1
|
Khan MM, Rahman MM, Hasan MM, Amin MF, Matin MQI, Faruq G, Alkeridis LA, Gaber A, Hossain A. Assessment of the salt tolerance of diverse bread wheat ( Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon 2024; 10:e29042. [PMID: 38601562 PMCID: PMC11004879 DOI: 10.1016/j.heliyon.2024.e29042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Objectives Soil salinity affects the growth of crop plants, leading to reduced productivity, and is a major challenge for wheat production worldwide. Various adaptations and mitigation approaches in combination with tolerant wheat genotypes can be useful for the sustainability of crop production in saline environments. However, the development of salt-tolerant wheat genotypes is one of the best and most efficient solutions for obtaining desirable yields. Considering these issues, an investigation was carried out under hydroponic nutrient culture conditions to assess the genetic variability and selection of salt-tolerant wheat genotypes by categorizing inequitable morphophysiological and genetic variability as well as multivariate analysis. Methods To meet the objectives of this study, 100 wheat genotypes were tested hydroponically in 0 (control) and 15 dS m-1 salt solutions. Conclusion For all the wheat genotypes grown under saline conditions, the shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), total fresh weight (TFW), shoot dry weight (SDW), root dry weight (RDW), and total dry weight (TDW) decreased significantly. Furthermore, significant variation was observed among the genotypes in terms of their characteristics only under saline conditions. In the case of genetic diversity analysis, a high genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), genetic advance in the percentage of the mean (GAM) and high heritability (h2b) were recorded for all tested wheat genotypes based on the SDW, RDW and TDW. Correlation analysis for both genotypic and phenotypic relationships revealed strong positive correlations for TDW, SDW, TFW and SFW. Principal component analysis (PCA) revealed that TDW, TFW, SDW, and SFW were the most discriminative variables for the wheat genotypes, which was confirmed by discriminant function analysis (DFA). PCA-biplot analysis also revealed significant positive correlations between SDW and SFW and between TDW and TFW. Hierarchical cluster analysis was performed for ten clusters based on the relative performance of the genotypes, where the genotypes were characterized into salt-tolerant, medium-salt-tolerant, medium-salt-susceptible and salt-susceptible groups. Among the genotypes, G11, G25 and G29 under cluster VII were categorized as salt tolerant based on their outstanding performance in terms of characteristics only under saline conditions. D2 analysis proved that the wheat genotypes of this cluster were highly divergent from the other cluster genotypes; as a result, these genotypes might be utilized as parents in the development of salt-tolerant wheat genotypes. The current study concluded that SDW and TDW could be employed as criteria for selecting and defining salt-tolerant genotypes during the early growth stage of wheat.
Collapse
Affiliation(s)
- Md Mustafa Khan
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Md Mahbubur Rahman
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Md Mahamudul Hasan
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Mohammad Forhad Amin
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | | | - Golam Faruq
- Wheat Breeding Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed Gaber
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Biology, Faculty of Science, Taif University, B.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| |
Collapse
|
2
|
Zhang D, Hu Y, Li R, Tang L, Mo L, Pan Y, Mao B, Shao Y, Zhao B, Lei D. Research on Physiological Characteristics and Differential Gene Expression of Rice Hybrids and Their Parents under Salt Stress at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:744. [PMID: 38475590 DOI: 10.3390/plants13050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Soil salinization is one of the most important abiotic stresses which can seriously affect the growth and development of rice, leading to the decrease in or even loss of a rice harvest. Increasing the rice yield of saline soil is a key issue for agricultural production. The utilization of heterosis could significantly increase crop biomass and yield, which might be an effective way to meet the demand for rice cultivation in saline soil. In this study, to elucidate the regulatory mechanisms of rice hybrids and their parents that respond to salt stress, we investigated the phenotypic characteristics, physiological and biochemical indexes, and expression level of salt-related genes at the seedling stage. In this study, two sets of materials, encapsulating the most significant differences between the rice hybrids and their parents, were screened using the salt damage index and a hybrid superiority analysis. Compared with their parents, the rice hybrids Guang-Ba-You-Hua-Zhan (BB1) and Y-Liang-You-900 (GD1) exhibited much better salt tolerance, including an increased fresh weight and higher survival rate, a better scavenging ability towards reactive oxygen species (ROS), better ionic homeostasis with lower content of Na+ in their Na+/K+ ratio, and a higher expression of salt-stress-responsive genes. These results indicated that rice hybrids developed complex regulatory mechanisms involving multiple pathways and genes to adapt to salt stress and provided a physiological basis for the utilization of heterosis for improving the yield of rice under salt stress.
Collapse
Affiliation(s)
- Dan Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Salin-Alkali Tolerant Rice, Sanya 572000, China
- School of Tropical Agricultture and Forestry, Hainan University, Haikou 570228, China
| | - Ruopeng Li
- National Center of Technology Innovation for Salin-Alkali Tolerant Rice, Sanya 572000, China
- School of Tropical Agricultture and Forestry, Hainan University, Haikou 570228, China
| | - Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- School of Tropical Agricultture and Forestry, Hainan University, Haikou 570228, China
| | - Lin Mo
- National Center of Technology Innovation for Salin-Alkali Tolerant Rice, Sanya 572000, China
- School of Tropical Agricultture and Forestry, Hainan University, Haikou 570228, China
| | - Yinlin Pan
- National Center of Technology Innovation for Salin-Alkali Tolerant Rice, Sanya 572000, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- School of Tropical Agricultture and Forestry, Hainan University, Haikou 570228, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dongyang Lei
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Ali Z, Naeem M, Ahmed HGMD. Determination of Salinity Tolerance in Pigmented Rice Genotypes at Seedling Stage. JOURNAL OF CROP HEALTH 2024; 76:297-308. [DOI: 10.1007/s10343-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/11/2023] [Indexed: 11/07/2024]
|
4
|
Benaceur I, Meziani R, El Fadile J, Hoinkis J, Canas Kurz E, Hellriegel U, Jaiti F. Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars ( Phoenix dactylifera L.) from Southeast Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:186. [PMID: 38256740 PMCID: PMC10820799 DOI: 10.3390/plants13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Understanding the response of date palm (Phoenix dactylifera L.) cultivars to salt stress is essential for the sustainable management of phoeniculture in Tafilalet, Morocco. It offers a promising avenue for addressing the challenges presented by the increasing salinity of irrigation waters, especially because farmers in these regions often lack the necessary knowledge and resources to make informed decisions regarding cultivar selection. This study addresses this issue by investigating the performance of the most relied on cultivars by farmers in Tafilalet, namely Mejhoul, Boufeggous, Nejda, and Bouskri. These cultivars were exposed to a sodium chloride treatment of 154 mM, and their performances were evaluated over a three-month period. We examined the growth rate, photosynthesis-related parameters, pigments, water status in plants, and biochemical compounds associated with oxidative stress, osmotic stress, and ionic stress. Principle component analysis (PCA) effectively categorized the cultivars into two distinct groups: salt-sensitive (Mejhoul and Nejda) and salt-tolerant (Boufeggous and Bouskri). These findings provide valuable insights for farmers, highlighting the advantages of cultivating Boufeggous and Bouskri cultivars due to their superior adaptation to salt conditions. These cultivars exhibited moderate decrease in shoot growth (25%), enhanced catalase activity, a smaller increase in anthocyanin content, and greater enhancement in organic osmolytes compared with salt-sensitive cultivars like Mejhoul (experiencing an 87% reduction in shoot elongation) and Nejda (exhibiting the highest reduction in leaf area). Furthermore, the Na+/K+ ratio was positively influenced by salt stress, with Mejhoul and Nejda recording the highest values, suggesting its potential as an indicator of salt stress sensitivity in date palms.
