1
|
Karlsson HL, Vallabani NVS, Wang X, Assenhöj M, Ljunggren S, Karlsson H, Odnevall I. Health hazards of particles in additive manufacturing: a cross-disciplinary study on reactivity, toxicity and occupational exposure to two nickel-based alloys. Sci Rep 2023; 13:20846. [PMID: 38012238 PMCID: PMC10682021 DOI: 10.1038/s41598-023-47884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
The increasing use of additive manufacturing (AM) techniques (e.g., 3D-printing) offers many advantages but at the same time presents some challenges. One concern is the possible exposure and health risk related to metal containing particles of different sizes. Using the nickel-based alloys Hastelloy X (HX) and Inconel 939 (IN939) as a case, the aim of this cross-disciplinary study was to increase the understanding on possible health hazards and exposure. This was done by performing in-depth characterization of virgin, reused and condensate powders, testing in vitro toxicity (cytotoxicity, genotoxicity, oxidative stress), and measuring occupational airborne exposure. The results showed limited metal release from both HX and IN939, and slightly different surface composition of reused compared to virgin powders. No or small effects on the cultured lung cells were observed when tested up to 100 µg/mL. Particle background levels in the printing facilities were generally low, but high transient peaks were observed in relation to sieving. Furthermore, during post processing with grinding, high levels of nanoparticles (> 100,000 particles/cm3) were noted. Urine metal levels in AM operators did not exceed biomonitoring action limits. Future studies should focus on understanding the toxicity of the nanoparticles formed during printing and post-processing.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | - Xuying Wang
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
| | - Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
2
|
Assenhöj M, Almstrand AC, Kokelj S, Ljunggren SA, Olin AC, Karlsson H. Occupational exposure and health surveys at metal additive manufacturing facilities. Front Public Health 2023; 11:1292420. [PMID: 38054074 PMCID: PMC10694287 DOI: 10.3389/fpubh.2023.1292420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Additive manufacturing is a novel state-of-the art technology with significant economic and practical advantages, including the ability to produce complex structures on demand while reducing the need of stocking materials and products. Additive manufacturing is a technology that is here to stay; however, new technologies bring new challenges, not only technical but also from an occupational health and safety perspective. Herein, leading Swedish companies using metal additive manufacturing were studied with the aim of investigating occupational exposure and the utility of chosen exposure- and clinical markers as predictors of potential exposure-related health risks. Methods Exposure levels were investigated by analysis of airborne dust and metals, alongside particle counting instruments measuring airborne particles in the range of 10 nm-10 μm to identify dusty work tasks. Health examinations were performed on a total of 48 additive manufacturing workers and 39 controls. All participants completed a questionnaire, underwent spirometry, and blood and urine sampling. A subset underwent further lung function tests. Results Exposure to inhalable dust and metals were low, but particle counting instruments identified specific work tasks with high particle emissions. Examined health parameters were well within reference values on a group level. However, statistical analysis implied an impact on workers kidney function and possible airway inflammation. Conclusion The methodology was successful for investigating exposure-related health risks in additive manufacturing. However, most participants have been working <5 years. Therefore, long-term studies are needed before we can conclusively accept or reject the observed effects on health.
Collapse
Affiliation(s)
- Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ann-Charlotte Almstrand
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Spela Kokelj
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan A. Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Pernetti R, Maffia S, Previtali B, Oddone E. Assessment of nanoparticle emission in additive manufacturing: Comparing wire and powder laser metal deposition processes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:329-335. [PMID: 37115506 DOI: 10.1080/15459624.2023.2208649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM), often referred to as 3D printing, is an emerging technology with a wide range of industrial applications and process typologies. Although the release of metal nanoparticles as by-products could occur, occupational exposure limits and cogent safety standards are not currently available due to the novelty of the technology. To support the definition of benchmarks, this study aims to provide a preliminary comparison between the nanoparticle release patterns of laser metal deposition, adopting different feedstocks, namely, metal wire and metal powder. The monitored device is a university research setup, and the work presents the results of two different processes with AISI 316 L as a feedstock in powder and wired form, respectively. The monitoring confirmed the outcomes of previous studies, with a high release of nanoparticles from the powder head on the device (average 138,713 n/cm3 during printing, with maximum values exceeding 106 n/cm3). Moreover, the results show a significant concentration of nanoparticles with a wire head during the printing phase (average release of 628,156 n/cm3 with a maximum of 1,114,987 n/cm3) and pauses (average of 32,633 n/cm3 and a maximum of 733,779 n/cm3). The monitored values during pauses are particularly relevant since no personal protection equipment was used in the wire processes and the operators could access the printing room during pauses for device interventions, thus being exposed to significant nanoparticle concentrations. This study presents a preliminary evaluation of the potential exposure during laser metal deposition while implementing different technologies and provides evidence for defining effective operational safety procedures for the operators.
