1
|
Wang L, Shi J, Bao S, Liu G, Xie C, Liao F, Kundu SC, Reis RL, Duan L, Xiao B, Yang X. Antibacterial cationic porous organic polymer coatings via an adsorption-contact-photodynamic inactivation strategy for treatment of drug-resistant bacteria. J Colloid Interface Sci 2025; 679:282-295. [PMID: 39366258 DOI: 10.1016/j.jcis.2024.09.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Although photodynamic therapy (PDT) has great potential for treating severely infected wounds, it is restricted by the short lifetime, limited diffusion distance of reactive oxygen species (ROS), and incomplete contact with bacteria. Herein, we report a novel nanosized ionic porous organic polymer (TPAPy-IPOP) based on the triphenylamine (TPA) moiety. Strong electron-deficient cationic groups were introduced into TPA to construct the donor-acceptor (D-A) system, in which the photoelectric effect of TPAPy-IPOP was greatly enhanced, and it was easily excited to produce ROS under irradiation with visible light. The introduction of cations not only facilitated bacterial adsorption by TPAPy-IPOP via electrostatic attraction, which was more conducive to killing bacteria by ROS, but also inactivated bacteria by the cations directly. The nanosized TPAPy-IPOP remained suspended in water for several months and could be sprayed onto various substrates to form a durable coating with excellent antibacterial properties. The in vivo results proved that the silk fibroin/polyvinyl alcohol non-woven fabric (SF/PVA) coated with TPAPy-IPOP could create and maintain a sterile microenvironment at a wound site. The rapid reduction in inflammation resulting from its bactericidal action accelerated the wound healing rate. Collectively, this design is expected to offer a generalizable approach for developing novel antibacterial therapeutic photosensitizers, especially for infected wound treatment.
Collapse
Affiliation(s)
- Lingshuang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Shengfei Bao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ga Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Chunyu Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Fuying Liao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Rui L Reis
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
2
|
Li H, Sun H, Li Q, Zong X, Wu L, Han Z, Li X, Wu J, Ye Y, Pan F. Copper-doped orange peel biochar activated peroxydisulfate for efficient degrading tetracycline: The critical role of C-OH and Cu. ENVIRONMENTAL RESEARCH 2024; 263:120265. [PMID: 39481781 DOI: 10.1016/j.envres.2024.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The usage of biomass waste has aroused great concern in water purification. In this study, copper-doped orange peel biochar (Cu-OPB) prepared by one-step carbonization was firstly used to activate peroxydisulfate (PDS) to eliminate tetracycline (TC). The optimized Cu-OPB showed great activation ability for PDS and could degrade 93.7% of TC at pH 9.07. The presence of H2PO4-, Cl-, and HCO3- did not affect the degradation, while HA and SO42- inhibited TC degradation. SO4•-, •OH and 1O2 were confirmed as the primary active oxygen species in the Cu-OPB/PDS system. Moreover, Cu and the C-OH functional groups on the surface of Cu-OPB played a critical role in the activation by accelerating the electronic migration between Cu-OPB and PDS in the catalytic system. 15 possible intermediate products were found and three feasible degradation pathways were proposed. The toxicity of aquatic organisms of TC was reduced. Furthermore, Cu-OPB could be used as an economically efficient and environmentally friendly catalyst for PDS activation to degrade organic pollutants.