Collapse
Affiliation(s)
- Ibtissame Benaceur
- Biodiversity, Environment and Plant Protection Team, Faculty of Sciences and Technology, My Ismail University, Errachidia 52000, Morocco
| | - Reda Meziani
- National Institute for Agronomic Research, CRRA, Meknes 50000, Morocco
| | - Jamal El Fadile
- National Institute for Agronomic Research, CRRA, Errachidia 10090, Morocco
| | - Jan Hoinkis
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Edgardo Canas Kurz
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Ulrich Hellriegel
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Fatima Jaiti
- Biodiversity, Environment and Plant Protection Team, Faculty of Sciences and Technology, My Ismail University, Errachidia 52000, Morocco
| |
Collapse
|
5
|
Deivanai S, Sng BJR, Van Vu K, Shibu TSM, Jang IC, Ramachandran S. EMS-induced mutagenesis in Choy sum (Brassica chinensis var. parachinensis) and selection for low light tolerance using abiotic stress indices. BMC PLANT BIOLOGY 2023; 23:581. [PMID: 37985970 PMCID: PMC10662144 DOI: 10.1186/s12870-023-04570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Choy Sum (Brassica rapa ssp. chinensis var. parachinensis), grown in a controlled environment, is vulnerable to changes in indoor light quality and displays distinct photo-morphogenesis responses. The scarcity of Choy Sum germplasm for indoor cultivation necessitates the development of new cultivars. Hence, this study attempted to develop mutants through chemical mutagenesis and select low-light-tolerant mutants by using abiotic stress tolerance indices. RESULTS A mutant population of Choy Sum created using 1.5% ethyl methane sulfonate (EMS) at 4 h was manually pollinated to obtain the M2 generation. 154 mutants with reduced hypocotyl length were initially isolated from 3600 M2 seedlings screened under low light (R: FR = 0.5). Five mutants that showed reduced plant height at mature stages were selected and screened directly for shade tolerance in the M3 generation. Principal component analysis based on phenotypic data distinguished the M3 mutants from the wild type. Abiotic stress tolerance indices such as relative stress index (RSI), stress tolerance index (STI), geometric mean productivity (GMP), yield stability index (YSI), and stress resistance index (SRI) showed significant (P < 0.05), and positive associations with leaf yield under shade. M3-12-2 was selected as a shade-tolerant mutant based on high values of STI, YSI, and SRI with low values for tolerance (TOL) and stress susceptibility index (SSI). CONCLUSIONS The results demonstrate that mutation breeding can be used to create dominant mutants in Choy Sum. Furthermore, we show that screening for low light and selection based on abiotic tolerance indices allowed the identification of mutants with high resilience under shade. This method should apply to developing new cultivars in other crop plants that can be suitable for controlled environments with stable yield performance.
Collapse
Affiliation(s)
- Subramanian Deivanai
- School of Applied Sciences, Republic Polytechnic, 9 Woodlands Ave 9, Singapore, 738964 , Singapore.
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Kien Van Vu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Thankaraj Salammal Maria Shibu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore.
| |
Collapse
|
6
|
Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. PLANTA 2023; 258:111. [PMID: 37919614 DOI: 10.1007/s00425-023-04258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
MAIN CONCLUSION Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.
Collapse
Affiliation(s)
- Nitasana Rajkumari
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Soni Chowrasia
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- Department of Bioscience and Biotechnology, Banastahli Vidyapith, Tonk, Rajasthan, 304022, India
| | - Jyoti Nishad
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
| | - Showkat Ahmad Ganie
- Plant Molecular Sciences and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India.
| |
Collapse
|
7
|
Singh L, Pruthi R, Chapagain S, Subudhi PK. Genome-Wide Association Study Identified Candidate Genes for Alkalinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112206. [PMID: 37299185 DOI: 10.3390/plants12112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Alkalinity stress is a major hindrance to enhancing rice production globally due to its damaging effect on plants' growth and development compared with salinity stress. However, understanding of the physiological and molecular mechanisms of alkalinity tolerance is limited. Therefore, a panel of indica and japonica rice genotypes was evaluated for alkalinity tolerance at the seedling stage in a genome-wide association study to identify tolerant genotypes and candidate genes. Principal component analysis revealed that traits such as alkalinity tolerance score, shoot dry weight, and shoot fresh weight had the highest contribution to variations in tolerance, while shoot Na+ concentration, shoot Na+:K+ ratio, and root-to-shoot ratio had moderate contributions. Phenotypic clustering and population structure analysis grouped the genotypes into five subgroups. Several salt-susceptible genotypes such as IR29, Cocodrie, and Cheniere placed in the highly tolerant cluster suggesting different underlying tolerance mechanisms for salinity and alkalinity tolerance. Twenty-nine significant SNPs associated with alkalinity tolerance were identified. In addition to three alkalinity tolerance QTLs, qSNK4, qSNC9, and qSKC10, which co-localized with the earlier reported QTLs, a novel QTL, qSNC7, was identified. Six candidate genes that were differentially expressed between tolerant and susceptible genotypes were selected: LOC_Os04g50090 (Helix-loop-helix DNA-binding protein), LOC_Os08g23440 (amino acid permease family protein), LOC_Os09g32972 (MYB protein), LOC_Os08g25480 (Cytochrome P450), LOC_Os08g25390 (Bifunctional homoserine dehydrogenase), and LOC_Os09g38340 (C2H2 zinc finger protein). The genomic and genetic resources such as tolerant genotypes and candidate genes would be valuable for investigating the alkalinity tolerance mechanisms and for marker-assisted pyramiding of the favorable alleles for improving alkalinity tolerance at the seedling stage in rice.
Collapse
Affiliation(s)
- Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Chen X, Gao Y, Zhang D, Gao Y, Song Y, Wang H, Ma B, Li J. Evaluation of salinity resistance and combining ability analysis in the seedlings of mulberry hybrids ( Morus alba L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:543-557. [PMID: 37187770 PMCID: PMC10172427 DOI: 10.1007/s12298-023-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Soil salinization has become one of the major abiotic stresses influencing food security and maintenance of sustainable eco-environment. Highly salt-tolerant germplasm in mulberry, an important perennial woody plant, could restore the ecology and increase the agricultural income. Studies on the salt tolerance of mulberry are limited. Therefore, the aim of this study was to estimate the genetic variation and develop a reliable and effective evaluation of salt tolerance in 14 F1 mulberry hybrids that were directionally constructed using nine genotypes, including two females and seven males. A salt stress test was performed using 0.3%, 0.6%, and 0.9% (w/v) NaCl to investigate four morphological indexes of the growth rate: the shoot height (SHR), leaf number (LNR), leaf area (LAR), and the total weight of the whole plant after defoliation (BI) in the seedlings of the 14 combinations. The most suitable concentration for evaluating salt tolerance was identified as 0.9% NaCl based on the changes in the salt tolerance coefficient (STC). Comprehensive evaluation (D) values were obtained using principal components and membership functions based on four morphological indexes and their STCs, grouped into three principal component indexes cumulatively contributing to approximately 88.90% of the total variance. Two highly salt-tolerant, three moderately salt-tolerant, five salt-sensitive, and four highly salt-sensitive genotypes were screened. Anshen × Xinghainei and Anshen × Xinghaiwai had the highest D values. The analyses of combining ability further showed that the variances for LNR, LAR, and BI were elevated significantly with the increasing NaCl concentrations. Anshen × Xinghainei from two superior parents (female: Anshen, male: Xinghainei) with relatively higher general combing abilities for SHR, LAR, and BI was the best hybrid combination under high salinity stress, and presented the best specific combining ability for BI. Of all the traits tested, LAR and BI were greatly affected by additive effects and might be the two most reliable indexes. These traits show higher correlation with the salt tolerance of mulberry germplasm at the seedling stage. These results may enrich the mulberry resources by breeding and screening for elite germplasms with high salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01304-w.