Collapse
Affiliation(s)
- Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Simone Maffia
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Previtali
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Unità Operativa Ospedaliera di Medicina del Lavoro (UOOML), ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Galey L, Audignon S, Brochard P, Debia M, Lacourt A, Lambert P, Le Bihan O, Martinon L, Bau S, Witschger O, Garrigou A. Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations. Saf Health Work 2023; 14:163-173. [PMID: 37389309 PMCID: PMC10300466 DOI: 10.1016/j.shaw.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, "measurement strategy" (instruments, physicochemical analysis, and data processing), "contextual information" presented, and "work activity" analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for "contextual information" and "work activity". Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.
Collapse
Affiliation(s)
- Louis Galey
- University Paris Nanterre, Department of Psychology, LAPPS, Team TE2O, Nanterre, France
| | - Sabyne Audignon
- Univ. Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux, France
| | - Patrick Brochard
- Univ. Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux, France
- University Hospital of Bordeaux, Department of Environmental and Occupational Medicine, Bordeaux, France
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Centre de Recherche en Santé Publique (CReSP), Montreal, Québec, Canada
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux, France
| | | | | | - Laurent Martinon
- Service Parisien de Santé Environnementale, Laboratoire Amiante, Fibres et Particules, Ville de Paris, Paris, France
| | - Sébastien Bau
- INRS, Laboratoire de Métrologie des Aérosols, Vandoeuvre Lès Nancy, France
| | - Olivier Witschger
- INRS, Laboratoire de Métrologie des Aérosols, Vandoeuvre Lès Nancy, France
| | - Alain Garrigou
- Univ. Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux, France
| |
Collapse
|
5
|
Jung S, Kara LB, Nie Z, Simpson TW, Whitefoot KS. Is Additive Manufacturing an Environmentally and Economically Preferred Alternative for Mass Production? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6373-6386. [PMID: 37066969 PMCID: PMC10134501 DOI: 10.1021/acs.est.2c04927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The manufacturing sector accounts for a large percentage of global energy use and greenhouse gas emissions, and there is growing interest in the potential of additive manufacturing (AM) to reduce the sector's environmental impacts. Across multiple industries, AM has been used to reduce material use in final parts by 35-80%, and recent publications have predicted that AM will enable the fabrication of customized products locally and on-demand, reducing shipping and material waste. In many contexts, however, AM is not a viable alternative to traditional manufacturing methods due to its high production costs. And in high-volume mass production, AM can lead to increased energy use and material waste, worsening environmental impacts compared to traditional production methods. Whether AM is an environmentally and economically preferred alternative to traditional manufacturing depends on several hidden aspects of AM that are not readily apparent when comparing final products, including energy-intensive and expensive material feedstocks, excessive material waste during production, high machine costs, and slow rates of production. We systematically review comparative studies of the environmental impacts and costs of AM in contrast with traditional manufacturing methods and identify the conditions under which AM is the environmentally and economically preferred alternative. We find that AM has lower production costs and environmental impacts when production volumes are relatively low (below ∼1,000 per year for environmental impacts and below 42-87,000 per year for costs, depending on the AM process and part geometry) or the parts are small and would have high material waste if traditionally manufactured. In cases when the geometric freedom of AM enables performance improvements that reduce environmental impacts and costs during a product's use phase, these can counteract the higher production impacts of AM, making it the preferred alternative at larger production volumes. AM's ability to be environmentally and economically beneficial for mass manufacturing in a wider variety of contexts is dependent on reducing the cost and energy intensity of material feedstock production, eliminating the need for support structures, raising production speeds, and reducing per unit machine costs. These challenges are not primarily caused by economies of scale, and therefore, they are not likely to be addressed by the increasing expansion of the AM sector. Instead, they will require fundamental advances in material science, AM production technologies, and computer-aided design software.