Collapse
Affiliation(s)
- Haochen Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Haochao Sun
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| | - Xiaofei Zong
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Longli Wu
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Zhengyu Han
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Xinyu Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Jiahui Wu
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
3
|
Liu Y, Ma Y, Deng Z, Li P, Cui S, Zeng C, Mu R, Zhou Y, Qi X, Zhang Z. MoS 2 coupled with ball milling co-modified sludge biochar to efficiently activate peroxymonosulfate for neonicotinoids degradation: Dominant roles of SO 4•-, 1O 2 and surface-bound radicals. ENVIRONMENTAL RESEARCH 2024; 263:119983. [PMID: 39270958 DOI: 10.1016/j.envres.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
An efficient catalyst of molybdenum disulfide (MoS2) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.9%. The superior pore structures, rich defects, oxygen-containing functional groups and grafted MoS2 on BMSBC offered excellent activation performance for PMS. The influencing factor experiments demonstrated that PMS/BMSBC system performed high anti-interference to wide pH range and background constituents (e.g., inorganic ions and humic acid). Quenching experiments and electron paramagnetic resonance analysis revealed that SO4•-, 1O2, and surface-bound radicals played critical roles in IMI degradation. Electron donors on biochar activated PMS, producing surface radicals. The lone pair electrons within the Lewis basic site of C=O on BMSBC enhanced PMS decomposition by facilitating the cleavage of the -O-O- bond in PMS to release 1O2. The activation process of PMS by MoS2 accelerated the oxidation of Mo (IV) to Mo (VI) to generate SO4•-. Based on the transformed products (TPs), four degradation pathways of IMI in PMS/BMSBC system were suggested, and all TPs toxicity levels were lower than that of IMI by ECOSAR analysis. Additionally, BMSBC exhibited outstanding sustainable catalytic activity towards PMS activation with the well accepted degradation rate of 71.3% for IMI even after five reuse cycles. PMS/BMSBC system also exhibited satisfactory degradation rates (>71.8%) for IMI in various real waters (e.g., sewage effluent and livestock wastewater). Furthermore, PMS/BMSBC system also offered a favorable broad-spectrum elimination performance for other typical neonicotinoids (e.g., thiamethoxam, clothianidin, thiacloprid) with the degradation rates over 98%. This study has developed a desirable neonicotinoids purification technology in view of its high degradation/mineralization rate, outstanding detoxification performance, satisfied anti-interference to ambient conditions and sustainable sludge management.
Collapse
Affiliation(s)
- Yifan Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yusheng Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
4
|
Wang X, Xu J, Chen W, Shi Y, Liu F, Jiang H. A new strategy integrating peroxymonosulfate oxidation and soil amendments in contaminated soil: Bensulfuron methyl degradation, soil quality improvement and maize growth promotion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135852. [PMID: 39298944 DOI: 10.1016/j.jhazmat.2024.135852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bensulfuron methyl (BSM) residues have caused serious yield reductions of sensitive crops. Chemical oxidation is an effective remediation technology, while it affects soil quality and subsequent agricultural activity, necessitating approriate improvement measures. So Fe2O3-Mn3O4 with excellent bimetallic synergistic effect was synthesized to activate peroxymonosulfate (PMS) for BSM degradation. The catalytic activity and influencing factors were systematically predetermined in water in view of soil remediation. Results showed Fe2O3-Mn3O4/PMS oxidized 99.3 % BSM within 60 min with the help of multi-reactive species and electron transfer. Meanwhile, Fe2O3-Mn3O4/PMS treatment exhibited technical feasibility in soil that 97.6 % BSM was degraded in 5 days under the low usages of Fe2O3-Mn3O4 (0.8 %) and PMS (0.15 %). Although Fe2O3-Mn3O4/PMS decreased BSM phytotoxicity and improved maize growth, a few gaps existed between the remediated group and uncontaminated group, including biomass, length, available potassium, organic matters, pH, redox potential (Eh) and sulfate content. The introductions of biochar and chitosan in remediated soils promoted growth, increased organic matters content, improved soil resistance to acidification and decreased Eh, alleviating the negative effects of Fe2O3-Mn3O4/PMS. Overall, the study provided new insights into the combination of Fe2O3-Mn3O4/PMS and biochar and chitosan in BSM-contaminated soil, achieving BSM degradation and improvements of soil quality and plant growth.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Jiangyan Xu
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Wei Chen
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Ying Shi
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Fang Liu
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China
| | - Hongmei Jiang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nanjing 210095, China.
| |
Collapse
|
5
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
6
|
Masud MAA, Shin WS. Advanced carbo-catalytic degradation of antibiotics using conductive polymer-seaweed biochar composite: Exploring N/S functionalization and non-radical dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135449. [PMID: 39137546 DOI: 10.1016/j.jhazmat.2024.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Feng M, Xu Z, Li J, Wang N, Lin K, Zhang M. Insight into the role of reactive species on catalyst surface underlying peroxymonosulfate activation by P-Fe 2MnO 4 loaded on bentonite for trichloroethylene degradation. CHEMOSPHERE 2024; 357:141943. [PMID: 38621492 DOI: 10.1016/j.chemosphere.2024.141943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.
