing hydrocarbons from this kind of soil. In fact, the electrokinetic Fenton reactions and the control of the soil pH conditions by adding citric acid enhanced the oxidation process because the addition of the H2O2 with iron electrode resulted in higher removal efficiencies (89%) for total petroleum hydrocarbons (TPHs). These figures allowed to confirm that EK Fenton process with pH control contributed for the transport of H2O2 and Fe2+ ions in the soil by electromigration and eletro-osmotic phenomena. Conversely, no control of pH conditions when only EK was applied, achieved lower hydrocarbons removal (27%) after 15 d of treatment due to the precipitation of iron ions. Finally, the efficiency of the EK Fenton remediation prevented the generation of secondary effluent with higher organic content, avoiding its treatment by other advanced oxidation process.
Collapse
Affiliation(s)
- I C Paixão
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - R López-Vizcaíno
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil; Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil; Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - A M S Solano
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - C A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - V Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, E. Costa Novella Buiding, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - E V Dos Santos
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil.
| |
Collapse
|
28
|
Sánchez V, López-Bellido FJ, Cañizares P, Villaseñor J, Rodríguez L. Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109806. [PMID: 31759201 DOI: 10.1016/j.jenvman.2019.109806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Electrokinetic-assisted phytoremediation (EKPR) has been recently proposed for the removal of pesticides from polluted soils. In this work, we report the results from an EKPR experiment that was carried out in a mesocosm mock-up of 0.386 m3 using ryegrass (Lolium perenne L.) and a low permeability soil spiked with atrazine. Plants were initially grown for 35 days; then, the soil was spiked with atrazine at a dose of 2 mg kg-1 soil. A DC electrical field of 0.6 V cm-1 was applied 24 h every day, switching polarity daily. Another identical mock-up with the same experimental conditions but without plants was used for comparison purposes. The duration of the EKPR test was 19 days during which some operational parameters were registered (electric current intensity, soil pH and temperature) and soil porewater samples were taken and analysed. Plant tissues and soil samples from the different sections in which the mock-ups were divided, were also collected and analysed at the end of the experiment. 3-D profiles of soil pH, water content and atrazine residues concentration in plants and soil were obtained and discussed. The results of this experiment were compared with others previously reported by us from a similar EKPR pot test. In spite of the difficulties to get an adequate geometric and operational similarity between setups of different scale, the main output parameters of the EKPR process (electric current, specific current charge, overall atrazine removal, specific atrazine removal efficiency, root biomass:soil weight ratio) were discussed. It was shown that, although the processes carried out are essentially the same in both scales, their extent may be quite different; it highlights the limitations of small-scale experiments to predict the results at field conditions.
Collapse
Affiliation(s)
- Virtudes Sánchez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- Department of Plant Production and Agricultural Technology, School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, S/n, 13003, Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - José Villaseñor
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - Luis Rodríguez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain.
| |
Collapse
|
29
|
Sánchez V, López-Bellido FJ, Rodrigo MA, Fernández FJ, Rodríguez L. A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Rada EC, Andreottola G, Istrate IA, Viotti P, Conti F, Magaril ER. Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173179. [PMID: 31480429 PMCID: PMC6747527 DOI: 10.3390/ijerph16173179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
Soils contaminated with organic substances is an important issue across Europe: In some areas, these are the main causes of pollution, or the second after contamination from waste disposal. This paper included an experimental application that compared three methods of remediation of contaminated sites, based on electric fields: A single treatment (electroremediation); and two combined treatments, phyto-electrochemical and electrooxidation (a combination of chemical treatment and a DCT-direct current technology). The contaminated soil was taken from a former industrial area devoted to oil refining, located between two roads: The one national and the other one for industrial use. Nine soil samples were collected at two depths (0.2 and 0.4 m). The initial characterization of the soil showed a density of 1.5 g/cm³ and a moisture of about 20%; regarding grain size, 50% of the soil had particles with a diameter less than 0.08 mm. The electrochemical treatment and electrooxidation had an efficiency of 20% while the two combined methods had efficiencies of 42.5% for electrooxidation (with H2O2) and 20% for phyto-electroremediation (phyto-ER) with poinsettias.
Collapse
Affiliation(s)
- Elena Cristina Rada
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy.
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Irina Aura Istrate
- Department of Biotechnical System, University Politehnica of Bucharest, Spaiul Independentei 313, sector 6, 060042 Bucharest, Romania.
| | - Paolo Viotti
- Department of Civil, Constructional and Environmental Engineering, University Sapienza of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Conti
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy
| | - Elena Romenovna Magaril
- Department of Environmental Economics, Ural Federal University, Mira Str., 19, Ekaterinburg 620002, Russia
| |
Collapse
|