Collapse
Affiliation(s)
- Xiuling Chen
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Yujun Gao
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Donghao Zhang
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Yanxia Gao
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Yongxue Song
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Hui Wang
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Baojun Ma
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| | - Jisheng Li
- Applied Technology R & D Center for Special Sericulture of Hebei Province Universities, Institute of Sericulture, Chengde Medical University, Chengde, 067000 China
| |
Collapse
|
9
|
Antioxidant and molecular response of mutant and native rice (Oryza sativa L.) varieties grown under salt stress. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Abdalla H, Adarosy MH, Hegazy HS, Abdelhameed RE. Potential of green synthesized titanium dioxide nanoparticles for enhancing seedling emergence, vigor and tolerance indices and DPPH free radical scavenging in two varieties of soybean under salinity stress. BMC PLANT BIOLOGY 2022; 22:560. [PMID: 36460962 PMCID: PMC9716725 DOI: 10.1186/s12870-022-03945-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Considering titanium dioxide nanoparticles (TiO2 NPs) role in plant growth and especially in plant tolerance against abiotic stress, in the present work, TiO2 NPs were green synthesized using an aqueous solution of Aloe vera leaf extract as a capping agent and titanium tetrachloride as a precursor. These green synthesized TiO2 NPs were characterized using different techniques: UV spectrophotometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Results revealed that synthesized TiO2 NPs possess a tetragonal morphology with a size ranging from 10 to 25 nm. Additionally, the present work evaluated the effects of three concentrations of TiO2 NPs (0, 30 and 50 ppm) and six NaCl concentrations (0, 25, 50, 100, 150 and 200 mM) and their interactions with respect to germination parameters, vigor indices, oxidative stress and DPPH free radical scavenging of two varieties of soybean (Glycine max L. var. 22 and 35). RESULTS Results demonstrated that all germination traits and vigor indices were negatively affected under all salinity levels. Also, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were significantly increased by increasing the NaCl concentrations in two soybean varieties. Most interestingly, TiO2 NPs (30 ppm) mediated positive effects on germination parameters, reducing H2O2 and MDA contents by enhancing antioxidant (decreasing IC50) whereas 50 ppm showed an intermediate response under both control and saline soil conditions. CONCLUSION Our findings demonstrate the growth enhancement effects of TiO2 NPs application as well as its ameliorative potential in dealing with salinity.
Collapse
Affiliation(s)
- Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa H Adarosy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hegazy S Hegazy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
11
|
Sritongon N, Sarin P, Theerakulpisut P, Riddech N. The effect of salinity on soil chemical characteristics, enzyme activity and bacterial community composition in rice rhizospheres in Northeastern Thailand. Sci Rep 2022; 12:20360. [PMID: 36437295 PMCID: PMC9701763 DOI: 10.1038/s41598-022-24902-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
Saline soil is one of the major problems limiting rice productivity in the Northeastern area of Thailand. Thus, the aims of this study were to determine soil physicochemical analysis and soil enzyme activities, and bacterial communities in the rhizosphere of 'RD 6' rice grown in salt-affected rice fields. The Ban Thum sample showed the highest electrical conductivity (EC; greater than 6 dS m-1) and total Na, while the EC in other fields were at non- or slightly saline levels. The principal component analysis revealed that soil chemical characteristics and soil enzymes activities explained 73.4% of total variation. Soil enzyme activities including dehydrogenase and fluorescein diacetate (FDA) hydrolysis, and soil characteristics including organic matter (OM) and organic carbon (OC) were significantly negatively correlated to EC. This indicated that these soil properties were adversely impacted by salts. Interestingly, activities of all hydrolytic enzymes were not affected by soil salinity. Bacteria that were able to colonize the rhizosphere soils were Achromobacter cholinophagum, Rhizobium tarimense, and unculturable bacteria. In this regard, study on the relationship of soil chemical characteristics and soil enzyme activities together with bacterial communities provided promising data for assessing rice field soil quality in the future.
Collapse
Affiliation(s)
- Natthawat Sritongon
- grid.9786.00000 0004 0470 0856Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Pornrapee Sarin
- grid.9786.00000 0004 0470 0856Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Piyada Theerakulpisut
- grid.9786.00000 0004 0470 0856Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Salt-Tolerant Rice Research Group, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Nuntavun Riddech
- grid.9786.00000 0004 0470 0856Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Salt-Tolerant Rice Research Group, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
12
|
Ullah A, Shakeel A, Ahmed HGMD, Naeem M, Ali M, Shah AN, Wang L, Jaremko M, Abdelsalam NR, Ghareeb RY, Hasan ME. Genetic basis and principal component analysis in cotton ( Gossypium hirsutum L.) grown under water deficit condition. FRONTIERS IN PLANT SCIENCE 2022; 13:981369. [PMID: 36275586 PMCID: PMC9583382 DOI: 10.3389/fpls.2022.981369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cotton is considered as the main crop in the agricultural sector of Pakistan. Water deficiency in this region in recent years has reduced the chances of high yields of cotton. Selection and creation of high-yielding varieties of cotton, even in water deficit conditions, is one of urgent tasks of today. For this purpose, 40 diverse genotypes of upland cotton were screened in normal and water deficit conditions in triplicate arrangement under split plot in a randomized complete block design. All the genotypes showed significant difference under both water regimes. Ten upland cotton accessions were screened out as water deficit tolerant (VH-144, IUB-212, MNH-886, VH-295, IR-3701, AA-802, NIAB-111, NS-121, FH-113, and FH-142) and five as water deficit sensitive (IR-3, CIM-443, FH-1000, MNH-147, and S-12) based on seed cotton yield and stress susceptibility index. These tolerant and sensitive genotypes were crossed in line × tester mating design. For further evaluation of genetic material, the seed of 50 F1 crosses and their 15 parents were field planted under normal and water deficit conditions during next cotton growing season. Traits related to yield under the study showed significant variations among the accessions and their half sibs. The results of the principal component analysis (PCA) exhibited that total variation exhibited by factors 1 and factor 2 were 55.55 and 41.95%, respectively. PCA transformed the variables into three factors, and only two factors (F1 and F2) had eigenvalue > 1. The degree of dominance revealed that all parameters were highly influenced by non-additive gene action under both water regimes. Furthermore, the line VH-295 and tester CIM-443 had better yield performance under water deficit stress. The cross-combinations, viz., VH-144 × S-12, NIAB-111 × IR-3, and VH-295 × MNH-147, were the best for yield contributing traits. These combinations may be helpful for germplasm enhancement on large scale under water scarcity. All the studied traits have non-additive types of gene action suggesting the usage of these genotypes in cotton hybrid development program against water deficit tolerance.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ali
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Lichen Wang
- College of Life Science, Linyi University, Linyi, China
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
13
|
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. STRESSES 2022. [DOI: 10.3390/stresses2020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes.