Collapse
Affiliation(s)
- Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 310000, China
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, 610039, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
8
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Zhang T, Zuo S. Nitrogen-doped metal-free granular activated carbons as economical and easily separable catalysts for peroxymonosulfate and hydrogen peroxide activation to degrade bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25751-25768. [PMID: 38488915 DOI: 10.1007/s11356-024-32751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The fabrication of low-cost, highly efficient, environmentally friendly, and easily separable metal-free heterogeneous catalysts for environmental remediation remains a challenge. In this study, granular nitrogen-doped highly developed porous carbons with a particle size of 0.25-0.30 mm were prepared by preoxidation and subsequent NH3 modification of a commercially available coconut-based activated carbon, and used to activate peroxymonosulphate (KHSO5) or hydrogen peroxide (H2O2) to degrade bisphenol A (BPA). The nitrogen-doped carbon (ACON-950) prepared by NH3 modification at 950 °C, with the addition of only 0.15 g/L could remove 100% of 50 mg/L BPA in 150 min, and more than 90% of the removed BPA was due to degradation. The removal rates of total organic carbon of ACON-950/KHSO5 and ACON-950/H2O2 systems reached 60.4% and 66.2% respectively, indicating the excellent catalytic activity of ACON-950. The reaction rate constant was significantly positively correlated with the absolute content of pyridinic N (N-6) and graphitic N (N-Q) and negatively and weakly positively correlated with pyrrolic N (N-5) and defects. Quenching experiments combined with electron paramagnetic resonance demonstrated that singlet oxygen was the dominant reactive oxidative species for BPA degradation. ACON-950 was characterized before and after the degradation reaction using N2 adsorption-desorption analyzer, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results confirmed the prominent contribution of both the N-6 and N-Q to the catalytic performance of nitrogen-doped carbons. The reusability of ACON-950 and its application in actual water bodies further demonstrated its remarkable potential for the remediation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Songlin Zuo
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Chen X, Zhu J, Ma Y, Zeng C, Mu R, Deng Z, Zhang Z. Facile synthesis of ball-milling and oxalic acid co-modified sludge biochar to efficiently activate peroxymonosulfate for sulfamethoxazole degradation: 1O 2 and surface-bound radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133026. [PMID: 38006858 DOI: 10.1016/j.jhazmat.2023.133026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min. Furthermore, PMS/BOSBC system was capable of maintaining high removal rates for SMX (>88.8%) in a wide pH range from 3 to 9, and displayed a high tolerance to background electrolytes including inorganic ions and humic acid (HA). Quenching experiments, electron paramagnetic resonance (EPR) analysis, in-situ Raman characterization and PMS decomposition experiments confirmed that the non-radicals of 1O2 and surface-bound radicals were the main contributors to SMX degradation by PMS/BOSBC system. The results of ecotoxicity assessment illustrated that all transformed products (TPs) generated in PMS/BOSBC system were less toxic than that of SMX. After five reuse cycles, PMS/BOSBC system still maintained a high removal rate for SMX (77.8%). Additionally, PMS/BOSBC system exhibited excellent degradation performance for SMX in various real waters (Yangtze River water (76.5%), lake water (74.1%), tap water (86.5%), and drinking water (98.1%)). Overall, this study provided novel insights on non-metal modification for sludge-based biochar and non-radical mechanism, and offered a feasible approach for municipal sludge disposal.