Collapse
Affiliation(s)
- Sangjin Jung
- Mechanical,
Aerospace, and Materials Engineering, Southern
Illinois University, Carbondale, Illinois 62901, United States
| | - Levent Burak Kara
- Mechanical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhenguo Nie
- Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Timothy W. Simpson
- Mechanical
Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kate S. Whitefoot
- Mechanical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Engineering
and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Pernetti R, Galbusera F, Cattenone A, Bergamaschi E, Previtali B, Oddone E. Characterizing Nanoparticle Release Patterns of Laser Powder Bed Fusion in Metal Additive Manufacturing: First Step Towards Mitigation Measures. Ann Work Expo Health 2023; 67:252-265. [PMID: 36416452 DOI: 10.1093/annweh/wxac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Laser Powder Bed Fusion (L-PBF) is a well-known Additive Manufacturing (AM) technology with a wide range of industrial applications. Potential occupational exposures to metal nanoparticles (NP) as by-products could occur in these processes, and no cogent occupational exposure limits are available. To contribute to this assessment, a monitoring campaign to measure the NP release pattern in two metal L-PBF facilities was carried out in two academic laboratories adopting L-PBF technology for research purposes. The monitored processes deal with two devices and three feedstock types, namely stainless steel (AISI 316L), aluminium-silicon alloy (A357) and pure copper, which are associated with different levels of industrial maturity. Prolonged environmental and personal real-time monitoring of NP concentration and size were performed, temperature and relative humidity were also measured during environmental monitoring. The measurements reveal a controlled NP release of the monitored processes, resulting in an average reduced exposure of the operators during the whole working shift, in compliance with proposed limit values (20 000 n cm-3 for density >6000 kg m-3 or 40 000 n cm-3 for density <6000 kg m-3). Nonetheless, the monitoring results show release events with an increase in NP concentration and a decrease in NP size corresponding with several actions usually performed during warm-up and cleaning, leading to exposures over 40-50 000 n cm-3 during a considerable time interval, especially during the manufacturing of pure copper powder. The results show that the actions of the operators, boundary conditions (relative humidity) and set-up of the L-PBF device have an impact on the amount of NP released and their size. Several release events (significant increase in NP concentration and decrease in NP size) are identified and associated with specific job tasks of the workers as well as building conditions. These results contribute to the definition of NP release benchmarks in AM processes and provide information to improve the operational conditions of L-PBF processes as well as safety guidelines for operators.
Collapse
Affiliation(s)
- Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Francesco Galbusera
- Department of Mechanical Engineering - Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Alberto Cattenone
- Department of Electrical, Computer and Biomedical Engineering - University of Pavia, via Ferrata 5, 27100, Pavia, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Barbara Previtali
- Department of Mechanical Engineering - Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, via Forlanini 2, 27100, Pavia, Italy.,Hospital Occupational Unit of Occupational Medicine (UOOML) - ICS Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
7
|
Sousa M, Arezes P, Silva F. Occupational Exposure to Incidental Nanomaterials in Metal Additive Manufacturing: An Innovative Approach for Risk Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2519. [PMID: 36767885 PMCID: PMC9915279 DOI: 10.3390/ijerph20032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The benefits of metal 3D printing seem unquestionable. However, this additive manufacturing technology brings concerns to occupational safety and health professionals, since recent studies show the existence of airborne nanomaterials in these workplaces. This article explores different approaches to manage the risk of exposure to these incidental nanomaterials, on a case study conducted in a Portuguese organization using Selective Laser Melting (SLM) technology. A monitoring campaign was performed using a condensation particle counter, a canning mobility particle sizer and air sampling for later scanning electron microscopy and energy dispersive X-ray analysis, proving the emission of nano-scale particles and providing insights on number particle concentration, size, shape and chemical composition of airborne matter. Additionally, Control Banding Nanotool v2.0 and Stoffenmanager Nano v1.0 were applied in this case study as qualitative tools, although designed for engineered nanomaterials. This article highlights the limitations of using these quantitative and qualitative approaches when studying metal 3D Printing workstations. As a result, this article proposes the IN Nanotool, a risk management method for incidental nanomaterials designed to overcome the limitations of other existing approaches and to allow non-experts to manage this risk and act preventively to guarantee the safety and health conditions of exposed workers.
Collapse
Affiliation(s)
- Marta Sousa
- ALGORITMI Research Center/LASI, University of Minho, 4800-058 Guimarães, Portugal
- CATIM—Technological Center for the Metal Working Industry, 4100-414 Porto, Portugal
| | - Pedro Arezes
- ALGORITMI Research Center/LASI, University of Minho, 4800-058 Guimarães, Portugal
| | - Francisco Silva
- ALGORITMI Research Center/LASI, University of Minho, 4800-058 Guimarães, Portugal
- CTCV—Technological Center for Ceramic and Glass, 3040-540 Coimbra, Portugal
| |
Collapse
|
8
|
Sirinara P, Patarapongsant Y, Nilyai S, Sooklert K, Dissayabutra T, Rojanathanes R, Sereemaspun A. "Assessing exposure of printing factory workers in thailand to selected heavy metals using urine and hair as non-invasive matrices". BMC Public Health 2023; 23:31. [PMID: 36604667 PMCID: PMC9817298 DOI: 10.1186/s12889-022-14807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.