Collapse
|
14
|
Seed priming improves salinity tolerance in Calotropis procera (Aiton) by increasing photosynthetic pigments, antioxidant activities, and phenolic acids. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00935-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Lu X, Min W, Shi Y, Tian L, Li P, Ma T, Zhang Y, Luo C. Exogenous Melatonin Alleviates Alkaline Stress by Removing Reactive Oxygen Species and Promoting Antioxidant Defence in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:849553. [PMID: 35356121 PMCID: PMC8959771 DOI: 10.3389/fpls.2022.849553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
Saline-alkali stress seriously restricts rice growth, development, and production in northern China. The damage of alkaline stress on rice is much greater than that of salt due to ion toxicity, osmotic stress, and especially high pH. As a signal molecule, melatonin (N-acetyl-5-methoxytryptamine, MT) mediates many physiological processes in rice and participates in protecting rice from abiotic stress. The potential mechanism of exogenous melatonin-mediated alkaline stress tolerance is still largely unknown. In this study, the effects of melatonin on the morphological change, physiological property, and corresponding genes expression in rice seedlings were analyzed under alkaline stress (20 mmol L-1, pH 9.55). The results showed that the expression levels of MT synthesis genes (TDC2, T5H, SNAT, ASMT1, and ASMT2) were induced by both exogenous MT and alkaline stress treatment. The cell membrane was protected by MT, and the MT furtherly play role in scavenging reactive oxygen species (ROS), reducing lipoxygenase (LOX) activity, and malondialdehyde (MDA) content. The scavenging of ROS by melatonin is attributed to the coupling of the improvement of redox homeostasis and the enhancement of antioxidant enzyme activity and antioxidant content by upregulating the transcriptional levels of antioxidase genes. In the meantime, MT pretreatment promoted the accumulation of free proline, sucrose, and fructose by regulating the OsP5CS, OsSUS7, and OsSPS1 gene expression level and increased chlorophyll content upregulating the expression of chlorophyll synthesis-related genes. Ultimately, the alleviating effect of exogenous melatonin on alkaline stress was reflected in increasing the leaf relative water content (RWC) and root-shoot ratio and reducing the leaf tip wilt index (TWI) through a series of physiological and biochemical changes. Melatonin pretreatment changed the expression level of MT synthesis genes which might contribute to MT synthesis in rice, consequently, activated the ROS scavenging system and alleviating the damage of alkaline stress on rice seedlings. Our study comprehensively understands the alleviating effect of exogenous melatonin on rice under alkaline stress.
Collapse
|
16
|
El-Katony TM, Abd El-Fatah SN. Genotypic Differences in Photosynthesis and Partitioning of Biomass and Ions in Salinized Faba Bean. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2021; 68:1161-1172. [DOI: 10.1134/s1021443721060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 09/02/2023]
|
17
|
Ali MP, Rahman MS, Nowrin F, Haque SS, Qin X, Haque MA, Uddin MM, Landis DA, Howlader MTH. Salinity Influences Plant-Pest-Predator Tritrophic Interactions. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1470-1479. [PMID: 34231849 DOI: 10.1093/jee/toab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 06/13/2023]
Abstract
Climate change-induced salinity intrusion into agricultural soils is known to negatively impact crop production and food security. However, the effects of salinity increase on plant-herbivore-natural enemy systems and repercussions for pest suppression services are largely unknown. Here, we examine the effects of increased salinity on communities of rice (Oryza sativa), brown planthopper (BPH), Nilaparvata lugens, and green mirid bug (GMB), Cyrtorhinus lividipennis, under greenhouse conditions. We found that elevated salinity significantly suppressed the growth of two rice cultivars. Meanwhile, BPH population size also generally decreased due to poor host plant quality induced by elevated salinity. The highest BPH density occurred at 2.0 dS/m salinity and declined thereafter with increasing salinity, irrespective of rice cultivar. The highest population density of GMB also occurred under control conditions and decreased significantly with increasing salinity. Higher salinity directly affected the rice crop by reducing plant quality measured with reference to biomass production and plant height, whereas inducing population developmental asynchrony between BPH and GMB observed at 2 dS/m salinity and potentially uncoupling prey-predator dynamics. Our results suggest that increased salinity has harmful effects on plants, herbivores, natural enemies, as well as plant-pest-predator interactions. The effects measured here suggest that the bottom-up effects of predatory insects on rice pests will likely decline in rice produced in coastal areas where salinity intrusion is common. Our findings indicate that elevated salinity influences tritrophic interactions in rice production landscapes, and further research should address resilient rice insect pest management combining multipests and predators in a changing environment.
Collapse
Affiliation(s)
- M P Ali
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - M S Rahman
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - Farzana Nowrin
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - S S Haque
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - Xinghu Qin
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - M A Haque
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - M M Uddin
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Douglas A Landis
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - M T H Howlader
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| |
Collapse
|
18
|
Yu R, Wang G, Yu X, Li L, Li C, Song Y, Xu Z, Zhang J, Guan C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:664-674. [PMID: 33884732 DOI: 10.1111/plb.13271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Salt is among the most harmful agents that negatively influences crop yield. Alfalfa is an important perennial forage crop that exhibits wide cultivar variations in salt tolerance. Developing salt-tolerant alfalfa plants is a promising way to utilize salinized land. A comprehensive method was developed to achieve reliable and effective evaluation of alfalfa salt resistance. This included principal components, membership functions and cluster and stepwise regression analyses. These were used to analyse the salt tolerance coefficients of 14 traits and to evaluate 20 diverse alfalfa cultivars at the seedling stage. The various morphological root parameters of six alfalfa cultivars with contrasting salt tolerance were also tested by a scanning apparatus. According to the comprehensive evaluation value (D value), one highly salt-tolerant, two salt-tolerant, four moderately salt-tolerant and 13 salt-sensitive alfalfa cultivars were screened. A mathematical equation for the evaluation of alfalfa salt tolerance was established: D' = -0.126 + 0.667SFW + 0.377SDW + 1.089K+ /Na+ + 0.172SFW/RFW (R2 = 0.988; average forecast accuracy of 96.95%), where four indices were closely related to the salt tolerance: shoot fresh weight, ratio of shoot fresh weight to root fresh weight, shoot dry weight and ratio of K+ to Na+ in the shoot. We also found that SSA correlated strongly with SFW, SDW, K+ /Na+ , D values, while SRV correlated obviously with SFW, SFW/RFW and D values after 150 mm NaCl treatment. In conclusion, the SFW, K+ /Na+ , SDW, SFW/RFW, SSA and SRV could be used as indicators of salt tolerance in alfalfa seedlings grown under 150 mm NaCl treatment.