Collapse
Affiliation(s)
- Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
11
|
Zhu Q, Chen L, Zhu T, Gao Z, Wang C, Geng R, Bai W, Cao Y, Zhu J. Contribution of 1O 2 in the efficient degradation of organic pollutants with Cu 0/Cu 2O/CuO@N-C activated peroxymonosulfate: A Case study with tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123064. [PMID: 38042475 DOI: 10.1016/j.envpol.2023.123064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Peroxymonosulfate-mediated advanced oxidation processes (PMS-AOPs) degrading organic pollutants (Tetracycline (TC) as an example) in water with singlet oxygen (1O2) as the main reactive oxygen has received more and more attention. However, the generation mechanism of 1O2 is still unclear. Consequently, this study investigates the 1O2 formation mechanism during the activated PMS process using a nitrogen-copper-loaded carbon-based material (Cu0/Cu2O/CuO@N-C), synthesized by thermally decomposing organobase-modified HKUST-1 via a one-pot method. It was discovered that incorporating an organobase (Benzylamine) into the metal organic framework (MOF) precursor directs the MOF's self-assembly process and supplements its nitrogen content. This modification modulates the Nx-Cu-Oy active site formation in the material, selectively producing 1O2. Additionally, 1O2 was identified as the dominant reactive oxygen species in the Cu0/Cu2O/CuO@N-C-PMS system, contributing to TC degradation with a rate of 70.82%. The TC degradation efficiency remained high in the pH range of 3-11 and sustained its efficacy after five consecutive uses. Finally, based on the intermediates of TC degradation, three possible degradation pathways were postulated, and a reduction in the ecotoxicity of the degradation products was predicted. This work presents a novel and general strategy for constructing nitrogen-copper-loaded carbon-based materials for use in PMS-AOPs.
Collapse
Affiliation(s)
- Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Chen
- Management Division of QinhuaiRiver Hydraulic Engineering of Jiangsu Province, Nanjing, 210029, China
| | - Tiancheng Zhu
- Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ruiwen Geng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wangjun Bai
- Hohai University Design Institute CO., Ltd, Nanjing, 210098, China
| | - Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
12
|
Xia W, Li S, Wu G, Ma J. Recycling waste iron-rich algal flocs as cost-effective biochar activator for heterogeneous Fenton-like reaction towards tetracycline degradation: Important role of iron species and moderately defective structures. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132377. [PMID: 37639790 DOI: 10.1016/j.jhazmat.2023.132377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Harvesting aquatic harmful algal blooms (HABs) and reusing them is a promising way for antibiotic degradation. Herein, a novel iron-rich biochar (Fe-ABC), derived from algal biomass harvested by magnetic coagulation, was successfully designed and fabricated as activator for heterogeneous Fenton-like reaction. The modification methods and pyrolysis temperatures (400-800 °C) were optimized to enhance the formation of rich iron species and moderately defective structure, yielding Fe-ABC-600 with enhanced electron transfer and H2O2 activation capability. Thus, Fe-ABC-600 exhibited superior removal efficiency (95.33%) on tetracycline (TC), where the presence of multiple iron species (Fe3+, Fe2+ and Fe4+) and moderately defective structure accelerating the Fenton-like oxidation. The concentration of leaching Fe after each reaction was all below 0.74 mg/L in five cycles, ensuring the sustained degradation. And •OH was proved to be the major radical contributing to the degradation of TC, as well as the direct electron transfer mechanism together, in which the CO acted as electron regulator and electron donor. Fe-ABC as a cost-effective catalyst has notable application potentials in TC removal from wastewater owing to its remarkable advantages of high resource utilization, enhanced catalytic property, high ecological safe, notable TC degradation efficiency, low cost and environmental-friendliness.