Collapse
Affiliation(s)
- Patthrarawalai Sirinara
- grid.411628.80000 0000 9758 8584Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yupin Patarapongsant
- grid.7922.e0000 0001 0244 7875Behavioral Research and Informatics in Social Sciences Research Unit (RU-BRI), SASIN School of Management, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Nilyai
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanidta Sooklert
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thasinas Dissayabutra
- grid.7922.e0000 0001 0244 7875Department of Biochemistry Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Péter L, Osán J, Kugler S, Groma V, Pollastri S, Nagy A. Comprehensive Analysis of Two H13-Type Starting Materials Used for Laser Cladding and Aerosol Particles Formed in This Process. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7367. [PMID: 36295431 PMCID: PMC9607414 DOI: 10.3390/ma15207367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Laser cladding with H13 steel powders was performed and the related material transformations were studied for the particles emitted during this process. Fractions of various sizes of the aerosol particles formed during the laser cladding were collected on a cascade impactor, while the electromobility and the aerodynamic size of the particles were measured using a scanning mobility particle spectrometer and an aerodynamic particle sizer, respectively. The aerosol particles deposited onto the impactor plates were analyzed using scanning electron microscopy−energy-dispersive X-ray spectroscopy, as well as total-reflection X-ray fluorescence and X-ray absorption near-edge structure spectroscopy. Both the concentration and mean oxidation state of the major components were correlated with the aerosol particle size. The ultrafine aerosol particles (with a diameter less than about 100 nm) were predominantly oxidized and formed as the result of an evaporation−oxidation−condensation process sequence. The larger particles (>200 nm in geometric diameter) were primarily the residues of the original metal powder and exhibited a composition change as compared to the as-received metal powder. Correlations between the changes in the concentration ratio of the components were detected and explained.
Collapse
Affiliation(s)
- László Péter
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - János Osán
- Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - Szilvia Kugler
- Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - Veronika Groma
- Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | | | - Attila Nagy
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
10
|
Eriksen Hammer S, Halvorsen JØ, Graff P, Ervik TK. Characterisation of Particles Emitted during Laser Cutting of Various Metal Sheets and an Exposure Assessment for the Laser Operators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9888. [PMID: 36011523 PMCID: PMC9408184 DOI: 10.3390/ijerph19169888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Laser cutting is used in many industrial settings to achieve precise cuts of metal sheets. Laser operators may be exposed to particles formed during cutting when opening the cabinet or when metal sheets are exchanged. To characterise the potential exposure, particles formed during laser cutting were studied with scanning electron microscopy equipped with an energy dispersive X-ray detector and an energy backscatter diffraction detector. The total concentration of particles (11-615 nm) was determined online with a scanning mobility particle sizer. The chemical composition of the particles formed during the cutting of the different metal sheets was determined by inductively coupled plasma mass spectrometry (ICP-MS). X-ray diffraction was applied to determine the phase composition. The occupational exposure was assessed gravimetrically and by ICP-MS for five laser operators handling different laser cutters, and materials and were found to be low. Agglomerates and aggregates of condensation particles were formed during laser cutting, independent of the sheet type. Iron, present as both magnetite and α-Fe, was the main element found in the particles formed when cutting steel sheets. The size of the particles generated was mainly below 300 nm. Open laser cutters may lead to higher metal exposures, which is especially relevant when cutting metal sheets containing heavy metals.