Collapse
Affiliation(s)
- R Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - G Wang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - X Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - L Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - C Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Y Song
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Z Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Purple pasture Co., Ltd, Wuhe, Bengbu, Anhui, China
| | - J Zhang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - C Guan
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| |
Collapse
|
19
|
Leschevin M, Ismael M, Quero A, San Clemente H, Roulard R, Bassard S, Marcelo P, Pageau K, Jamet E, Rayon C. Physiological and Biochemical Traits of Two Major Arabidopsis Accessions, Col-0 and Ws, Under Salinity. FRONTIERS IN PLANT SCIENCE 2021; 12:639154. [PMID: 34234793 PMCID: PMC8256802 DOI: 10.3389/fpls.2021.639154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 06/01/2023]
Abstract
Salinity affects plant growth and development as shown with the glycophyte model plant, Arabidopsis thaliana (Arabidopsis). Two Arabidopsis accessions, Wassilewskija (Ws) and Columbia (Col-0), are widely used to generate mutants available from various Arabidopsis seed resources. However, these two ecotypes are known to be salt-sensitive with different degrees of tolerance. In our study, 3-week-old Col-0 and Ws plants were treated with and without 150 mM NaCl for 48, 72, or 96 h, and several physiological and biochemical traits were characterized on shoots to identify any specific traits in their tolerance to salinity. Before salt treatment was carried out, a different phenotype was observed between Col-0 and Ws, whose main inflorescence stem became elongated in contrast to Col-0, which only displayed rosette leaves. Our results showed that Col-0 and Ws were both affected by salt stress with limited growth associated with a reduction in nutrient uptake, a degradation of photosynthetic pigments, an increase in protein degradation, as well as showing changes in carbohydrate metabolism and cell wall composition. These traits were often more pronounced in Col-0 and occurred usually earlier than in Ws. Tandem Mass Tags quantitative proteomics data correlated well with the physiological and biochemical results. The Col-0 response to salt stress was specifically characterized by a greater accumulation of osmoprotectants such as anthocyanin, galactinol, and raffinose; a lower reactive oxygen detoxification capacity; and a transient reduction in galacturonic acid content. Pectin degradation was associated with an overaccumulation of the wall-associated kinase 1, WAK1, which plays a role in cell wall integrity (CWI) upon salt stress exposure. Under control conditions, Ws produced more antioxidant enzymes than Col-0. Fewer specific changes occurred in Ws in response to salt stress apart from a higher number of different fascilin-like arabinogalactan proteins and a greater abundance of expansin-like proteins, which could participate in CWI. Altogether, these data indicate that Col-0 and Ws trigger similar mechanisms to cope with salt stress, and specific changes are more likely related to the developmental stage than to their respective genetic background.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Anthony Quero
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Romain Roulard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Solène Bassard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
20
|
Yamuangmorn S, Prom-u-Thai C. The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health. Antioxidants (Basel) 2021; 10:833. [PMID: 34073767 PMCID: PMC8225073 DOI: 10.3390/antiox10060833] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Purple rice is recognized as a source of natural anthocyanin compounds among health-conscious consumers who employ rice as their staple food. Anthocyanin is one of the major antioxidant compounds that protect against the reactive oxygen species (ROS) that cause cellular damage in plants and animals, including humans. The physiological role of anthocyanin in plants is not fully understood, but the benefits to human health are apparent against both chronic and non-chronic diseases. This review focuses on anthocyanin synthesis and accumulation in the whole plant of purple rice, from cultivation to the processed end products. The anthocyanin content in purple rice varies due to many factors, including genotype, cultivation, and management as well as post-harvest processing. The cultivation method strongly influences anthocyanin content in rice plants; water conditions, light quantity and quality, and available nutrients in the soil are important factors, while the low stability of anthocyanins means that they can be dramatically degraded under high-temperature conditions. The application of purple rice anthocyanins has been developed in both functional food and other purposes. To maximize the benefits of purple rice to human health, understanding the factors influencing anthocyanin synthesis and accumulation during the entire process from cultivation to product development can be a path for success.
Collapse
Affiliation(s)
| | - Chanakan Prom-u-Thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Gupta A, Shaw BP. Augmenting salt tolerance in rice by regulating uptake and tissue specific accumulation of Na + - through Ca 2+ -induced alteration of biochemical events. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:122-130. [PMID: 33768704 DOI: 10.1111/plb.13258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/14/2021] [Indexed: 05/27/2023]
Abstract
The protective effect of Ca2+ against NaCl toxicity was investigated in two rice varieties with contrasting for salt tolerance to understand the mechanistic details of the antagonism to address adverse effects of salinity on agriculture. The study primarily examined the influence of Ca2+ on expression/activity of the effectors and regulators involved in Na+ translocation. Calcium reduced uptake of Na+ concomitant with higher tissue K+ /Na+ in seedlings, comparatively more in salt-tolerant Nona Bokra than in salt-sensitive IR-64, together with a significant increase in root PM H+ ATPase in the former, but not in the latter. Increased antagonism in Nona Bokra could be the result of Ca2+ signalling-mediated phosphorylation of PM H+ ATPase in roots caused by a significant Ca2+ -dependent increase in expression of OsCIPK24, which did not occur in IR-64. Furthermore, significant Ca2+ -mediated NaCl-induced increase in transcription of 14-3-3 protein in Nona Bokra, but not in IR-64, might also lead to a greater protective effect of Ca2+ in the former, as 14-3-3 protein is essential for activating PM H+ ATPase. Thus, efficient functioning of PM H+ ATPase could be key in determining resistance of plants to salinity, implying that identification of the Ca2+ -dependent kinase phosphorylating the PM H+ ATPase threonine residue and manipulation of its expression, together with expression of 14-3-3 proteins could be an important strategy to improve salt tolerance of crops and their cultivation in salt-affected lands.
Collapse
Affiliation(s)
- A Gupta
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - B P Shaw
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| |
Collapse
|
22
|
Quantitative Dissection of Salt Tolerance for Sustainable Wheat Production in Sodic Agro-Ecosystems through Farmers’ Participatory Approach: An Indian Experience. SUSTAINABILITY 2021. [DOI: 10.3390/su13063378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the comparative effects of field sodicity (soil pH) and irrigation water residual alkalinity (RSCiw) on physiological and biochemical attributes of salt tolerance, and crop performance of two wheat varieties (KRL 210, HD 2967), a total of 308 on-farm trials were carried out in sodicity affected Ghaghar Basin of Haryana, India. Salt tolerant variety KRL 210 maintained relatively higher leaf relative water content (RWC; 1.9%), photosynthetic rate (Pn; 5.1%), stomatal conductance (gS; 6.6%), and transpiration (E; 4.1%) with lower membrane injury (MII; −8.5%), and better control on accumulation of free proline (P; −18.4%), Na+/K+ in shoot (NaK_S; −23.1%) and root (NaK_R; −18.7%) portion compared to traditional HD 2967. Altered physiological response suppressed important yield-related traits revealing repressive effects of sodicity stress on wheat yields; albeit to a lesser extent in KRL 210 with each gradual increase in soil pH (0.77–1.10 t ha−1) and RSCiw (0.29–0.33 t ha−1). HD 2967 significantly outyielded KRL 210 only at soil pH ≤ 8.2 and RSCiw ≤ 2.5 me L−1. By comparisons, substantial improvements in salt tolerance potential of KRL 210 with increasing sodicity stress compensated in attaining significantly higher yields as and when soil pH becomes >8.7 and RSCiw > 4 me L−1. Designing such variety-oriented threshold limits of sodicity tolerance in wheat will help address the challenge to enhance crop resilience, closing the yield gaps and improve rural livelihood under the existing or predicted levels of salt stress.