Collapse
Affiliation(s)
- Wei Xia
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sha Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Genyu Wu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|
13
|
Chu J, Xin S, He Y, Gao X, Zhou X, Zhang Y, Liu X, Zhang X, Wang S. Enhanced Adsorption of Hexavalent Chromium from Aqueous Solutions by Iron- manganese Modified Cedarwood Biochar: Synthesis, Performance, Mechanism, and Variables. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:43. [PMID: 37715810 DOI: 10.1007/s00128-023-03802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Three modified biochar (Cunninghamia lanceolata) with iron and manganese elementals (FMBCs) were successfully prepared and used to remove hexavalent chromium (Cr(VI)) from aqueous solutions. The biochar before and after decoration were characterized by advanced instruments. The adsorption capacities of modified biochar in different Cr(VI) (20 mg·L- 1, 1 mg·L- 1) solutions were 4868.28 mg·kg- 1 and 300 mg·kg- 1. The Cr(VI) removal was highest at pH 2. The possible adsorption was considered to be ion exchange adsorption, chemisorption, and electrostatic attraction. Meanwhile, interfering ions are conducive to increasing the adsorption content. FMBCs prepared at different temperatures showed different characteristics, single-use and cycle-use performance, and high and low concentration removal superiority. The result indicated that FMBCs had a promising potential as an adsorbent to remove toxic and harmful Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Jizhuang Chu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Yihang He
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xin Gao
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xin Zhou
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Yingqi Zhang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xinru Zhang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
14
|
Zhang R, Zhang R, Zimmerman AR, Wang H, Gao B. Applications, impacts, and management of biochar persistent free radicals: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121543. [PMID: 37019262 DOI: 10.1016/j.envpol.2023.121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.
Collapse
Affiliation(s)
- Ruirui Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ruiling Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Zhang K, Huang D, Zhang Y, El Houda Bouroubi N, Chen P, Ganbold N, He P, Liu J, Fang Y, Gan M, Zhu J, Yang B. Natural mineral-derived Fe/Mn-BC as efficient peroxydisulfate activator for 2,4-dichlorophenol removal from wastewater: Performance and sustainable catalytic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117540. [PMID: 36841004 DOI: 10.1016/j.jenvman.2023.117540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Iron and manganese oxides/biochar composite materials (Fe/Mn-BC) are promising catalysts in the field of advanced oxidation. High purity chemical reagents are popular precursors for preparing Fe/Mn-BC, while the potential of low-cost natural minerals as precursors has been neglected. In this study, high-efficiency Fe/Mn-BC was synthesized by one-step pyrolysis method using hematite, phosphoromanganese, and bagasse. The synthesized Fe/Mn-BC removed 83.7% 2, 4-dichlorophenol (2, 4-DCP) within 30 min, about 8.8 and 10.6 times better than biochar (BC) and Fe/Mn complex, respectively. The removal of 2, 4-DCP in the Fe/Mn-BC + peroxydisulfate (PDS) system was influenced by catalyst dosage, PDS concentration, initial pH, organic acids, and chromium. Sulfate radical (SO4•-) and hydroxyl radicals (•OH) generated by Fe/Mn-BC-activated PDS have similar contribution to the degradation of 2,4-DCP. A possible removal mechanism of 2, 4-DCP in the Fe/Mn-BC + PDS system was proposed based on Electron Spin Resonance spectroscopy, free radical quenching experiments, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical measurement. Fe0 and Fe(II) in Fe/Mn-BC play significant role in catalytic degradation of 2, 4-DCP at the early stage of the reaction (within 0-5 min). Then, the interaction between Mn and BC or structural Mn and structural Fe gradually became dominant in the later stage. Similarly, the electron transfer promoted by biochar also played an important role in this catalysis. This discovery provided a new strategy for developing iron and manganese oxides/biochar composite materials to activate PDS for the elimination of refractory organic pollutants.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Dongli Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ying Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Nour El Houda Bouroubi
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Pan Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Naranchimeg Ganbold
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Junwu Liu
- Hunan Engineering Technology Research Center for Treatment and Recycling of Heavy Pollution Industrial Wastewater, China
| | - Yingchun Fang
- Hunan Engineering Technology Research Center for Treatment and Recycling of Heavy Pollution Industrial Wastewater, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
16
|
Zhang W, Li M, Shang W, Wang M, Zhang J, Sun F, Li M, Li X. Singlet oxygen dominated core-shell Co nanoparticle to synergistically degrade methylene blue through efficient activation of peroxymonosulfate. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Chen X, Qian S, Ma Y, Zhu J, Shen S, Tang J, Ding Y, Zhi S, Zhang K, Yang L, Zhang Z. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121010. [PMID: 36608732 DOI: 10.1016/j.envpol.2023.121010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
First time, this study synthesized a magnetic-modified sludge biochar (MSBC) as an activator of peroxymonosulfate (PMS) to eliminate sulfamethoxazole (SMX). The removal efficiency of SMX reached 96.1% at t = 60 min by PMS/MSBC system. The larger surface area and magnetic Fe3O4 of MSBC surface enhanced its activation performance for PMS. The PMS decomposition, premixing and reactive oxygen species (ROS) identification experiments combined with Raman spectra analysis demonstrated that the degradation process was dominated by surface-bound radicals. The transformed products (TPs) of SMX and the main degradation pathways were identified and proposed. The ecotoxicity of all TPs was lower than that of SMX. The magnetic performance was beneficial for its reuse and the removal efficiency of SMX was 83.3% even after five reuse cycles. Solution pH, HCO3- and CO32- were the critical environmental factors affecting the degradation process. MSBC exhibited environmental safety for its low heavy metal leaching. PMS/MSBC system also performed excellent removal performance for SMX in real waters including drinking water (88.1%), lake water (84.3%), Yangtze River water (83.0%) and sewage effluent (70.2%). This study developed an efficient PMS activator for SMX degradation in various waters and provided a workable way to reuse and recycle municipal sludge.