Collapse
|
11
|
Oddone E, Pernetti R, Fiorentino ML, Grignani E, Tamborini D, Alaimo G, Auricchio F, Previtali B, Imbriani M. Particle measurements of metal additive manufacturing to assess working occupational exposures: a comparative analysis of selective laser melting, laser metal deposition and hybrid laser metal deposition. INDUSTRIAL HEALTH 2022; 60:371-386. [PMID: 34719600 PMCID: PMC9453568 DOI: 10.2486/indhealth.2021-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
This paper presents the results of a measurement campaign for assessing the release of particles and the potential exposure of workers in metal additive manufacturing. The monitoring deals with three environments, i.e., two academic laboratories and one production site, while printing different metallic alloys for chemical composition and size. The monitored devices implement different metal 3D printing processes, named Selective Laser Melting, Laser Metal Deposition and Hybrid Laser Metal Deposition, providing a wide overview of the current laser-based Additive Manufacturing technologies. Despite showing the generation of metal powders during the printing processes, the usual measurements based on gravimetric analysis did not highlight concentrations higher than the international exposure limits for the selected metals (i.e., chromium, cobalt, iron, nickel, and copper). Additional data, collected through a cascade impactor and particle counter coupled with the achievements from previous measurements reported in literature, indicate that during the printing operations, fine and ultrafine metal particles might be generated. Finally, the authors introduced a preliminary characterisation of the particles released during the different phases of the investigated AM processes (powder charging, printing, part cleaning and support removal), highlighting how the different operations may affect the particle size and concentration.
Collapse
Affiliation(s)
- Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
- Unità Operativa Ospedaliera di Medicina del Lavoro, ICS Maugeri, Italy
| | - Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | | | | | | | - Gianluca Alaimo
- DIII, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy
| | - Ferdinando Auricchio
- DICAR, Department of Civil Engineering and Architecture, University of Pavia, Italy
| | | | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
- Unità Operativa Ospedaliera di Medicina del Lavoro, ICS Maugeri, Italy
| |
Collapse
|
12
|
Wippich C, Koppisch D, Pitzke K, Breuer D. Estimating cobalt exposure in respirable dust from cobalt in inhalable dust. Int J Hyg Environ Health 2022; 242:113965. [DOI: 10.1016/j.ijheh.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
13
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
14
|
A Qualitative and Quantitative Occupational Exposure Risk Assessment to Hazardous Substances during Powder-Bed Fusion Processes in Metal-Additive Manufacturing. SAFETY 2022. [DOI: 10.3390/safety8020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-additive manufacturing (AM), particularly the powder-bed fusion (PBF) technique, is undergoing a transition from the short-run production of components to higher-volume manufacturing. The industry’s increased production efficiency is paired with a growing awareness of the risks related to the inhalation of very fine metal powders during PBF and AM processes, and there is a pressing need for a ready-to-use approach to assess the risks and the occupational exposure to these very final metal powders. This article presents a study conducted in an AM facility, which was conducted with the aim to propose a solution to monitor incidental airborne particle emissions during metal AM by setting up an analytical network for a tailored approach to risk assessment. Quantitative data about the respirable and inhalable particle and metal content were obtained by gravimetric and ICP-MS analyses. In addition, the concentrations of airborne particles (10–300 nm) were investigated using a direct reading instrument. A qualitative approach for risk assessment was fulfilled using control banding Nanotool v2.0. The results show that the operations in the AM facility are in line with exposure limit levels for both micron-sized and nano-sized particles. The particulate observed in the working area contains metals, such as chromium, cobalt, and nickel; thus, biological monitoring is recommended. To manage the risk level observed for all of the tasks during the AM process, containment and the supervision of an occupational safety expert are recommended to manage the risk. This study represents a useful tool that can be used to carry out a static evaluation of the risk and exposure to potentially harmful very fine metal powders in AM; however, due to the continuous innovations in this field, a dynamic approach could represent an interesting future perspective for occupational safety.
Collapse
|
15
|
Vallabani NVS, Alijagic A, Persson A, Odnevall I, Särndahl E, Karlsson HL. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology 2022; 467:153100. [PMID: 35032623 DOI: 10.1016/j.tox.2022.153100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromium-based superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10-100 μg/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.
Collapse
Affiliation(s)
| | - Andi Alijagic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, SE-100 44, Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
16
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|
17
|
Occupational Exposure to Ultrafine Particles in Metal Additive Manufacturing: A Qualitative and Quantitative Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189788. [PMID: 34574711 PMCID: PMC8465521 DOI: 10.3390/ijerph18189788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Ultrafine particles (UFPs) can be released unintentionally during metal additive manufacturing (AM). Experts agree on the urgent need to increase the knowledge of the emerging risk of exposure to nanoparticles, although different points of view have arisen on how to do so. This article presents a case study conducted on a metal AM facility, focused on studying the exposure to incidental metallic UFP. It intends to serve as a pilot study on the application of different methodologies to manage this occupational risk, using qualitative and quantitative approaches that have been used to study exposure to engineered nanoparticles. Quantitative data were collected using a condensation particle counter (CPC), showing the maximum particle number concentration in manual cleaning tasks. Additionally, scanning electron microscopy (SEM) and energy dispersive X-ray analyzer (EDS) measurements were performed, showing no significant change in the particles’ chemical composition, size, or surface (rugosity) after printing. A qualitative approach was fulfilled using Control Banding Nanotool 2.0, which revealed different risk bands depending on the tasks performed. This article culminates in a critical analysis regarding the application of these two approaches in order to manage the occupational risk of exposure to incidental nanoparticles, raising the potential of combining both.