Collapse
|
23
|
Zafar MM, Jia X, Shakeel A, Sarfraz Z, Manan A, Imran A, Mo H, Ali A, Youlu Y, Razzaq A, Iqbal MS, Ren M. Unraveling Heat Tolerance in Upland Cotton ( Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:727835. [PMID: 35095940 PMCID: PMC8792985 DOI: 10.3389/fpls.2021.727835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.
Collapse
Affiliation(s)
- Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xue Jia
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zareen Sarfraz
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Manan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Ali Imran
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Arfan Ali
- FB Genetics, Four Brothers Group, Lahore, Pakistan
| | - Yuan Youlu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq,
| | - Muhammad Shahid Iqbal
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
- Muhammad Shahid Iqbal,
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Maozhi Ren,
| |
Collapse
|
24
|
Sivakumar J, Prashanth JEP, Rajesh N, Reddy SM, Pinjari OB. Principal component analysis approach for comprehensive screening of salt stress-tolerant tomato germplasm at the seedling stage. J Biosci 2020. [DOI: 10.1007/s12038-020-00111-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Al exposure increases proline levels by different pathways in an Al-sensitive and an Al-tolerant rye genotype. Sci Rep 2020; 10:16401. [PMID: 33009431 PMCID: PMC7532535 DOI: 10.1038/s41598-020-73358-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al-tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes differing in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were different and were also different between roots and shoots. The Al-tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)-biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N-metabolism is less inhibited in the Al-tolerant line. The correlation between Pro changes and differences in Al-sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that differential responses in Pro biosynthesis may be linked to N-availability. Understanding the role of Pro in differences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance.
Collapse
|
26
|
Shen T, Zhang C, Liu F, Wang W, Lu Y, Chen R, He Y. High-Throughput Screening of Free Proline Content in Rice Leaf under Cadmium Stress Using Hyperspectral Imaging with Chemometrics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3229. [PMID: 32517150 PMCID: PMC7308835 DOI: 10.3390/s20113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Tracking of free proline (FP)-an indicative substance of heavy metal stress in rice leaf-is conducive to improve plant phenotype detection, which has important guiding significance for precise management of rice production. Hyperspectral imaging was used for high-throughput screening FP in rice leaves under cadmium (Cd) stress with five concentrations and four periods. The average spectral of rice leaves were used to show differences in optical properties. Partial least squares (PLS), least-squares support vector machine (LS-SVM) and extreme learning machine (ELM) models based on full spectra and effective wavelengths were established to detect FP content. Genetic algorithm (GA), competitive adaptive weighted sampling (CARS) and PLS weighting regression coefficient (Bw) were compared to screen the most effective wavelengths. Distribution map of the FP content in rice leaves were obtained to display the changes in the FP of leaves visually. The results illustrated that spectral differences increased with Cd stress time and FP content increased with Cd stress concentration. The best result for FP detection is the ELM model based on 27 wavelengths selected by CARS and Rp is 0.9426. Undoubtedly, hyperspectral imaging combined with chemometrics was a rapid, cost effective and non-destructive technique to excavate changes of FP in rice leaves under Cd stress.
Collapse
Affiliation(s)
- Tingting Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Chu Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou 510700, China
| | - Wei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Yi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
27
|
Stomatal and Photosynthetic Traits Are Associated with Investigating Sodium Chloride Tolerance of Brassica napus L. Cultivars. PLANTS 2020; 9:plants9010062. [PMID: 31906529 PMCID: PMC7020420 DOI: 10.3390/plants9010062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 11/16/2022]
Abstract
The negative effects of salt stress vary among different rapeseed cultivars. In this study, we investigated the sodium chloride tolerance among 10 rapeseed cultivars based on membership function values (MFV) and Euclidean cluster analyses by exposing seedlings to 0, 100, or 200 mM NaCl. The NaCl toxicity significantly reduced growth, biomass, endogenous K+ levels, relative water content and increased electrolyte leakage, soluble sugar levels, proline levels, and antioxidant enzyme activities. SPAD values were highly variable among rapeseed cultivars. We identified three divergent (tolerant, moderately tolerant, and sensitive) groups. We found that Hua6919 and Yunyoushuang2 were the most salt-tolerant cultivars and that Zhongshuang11 and Yangyou9 were the most salt-sensitive cultivars. The rapeseed cultivars were further subjected to photosynthetic gas exchange and anatomical trait analyses. Among the photosynthetic gas exchange and anatomical traits, the stomatal aperture was the most highly correlated with salinity tolerance in rapeseed cultivars and thus, is important for future studies that aim to improve salinity tolerance in rapeseed. Thus, we identified and characterized two salt-tolerant cultivars that will be useful for breeding programs that aim to develop salt-tolerant rapeseed.
Collapse
|
28
|
Xu L, Guo L, You H, Zhang O, Xiang X. Novel haplotype combinations reveal enhanced seedling vigor traits in rice that can accurately predict dry biomass accumulation in seedlings. BREEDING SCIENCE 2019; 69:651-657. [PMID: 31988629 PMCID: PMC6977453 DOI: 10.1270/jsbbs.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Seedling vigor is of vital importance for the initial plant establishment of direct-seeded rice. Here, 166 recombinant inbred lines were employed to assess eight seedling vigor traits over the first 25 days of germination. Significant correlations were found between most traits, and statistical analysis has revealed, for the first time, a linear relationship that uses seedling height and fresh weight to accurately predict the accumulation of dry biomass. Further, a subset of 20 lines, spanning the phenotypic range of the larger population, were genotyped by using 16 simple sequence repeats (SSR) markers known to be associated with seedling vigor traits. Markers RM317 and RM348 linked with significantly different phenotypes, including seedling height and fresh weight. One combination, haplotype II-1 (RM317 (I/II) and RM348 (1/2)), consistently produced superior values for seedling height, root length, and leaf length. The new prediction tool for seedling dry weight, namely the haplotype of RM317 and RM348, will have a wide range of applications in breeding strategies by using marker-assisted selection to produce elite lines that optimize genetic composition contributing to seedling vigor.
Collapse
Affiliation(s)
- Liang Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology,
59 Qinglong Road, Mianyang 621010,
China
| | - Leizhou Guo
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology,
59 Qinglong Road, Mianyang 621010,
China
| | - Hui You
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology,
59 Qinglong Road, Mianyang 621010,
China
| | - Ouling Zhang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology,
59 Qinglong Road, Mianyang 621010,
China
| | - Xunchao Xiang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology,
59 Qinglong Road, Mianyang 621010,
China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province,
Mianyang,
China
| |
Collapse
|
29
|
UV-B priming of Oryza sativa var. Kanchana seedlings augments its antioxidative potential and gene expression of stress-response proteins under various abiotic stresses. 3 Biotech 2019; 9:375. [PMID: 31588399 DOI: 10.1007/s13205-019-1903-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 01/12/2023] Open
Abstract
Priming is one of the mechanisms for the induction of the antioxidant defense system and various stress-responsive proteins which help plants to survive under various abiotic stresses. Based on the observation that the rice seedlings primed with UV-B (low dose of UV-B irradiation-6 kJm-2) induced the acclimation against NaCl, PEG and UV-B stresses, it was of interest to see the augmentation of antioxidative potential and stress-responsive proteins accumulation in rice seedlings due to UV-B priming under these stresses. Various stresses result in production of ROS, which cause membrane degradation resulting in the accumulation of malondialdehyde. These negative impacts were observed exceedingly in rice seedlings from non-primed PEG stress (NP+P) condition than UV-B and NaCl stresses. The production of non-enzymatic antioxidants, activity/mRNA-level expressions of enzymatic antioxidants and stress-responsive proteins were effectively augmented in UV-B-primed rice seedlings subjected to NaCl stress (P+N) condition followed by UV-B stress (P+U) and PEG stress (P+P). The activation of stress-responsive proteins (HSP and LEA) in rice due to the UV-B priming of rice seedlings is being reported for the first time. The results revealed that the UV-B seedling priming was alleviating the effect of NaCl, PEG, and UV-B stresses in rice seedlings. The positive impacts of UV-B seedling priming were more prominent in rice seedlings subjected to NaCl stress, indicating the cross tolerance imparted by UV-B priming.