Collapse
Affiliation(s)
- Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shufang Qian
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
18
|
Ma Y, Tang J, Chen S, Yang L, Shen S, Chen X, Zhang Z. Ball milling and acetic acid co-modified sludge biochar enhanced by electrochemistry to activate peroxymonosulfate for sustainable degradation of environmental concentration neonicotinoids. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130336. [PMID: 36403449 DOI: 10.1016/j.jhazmat.2022.130336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids pose potential serious risks to human health even at environmental concentration and their removal from water is considered as a great challenge. A novel ball milling and acetic acid co-modified sludge biochar (BASBC) was the first time synthesized, which performed superior physicochemical characteristics including larger surface area, more defect structures and functional groups (e.g., CO and -OH). Electrochemistry was introduced to enhance BASBC for peroxymonosulfate (PMS) activation (E/BASBC/PMS) to degrade environmental concentration neonicotinoids (e.g., imidacloprid (IMI)). The degradation efficiency of IMI was 95.2% within 60 min (C0 (PMS)= 1 mM, E= 25 V, m (BASBC)= 10 mg). Solution pH and anionic species/concentrations were critical affecting factors. The scavenging and electron paramagnetic resonance experiments suggested that •OH and 1O2 were the dominant reactive oxygen species contributing to IMI degradation. Three degradation pathways were proposed and pathway Ⅲ was the main one. 86.1% of IMI were mineralized into non-toxic CO2 and H2O, and others were converted into less toxic intermediates. Also, E/BASBC/PMS system achieved the sustainable degradation of IMI in the cycle experiments. Additionally, it exhibited excellent degradation performance for other three typical neonicotinoids (96.6% of thiacloprid (THI), 96.5% of thiamethoxam (THX) and 82.6% of clothianidin (CLO)) with high mineralization efficiencies (87.8% of THI, 90.5% of THX and 75.4% of CLO).
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Siyu Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
19
|
Zhang RJ, Chai BL, Xu H, Zheng TF, Zhu ZH, Peng Y, Chen JL, Liu SJ, Wen HR. Enhanced Heterogeneous Catalytic Activity of Peroxymonosulfate for Rhodamine B Degradation via a Co II-Based Metal-Organic Framework. Inorg Chem 2023; 62:2760-2768. [PMID: 36724472 DOI: 10.1021/acs.inorgchem.2c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A stable metal-organic framework with the formula {[Co(BBZB)(IPA)]·H2O}n (JXUST-23, BBZB = 4,7-bis(1H-benzimidazole-1-yl)-2,1,3-benzothiadiazole and H2IPA = isophthalic acid) was constructed by incorporating Co2+ ions and two conjugated ligands under solvothermal conditions. JXUST-23 takes a dinuclear cluster-based layer structure with a porosity of 2.7%. In this work, JXUST-23 was used to activate peroxymonosulfate (PMS) to degrade rhodamine B (RhB), a difficult-to-degrade pollutant in water. Compared with pure PMS or JXUST-23, the JXUST-23/PMS system displays the best degradation ability of RhB in neutral solution. When the mass ratio of JXUST-23 to PMS was 2:3, 99.72% of RhB (50 ppm) was removed within 60 min, and the reaction rate was 0.1 min-1. Furthermore, free radical quenching experiments show that SO4•- was the main free radical during the process of RhB degradation. In addition, JXUST-23 exhibits good reusability for the degradation of the organic dye RhB, making it a potential candidate for environmental remediation.