Collapse
|
18
|
Assenhöj M, Ward LJ, Ghafouri B, Graff P, Ljunggren SA. Metal exposure from additive manufacturing and its effect on the nasal lavage fluid proteome - a pilot study. PLoS One 2021; 16:e0256746. [PMID: 34464420 PMCID: PMC8407577 DOI: 10.1371/journal.pone.0256746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/15/2021] [Indexed: 12/01/2022] Open
Abstract
The use of metal additive manufacturing (AM) is steadily increasing and is an emerging concern regarding occupational exposure. In this study, non-invasive sampled nasal lavage fluid (NLF) from the upper airways was collected from metal AM operators at the beginning and end of a workweek during two consecutive years with preventive interventions in the occupational setting in-between (n = 5 year 1, n = 9 year 2). During year one, NLF was also collected from welders (n = 6) from the same company to get a comparison with a traditional manufacturing technique with known exposure and health risks. The samples were investigated using untargeted proteomics, as well as using multi-immunoassay to analyze a panel of 71 inflammatory protein markers. NLF in AM operators from year 1 showed decreased levels of Immunoglobulin J and WAP four-disulfide core domain protein 2 and increased levels of Golgi membrane protein 1, Uteroglobin and Protein S100-A6 at the end of the workweek. At year two, after preventive interventions, there were no significant differences at the end of the workweek. In welders, Annexin A1 and Protein S100-A6 were increased at the end of the workweek. The analysis of 71 inflammatory biomarkers showed no significant differences between the beginning and the end of workweek year 1 in AM operators. We identified several proteins of interest in the AM operators that could serve as possible markers for exposure in future studies with a larger cohort for validation.
Collapse
Affiliation(s)
- Maria Assenhöj
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| | - Liam J. Ward
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Bijar Ghafouri
- Department of Health, Medicine and Caring Sciences, Pain and Rehabilitation Center, Linköping University, Linköping, Sweden
| | - Pål Graff
- National Institute of Occupational Health, Oslo, Norway
| | - Stefan A. Ljunggren
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
19
|
Mohammadian Y, Nasirzadeh N. Toxicity risks of occupational exposure in 3D printing and bioprinting industries: A systematic review. Toxicol Ind Health 2021; 37:573-584. [PMID: 34399648 DOI: 10.1177/07482337211031691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3-Dimensional (3D) printing and bioprinting are the new technologies. In 3D printing, synthetic polymers such as acrylonitrile, butadiene, and styrene, polylactic acid, nylon, and some metals are used as feedstocks. During 3D printing, volatile organic compounds (VOCs) and nanoparticles can be released. In the bioprinting process, natural polymers are most commonly used. All of these materials have direct and indirect toxic effects in exposed people. Therefore, the aim of this study was to provide a comprehensive review of toxicity risks due to occupational exposure to pollutants in the 3D printing and bioprinting industries. The Cochrane review method was used as a guideline for systematic review. Articles were searched in the databases including PubMed, Scopus, Web of Science, and Google Scholar. This systematic review showed that VOCs and ultra-fine particles are often released in fused deposition modeling and selective laser sintering, respectively. Asthma, chronic obstructive pulmonary disease, allergic rhinitis, and DNA damage were observed in occupational exposure to synthetic polymers. Metal nanoparticles can induce adverse health effects on the respiratory and nervous systems. This study emphasized the need to further study the toxicity of 3D printing and bioprinting-induced air pollutants. Also, consideration of safety and health principles is necessary in 3D printing and bioprinting workplaces.