Collapse
|
30
|
Quais MK, Ansari NA, Wang GY, Zhou WW, Zhu ZR. Host Plant Salinity Stress Affects the Development and Population Parameters of Nilaparvata lugens (Hemiptera: Delphacidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1149-1161. [PMID: 31283820 DOI: 10.1093/ee/nvz084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Salinization is one of the most critical abiotic stress factors for crops and a rising setback in agro-ecosystems. Changes in weather, land usage, and the salinization of irrigation water are increasing soil salinity of many farmlands. Increased soil salinity alters the plant quality, which subsequently may trigger bottom-up effects on herbivorous insect. We examined the bottom-up effect of salinity stress on population parameters of the brown planthopper (BPH), Nilaparvata lugens through rice (Oryza sativa L.) plant. The results revealed that salinity interfered with egg hatching of BPH. The nymphal development period, adult longevity, and oviposition were also influenced by salinity. Notable differences appeared in the intrinsic growth rate (r), the finite increase rate (λ) and the net reproduction rate (R0) of BPH, and a concentration-dependent effect was detected. Although salinity adversely affected BPH development, population projection predicted a successful growth of the BPH population in a relatively short time under the treatment of low and medium levels of salinity (6, 8, and 10 dS/m of NaCl), whereas higher salt concentrations (12 and 14 dS/m) lead to significant fitness costs in BPH populations. Our study predicts that BPH could become a problem in areas with lower and medium salinity and that those planthoppers may exacerbate the negative effects of salinity for rice production. This study will provide valuable information for understanding the field abundance and distribution of BPH on saline rice field, thus contributing to the development of eco-friendly strategies to manage this pest in saline ecosystems.
Collapse
Affiliation(s)
- Md Khairul Quais
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Naved Ahmad Ansari
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gui-Yao Wang
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L.) landraces. Gene 2019; 713:143976. [PMID: 31306715 DOI: 10.1016/j.gene.2019.143976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022]
Abstract
Naturally evolved saline tolerant rice landraces found along the coastline of India are a valuable genomic resource to explore the complex, polygenic nature of salinity tolerance. In the present study, a set of 28 genome wide SSR markers, 11 salt responsive genic SSR markers and 8 Saltol QTL linked SSR markers were used to estimate genetic relatedness and population structure within a collection of 47 rice landraces (including a tolerant and 2 sensitive checks) originating from geographically divergent coastal regions of India. All three marker types identified substantial genetic variation among the landraces, as evident from their higher PIC values (0.53 for genomic SSRs, 0.43 for Genic SSRs and 0.59 for Saltol SSRs). The markers RM431, RM484 (Genomic SSRs), OsCAX (D), OsCAX (T) (Genic SSRs) and RM562 (Saltol SSR) were identified as good candidates to be used in breeding programs for improving salinity tolerance in rice. STRUCTURE analysis divided the landraces into five distinct populations, with classification correlating with their geographical locations. Principal coordinate and hierarchical cluster analyses (UPGMA and neighbor joining) are in close agreement with STRUCTURE results. AMOVA analysis indicated a higher magnitude of genetic differentiation within individuals of groups (58%), than among groups (42%). We also report the development and validation of a new Cleavage Amplified Polymorphic Sequence (CAPS) marker (OsHKT1;5V395) that targets a codon in the sodium transporter gene OsHKT1;5 (Saltol/SKC1 locus) that is associated with sodium transport rates in the above rice landraces. The CAPS marker was found to be present in all landraces except in IR29, Kamini, Gheus, Matla 1 and Matla 2. Significant molecular genetic diversity established among the analyzed salt tolerant rice landraces will aid in future association mapping; the CAPS marker, OsHKT1;5V395 can be used to map rice landraces for the presence of the SNP (Single Nucleotide Polymorphism) associated with increased sodium transport rates and concomitant salinity tolerance in rice.
Collapse
|
32
|
Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC PLANT BIOLOGY 2019; 19:357. [PMID: 31419943 PMCID: PMC6697938 DOI: 10.1186/s12870-019-1963-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Survival of plants in response to salinity stress is typically related to Na+ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). RESULTS In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing Na+ content and improving K+/Na+ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol L- 1 NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. CONCLUSIONS We conclude that the constitutive overexpression of AtHKT1 reduces Na+ accumulation in potato leaves and promotes the K+/Na+ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.
Collapse
Affiliation(s)
- Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
| | - Dan Li
- Longdong University, Qingyang, 745000 Gansu China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jingjing Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070 China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2 Canada
| |
Collapse
|
33
|
Song Y, Yang X, Yang S, Wang J. Transcriptome sequencing and functional analysis of Sedum lineare Thunb. upon salt stress. Mol Genet Genomics 2019; 294:1441-1453. [DOI: 10.1007/s00438-019-01587-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
34
|
Pongprayoon W, Tisarum R, Theerawittaya C, Cha-um S. Evaluation and clustering on salt-tolerant ability in rice genotypes ( Oryza sativa L. subsp. indica) using multivariate physiological indices. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:473-483. [PMID: 30956429 PMCID: PMC6419860 DOI: 10.1007/s12298-018-00636-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 05/09/2023]
Abstract
Salinity is a major abiotic stress that affects plant growth and development, especially in rice crop as it is a salt susceptible crop. Therefore, a wide range of rice genetic resources are screened in the germplasm banks to identify salt tolerant cultivars. The objective of this investigation was to develop effective indices for the classification of salt tolerant rice genotypes among Pathumthani 1, Khao Dawk Mali 105 (KDML 105), RD31, RD41, Suphanburi 1, RD43, RD49 and Riceberry. Rice seedlings were hydroponically grown with 10 dS m-1 NaCl treatment or without NaCl treatment (to serve as control) (WP; 2 dS m-1). Standard evaluation system peaked at a score of 9 in Pathumthani 1 and KDML 105, after 21 days of salt treatment, leading to leaf chlorosis, leaf burns and plant death. Chlorophyll a, chlorophyll b and total carotenoids were maintained better in the salt-stressed leaves of rice cvs. Riceberry and RD43, as compared to other cultivars. Salt stress induced a remarkable increase in the free proline accumulation (by 8.38 folds) in cv. Riceberry. Overall growth performance in rice cv. Riceberry was retained, whereas it declined in other cultivars. After 21 days of NaCl treatment at a concentration of 10 dS m-1, eight rice cultivars were classified into 3 groups based on multivariate physio-morphological indices, Group I: salt-tolerant rice, including cv. Riceberry; Group II: moderately salt tolerant, consisting of RD31, RD41, Suphanburi 1, RD43 and RD49 cultivars; Group III: salt-sensitive cultivars, namely Pathumthani 1 and KDML 105.