Collapse
Affiliation(s)
- Rui-Jie Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Bi-Lian Chai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
20
|
Wang M, Wang Y, Sun J, Zhen J, Lv W. Layered double hydroxide/carbonitride heterostructure with potent combination for highly efficient peroxymonosulfate activation. CHEMOSPHERE 2023; 313:137394. [PMID: 36442675 DOI: 10.1016/j.chemosphere.2022.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Iron-based layered double hydroxides (LDHs) have drawn tremendous attention as a promising peroxymonosulfate (PMS) activators, but they still suffer from low efficiencies limited by electrostatic agglomeration and low electronic conductivity. Herein, a MgFeAl layered double hydroxide/carbonitride (LDH/CN) heterostructure was constructed via triggering the interlayer reaction of citric acid (CA) and urea. CA as a structure-directing agent regulated the interlayer anion of MgFeAl-LDH, which enabled an interfacial tuning in the process of coupling with CN. The obtained LDH/CN heterostructure, as an efficient PMS activator, achieved nearly 100% bisphenol A (BPA) removal rate in 10 min with high specific activity (0.146 L min-1·m-2). Electron paramagnetic resonance (EPR) tests, quenching experiments, electrochemical characterization and X-ray photoelectrons spectroscopy (XPS) tests were applied to clarify the mechanism of BPA degradation. The results unraveled that the activity of the catalyst originated from the heterostructure of LDH and CN with an efficient interfacial electron transfer, which promoted the fast generation of O2•- for rapid pollutant degradation. In addition, the catalyst exhibited excellent applicability in realistic wastewater. This work offered a rational strategy for forming a heterostructure catalyst with a fine interface engineering in actual environmental cleanup.
Collapse
Affiliation(s)
- Mengxue Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yuge Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jiahao Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jianzheng Zhen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
21
|
Guo F, Lou Y, Yan Q, Xiong J, Luo J, Shen C, Vayenas DV. Insight into the Fe-Ni/biochar composite supported three-dimensional electro-Fenton removal of electronic industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116466. [PMID: 36327605 DOI: 10.1016/j.jenvman.2022.116466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
For the efficient removal of the bio-refractory organic pollutants in the electronic industry wastewater, the Ni-Fe (oxides) modified three-dimension (3D) particle electrode was applied in electro-Fenton system (3D/EF), where iron ions were released from anode and deposited onto algal biochar (ABC) to prepare composite catalyst during reaction process. Firstly, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were applied to confirm successful fabrication of the 3D particle electrode materials. Secondly, COD removal efficiency could reach about 80%, which was about 20% higher than that in 2D/EF system, under the optimized conditions as 2.0 g/L of Ni-ABC particle electrodes, initial pH of 3, 100 mL/min of aeration intensity and 20 mA/cm2 of applied current density. Thirdly, characterized using three-dimensional fluorescence spectroscopy and GC-MS analysis, it seemed that most of the macromolecular substances could be degraded, whereas mono-2-ethylhexyl phthalate (MEHP) was identified as the most abundant and representative compound. Finally, possible degradation pathway of MEHP in 3D/EF system was proposed including dealkylation, cleavage of C-O bond, and demethylation. Therefore, this study provides a new strategy in designing EF system employing bimetal doped biochar composite for an efficient elimination of organic pollutants within electronic industry wastewater.