Collapse
Affiliation(s)
- Yousef Mohammadian
- Department of Occupational Health Engineering, 48432Faculty of Health, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
Leso V, Ercolano ML, Mazzotta I, Romano M, Cannavacciuolo F, Iavicoli I. Three-Dimensional (3D) Printing: Implications for Risk Assessment and Management in Occupational Settings. Ann Work Expo Health 2021; 65:617-634. [PMID: 33616163 DOI: 10.1093/annweh/wxaa146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/29/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023] Open
Abstract
The widespread application of additive manufacturing (AM) technologies, commonly known as three-dimensional (3D) printing, in industrial and home-business sectors, and the expected increase in the number of workers and consumers that use these devices, have raised concerns regarding the possible health implications of 3D printing emissions. To inform the risk assessment and management processes, this review evaluates available data concerning exposure assessment in AM workplaces and possible effects of 3D printing emissions on humans identified through in vivo and in vitro models in order to inform risk assessment and management processes. Peer-reviewed literature was identified in Pubmed, Scopus, and ISI Web of Science databases. The literature demonstrated that a significant fraction of the particles released during 3D printing could be in the ultrafine size range. Depending upon the additive material composition, increased levels of metals and volatile organic compounds could be detected during AM operations, compared with background levels. AM phases, specific job tasks performed, and preventive measures adopted may all affect exposure levels. Regarding possible health effects, printer emissions were preliminary reported to affect the respiratory system of involved workers. The limited number of workplace studies, together with the great variety of AM techniques and additive materials employed, limit generalizability of exposure features. Therefore, greater scientific efforts should be focused at understanding sources, magnitudes, and possible health effects of exposures to develop suitable processes for occupational risk assessment and management of AM technologies.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Luigia Ercolano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Ines Mazzotta
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Marco Romano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Cannavacciuolo
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Stefaniak A, Du Preez S, Du Plessis JL. Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:1-50. [PMID: 34139957 PMCID: PMC8678392 DOI: 10.1080/10937404.2021.1936319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
Collapse
Affiliation(s)
- A.B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - S Du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| | - JL Du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| |
Collapse
|
22
|
Ljunggren SA, Ward LJ, Graff P, Persson A, Lind ML, Karlsson H. Metal additive manufacturing and possible clinical markers for the monitoring of exposure-related health effects. PLoS One 2021; 16:e0248601. [PMID: 33735215 PMCID: PMC7971853 DOI: 10.1371/journal.pone.0248601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Additive manufacturing (AM) includes a series of techniques used to create products, in several different materials, such as metal, polymer or ceramics, with digital models. The main advantage of AM is that it allows the creation of complex structures, but AM promises several additional advantages including the possibility to manufacture on demand or replacing smaller worn parts by directly building on an existing piece. Therefore, the interest for and establishment of AM is rapidly expanding, which is positive, however it is important to be aware that new techniques may also result in new challenges regarding health and safety issues. Metals in blood and possible clinical effects due to metal exposure were investigated in AM operators at one of the first serial producing AM facilities in the world during two consecutive years with implementation of preventive measures in-between. As comparison, welders and office workers as control group were investigated. Health investigations comprised of surveys, lung function tests, antioxidant activity and vascular inflammation as well as renal- and hepatic function analysis. AM operators had significantly reduced nickel levels in blood (10.8 vs 6.2 nmol/L) as well as improved lung function (80 vs 92% of predicted) from year 1 to year 2. This is in line with previously published results displaying reduced exposure. Blood cobalt and nickel levels correlated with previously reported urinary levels, while blood chromium did not. Multivariate modelling showed that blood cobalt, antioxidant/inflammatory marker serum amyloid A1/serum paraoxonase/arylesterase 1 activity and the hepatic markers aspartate transaminase, alanine transaminase, and alkaline phosphatase were higher in AM operators compared to controls. The study show that the selected clinical analyses could function as a complement to metal analyses in biological fluids when investigating exposure-related health effects in AM operators. However, validation in larger cohorts is necessary before more definite conclusions could be drawn.
Collapse
Affiliation(s)
- Stefan A. Ljunggren
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
- * E-mail:
| | - Liam J. Ward
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pål Graff
- National Institute of Occupational Health, Oslo, Norway
| | | | | | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Characterization of ultrafine particles emitted during laser-based additive manufacturing of metal parts. Sci Rep 2020; 10:20989. [PMID: 33268812 PMCID: PMC7710759 DOI: 10.1038/s41598-020-78073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Particulate matter (PM) emitted during laser additive manufacturing with stainless steel powder materials has been studied in detail. Three different additive manufacturing techniques were studied: selective laser melting, direct metal deposition and laser cladding. Gas flow and temperature fields accompanying the processes were numerically modeled for understanding particle growth and oxidation. Transmission and scanning electron microscopy were used for primary particle and PM characterization. The PM collected in the atmosphere during manufacturing consisted of complex aggregates/agglomerates with fractal-like geometries. The overwhelming number of particles formed in the three processes had equivalent projected area diameters within the 4-16 nm size range, with median sizes of 8.0, 9.4 and 11.2 nm. The primary particles were spherical in shape and consisted of oxides of the main steel alloying elements. Larger primary particles (> 30 nm) were not fully oxidized, but where characterized by a metallic core and an oxidic surface shell.