Collapse
Affiliation(s)
- Fang Guo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yaoyin Lou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China.
| | - Jianglei Xiong
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Jiahao Luo
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Chikang Shen
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece
| |
Collapse
|
22
|
Ding H, Zhang Z, Li Y, Ding L, Sun D, Dong Z. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on π-π electron donor-acceptor interaction. BIORESOURCE TECHNOLOGY 2022; 364:128018. [PMID: 36162783 DOI: 10.1016/j.biortech.2022.128018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel Fe/Mn/N co-doped biochar (Fe&Mn-NBC800) derived from waste apple tree branches was fabricated for bisphenol A (BPA) removal. Fe&Mn-NBC800 exhibited higher adsorption capacity (84.96 mg·g-1) in 318 K for BPA than the pristine biochar, doped mono-atomic, and di-atomic biochar. Higher temperature and adsorbent dosage promoted BPA removal, while higher solution pH was detrimental to the adsorption process. The kinetic and isothermal processes of BPA removal followed the pseudo-second-order model and Langmuir, respectively. Characterizations and correlation analysis indicated that π-π interactions showed the major contribution to the BPA adsorption. Furthermore, the pore filling, electrostatic interactions, hydrogen bonding, and hydrophobic interactions also played a role. Good water environment anti-interference ability (ion species, ionic strength, actual water body) and excellent recyclability of Fe&Mn-NBC800 make it exhibit the potential for engineering projects.
Collapse
Affiliation(s)
- Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Jiangsu Branch, North China Municipal Engineering Design & Research Institute Co. Ltd., Nanjing 210019, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Dongxiao Sun
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| | - Zhiqiang Dong
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| |
Collapse
|
23
|
Wu Y, Li Y, Zhao T, Wang X, Isaeva VI, Kustov LM, Yao J, Gao J. Bimetal-organic framework-derived nanotube@cellulose aerogels for peroxymonosulfate (PMS) activation. Carbohydr Polym 2022; 296:119969. [DOI: 10.1016/j.carbpol.2022.119969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
|
24
|
Mathew AT, Saravanakumar MP. Removal of micropollutants through bio-based materials as a transition to circular bioeconomy: Treatment processes involved, perspectives and bottlenecks. ENVIRONMENTAL RESEARCH 2022; 214:114150. [PMID: 36007569 DOI: 10.1016/j.envres.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The recent increase in micropollutant levels in water bodies is a growing concern globally. The generation of new materials and techniques for wastewater treatment often involves the release of hazardous wastes and the utilization of energy related to it. This can be resolved by the synthesis of bio-based materials through the use of already released wastes and naturally occurring components, adding their value as reusable resources. These bio-based materials find wide applications for micropollutant elimination and energy tapping due to the presence of various functional groups, large surface area, high stability, and reusability. The processes involved in micropollutant elimination through biomaterials generally include adsorption and degradation. These treatment processes are suggested to depend on various operational parameters like pH, temperature, dose, reaction time, presence of other contaminants, ions, etc. in the system, which may influence the process efficiency. Understanding the potential of bio-based materials many steps can be taken towards its large-scale application to upgrade wastewater treatment plants for micropollutant elimination. Furthermore, the recent advances of bio-based materials in energy storage and conversion have widened its scope for implementation in a circular bioeconomy. The bottlenecks towards such a transition and future recommendations are also presented and discussed.
Collapse
Affiliation(s)
- Annu T Mathew
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, Tamil Nadu, 632014, India.
| | - M P Saravanakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
25
|
Zhang L, Meng G, Liu B, Ge X. Heterogeneous photocatalytic ozonation of sulfamethoxazole by Z-scheme Bi2WO6/TiO2 heterojunction: Performance, mechanism and degradation pathway. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zhao Y, Wang H, Ji J, Li X, Yuan X, Duan A, Guan X, Jiang L, Li Y. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese -containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J Colloid Interface Sci 2022; 626:564-580. [DOI: 10.1016/j.jcis.2022.06.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023]
|
27
|
Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Chen Y, Cui K, Cui M, Liu T, Chen X, Chen Y, Nie X, Xu Z, Li CX. Insight into the degradation of tetracycline hydrochloride by non-radical-dominated peroxymonosulfate activation with hollow shell-core Co@NC: Role of cobalt species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|