Collapse
|
24
|
Jensen ACØ, Harboe H, Brostrøm A, Jensen KA, Fonseca AS. Nanoparticle Exposure and Workplace Measurements During Processes Related to 3D Printing of a Metal Object. Front Public Health 2020; 8:608718. [PMID: 33324605 PMCID: PMC7723871 DOI: 10.3389/fpubh.2020.608718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metal 3D printing has many potential uses within prototyping and manufacturing. Selective laser melting (SLM) is a process that uses metal powders in the micrometer range as printing material. The particle release from the entire SLM printing process is not well-studied. While the 3D printing itself often occurs in a sealed chamber, activities related to the process can potentially release harmful metal particles to the indoor working environment through resuspension of the printing powder or via incident nanoparticles generated during printing. The objective of this study was to improve the understanding of particle exposure in work processes associated with 3D printing and potential needs for interventions by a case study conducted in a 3D printing facility. In this setting, direct release and dispersion of particles throughout the workspace from processes related to metal 3D printing was investigated. The release from five activities were studied in detail. The activities included post-printing cleaning, object annealing, and preparation of new base substrate for the next printing was. Three of the five measured activities caused particles number concentrations in the working environment to increase above background levels which were found to be 8·102 cm-3. Concentrations during chamber emptying and the open powder removal system (PRS) cleaning processes increased to 104 and 5·103 cm-3, respectively, whereas grinding activity increased number concentrations to 2.5·105 cm-3. Size distributions showed that particles were mainly smaller than 200 nm. Respirable mass concentrations were 50.4 μg m-3, collected on filters. This was corroborated by respirable mass measured with a DustTrak of 58.4 μg m-3. Respirable mass concentrations were below the occupational exposure limits in Denmark for an 8 h time-weighted average.
Collapse
Affiliation(s)
| | | | - Anders Brostrøm
- Technical University of Denmark, DTU Nanolab - National Centre for Nano Fabrication and Characterization, Kgs Lyngby, Denmark
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ana S Fonseca
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
25
|
Chen R, Yin H, Cole IS, Shen S, Zhou X, Wang Y, Tang S. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. CHEMOSPHERE 2020; 259:127452. [PMID: 32629313 DOI: 10.1016/j.chemosphere.2020.127452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 05/15/2023]
Abstract
Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, is a new technology offering design freedom to create complex structures that has found increasing applications in industrial processes. However, due to the fine metal powders and high temperatures involved, the printing process is likely to generate particulate matter (PM) that has a detrimental impact on the environment and human health. Therefore, comprehensive assessement of the exposure and health hazards of PM pollution related to this technique is urgently required. This review provides general knowledge of metal AM and its possible particle release. The health issues of metal PM are described considering the exposure routes, adverse human health outcomes and influencing factors. Methods of evaluating PM exposure and risk assessment techniques are also summarized. Lastly, future research needs are suggested. The information and knowledge presented in this review will contribute to the understanding, assessment, and control of possible risks in metal AM and benefit the wider metal 3D printing community, which includes machine operators, consumers, R&D scientists, and policymakers.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Hong Yin
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Ivan S Cole
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Shirley Shen
- CSIRO Manufacturing, Bayview Ave, Clayton, Vic 3168, Australia
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China.
| |
Collapse
|
26
|
Study of the Environmental Implications of Using Metal Powder in Additive Manufacturing and Its Handling. METALS 2020. [DOI: 10.3390/met10020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing, AM, is considered to be environmentally friendly when compared to conventional manufacturing processes. Most researchers focus on resource consumption when performing the corresponding Life Cycle Analysis, LCA, of AM. To that end, the sustainability of AM is compared to processes like milling. Nevertheless, factors such as resource use, pollution, and the effects of AM on human health and society should be also taken into account before determining its environmental impact. In addition, in powder-based AM, handling the powder becomes an issue to be addressed, considering both the operator´s health and the subsequent management of the powder used. In view of these requirements, the fundamentals of the different powder-based AM processes were studied and special attention paid to the health risks derived from the high concentrations of certain chemical compounds existing in the typically employed materials. A review of previous work related to the environmental impact of AM is presented, highlighting the gaps found and the areas where deeper research is required. Finally, the implications of the reuse of metallic powder and the procedures to be followed for the disposal of waste are studied.
Collapse
|