Collapse
Affiliation(s)
- Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, 20131 Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 10120 Thailand
| | - Cattarin Theerawittaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 10120 Thailand
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 10120 Thailand
| |
Collapse
|
35
|
Forlani G, Bertazzini M, Cagnano G. Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:336-342. [PMID: 30253007 DOI: 10.1111/plb.12916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 05/23/2023]
Abstract
In most plant species, a rapid increase in free proline content occurs following exposure to hyperosmotic stress conditions. However, inconsistent results were reported concerning the role of such an increase on the plant response to water shortage or excess salt. Therefore, the possibility that proline accumulation may help the cell to withstand stress conditions, or that it simply represents a stress marker, is still a matter of debate. A possible relationship between proline accumulation and salt tolerance was investigated in a set of 17 Italian rice varieties. Rice seedlings were exposed to increasing salt concentrations during germination and early growth. The resulting levels of free proline were measured separately in shoots and roots and compared to those in untreated controls. Results were related to the corresponding ability of a given genotype to tolerate stress conditions. Neither absolute proline levels in untreated or in salt-stressed seedlings showed a straightforward relationship to the relative tolerance to salt, estimated as conductivity values able to reduce growth by 10 or 50%. Conversely, a highly significant correlation was found between the increase in proline levels in shoots and the ability to withstand stress. The results strengthen a recent hypothesis suggesting than an increase in proline metabolic rates, more than the resulting proline content, may help the cell to counteract the effects of abiotic stress conditions.
Collapse
Affiliation(s)
- G Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Bertazzini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Cagnano
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes (Basel) 2018; 9:E594. [PMID: 30501128 PMCID: PMC6316690 DOI: 10.3390/genes9120594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Khao Dawk Mali 105 (KDML105) rice is one of the most important crops of Thailand. It is a challenging task to identify the genes responding to salinity in KDML105 rice. The analysis of the gene co-expression network has been widely performed to prioritize significant genes, in order to select the key genes in a specific condition. In this work, we analyzed the two-state co-expression networks of KDML105 rice under salt-stress and normal grown conditions. The clustering coefficient was applied to both networks and exhibited significantly different structures between the salt-stress state network and the original (normal-grown) network. With higher clustering coefficients, the genes that responded to the salt stress formed a dense cluster. To prioritize and select the genes responding to the salinity, we investigated genes with small partners under normal conditions that were highly expressed and were co-working with many more partners under salt-stress conditions. The results showed that the genes responding to the abiotic stimulus and relating to the generation of the precursor metabolites and energy were the great candidates, as salt tolerant marker genes. In conclusion, in the case of the complexity of the environmental conditions, gaining more information in order to deal with the co-expression network provides better candidates for further analysis.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok 10800, Thailand.
| | - Chidchanok Chokrathok
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panita Chutimanukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supachitra Chadchawan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Singh V, Singh AP, Bhadoria J, Giri J, Singh J, T V V, Sharma PC. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. PROTOPLASMA 2018; 255:1667-1681. [PMID: 29740721 DOI: 10.1007/s00709-018-1257-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/01/2018] [Indexed: 05/14/2023]
Abstract
The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.
Collapse
Affiliation(s)
- Vijayata Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Ajit Pal Singh
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jyoti Bhadoria
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Vineeth T V
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - P C Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
38
|
Sahitya UL, Krishna MSR, Deepthi RS, Prasad GS, Kasim DP. Seed Antioxidants Interplay with Drought Stress Tolerance Indices in Chilli ( Capsicum annuum L) Seedlings. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1605096. [PMID: 29888251 PMCID: PMC5977015 DOI: 10.1155/2018/1605096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/14/2018] [Accepted: 04/01/2018] [Indexed: 12/29/2022]
Abstract
Altering climatic conditions and water stress drastically affects the chilli crop yield. In this scenario we adapted a strategic approach for screening of elite chilli genotypes, by exploring role of seed antioxidants in stress tolerance during vegetative phase. A total of 20 chilli genotypes' seed antioxidant potential and its effect on water stress tolerance were studied at three water regimes, namely, control (100% Field Capacity), moderate (80% Field Capacity), and severe (60% Field Capacity) stress conditions. Drought tolerance traits relative water content, chlorophyll content, and activities of superoxide dismutase and catalase enzymes were measured. A strong correlation was observed between seed antioxidants and water stress tolerant traits in seedlings. Genotypes KCa-5, KCa-6, and KCa-10 showed low quantity of H2O2 and Malondialdehyde in seeds and maintained high membrane integrity and chlorophyll content in seedlings. High content of proline in KCa-5, KCa-7, and KCa-10 seeds retained high relative water content at seedling stage under severe water stress. Present work reveals genotypic differences of hot pepper to different water regimes. Based on Principal Component Analysis (PCA) of seed antioxidant variables and drought tolerance indices twenty genotypes segregated into three clusters, namely, drought tolerant and susceptible and moderately tolerant.
Collapse
Affiliation(s)
- U. Lakshmi Sahitya
- Department of Biotechnology, K L (Deemed to be University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| | - M. S. R. Krishna
- Department of Biotechnology, K L (Deemed to be University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| | - R. Sri Deepthi
- Department of Biotechnology, K L (Deemed to be University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| | - G. Shiva Prasad
- Professor Jaya Shankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - D. Peda Kasim
- Department of Biotechnology, K L (Deemed to be University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| |
Collapse
|
39
|
Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Omisun T, Sahoo S, Saha B, Panda SK. Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. PROTOPLASMA 2018; 255:193-202. [PMID: 28718009 DOI: 10.1007/s00709-017-1142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/04/2017] [Indexed: 05/24/2023]
Abstract
Salinity is the second most prevalent abiotic stress faced by plants, and rice is not an exception. Through this study, it has been tried upon, to study the relative salinity tolerance of eight local varieties of North East India. Preliminary screening was based on their dose- and time-dependent physiological responses to salinity stress. Among the cultivars, Tampha was found to be relatively more tolerant, whereas MSE9 the most sensitive. To further ascertain their tolerance capacity, MDA and H2O2 content was determined, which also confirmed the tolerance level of the two cultivars. Histochemical assays for root plasma membrane integrity and leaf and root H2O2 and O2- content also showed more damage in Tampha in comparison to MSE9. Finally, gene expression analysis for Na+/K+ co-transporters, OsHKT2;1, OsHKT2;3 and OsHKT2;4, was performed to observe how the expression level of these transporters varies with the tolerance capacity of these two cultivars in leaves and roots under different time frames. The study reveals Tampha to be the most tolerant and MSE9 the most sensitive when compared to the other six screened cultivars for salinity stress.
Collapse
Affiliation(s)
- Takhellambam Omisun
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Smita Sahoo
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
41
|
Liu Y, Wang B, Li J, Song Z, Lu B, Chi M, Yang B, Qin D, Lam YW, Li J, Xu D. Salt Response Analysis in Two Rice Cultivars at Seedling Stage. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:215. [PMID: 31736527 PMCID: PMC6858053 DOI: 10.1007/s11738-017-2514-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 05/03/2023]
Abstract
In order to explore the salt-stress responses of two rice varieties, the physiological responses and biochemical responses were investigated using proteomics and classical biochemical methods. The results showed that the seedling growth was inhibited under salt condition in two rice varieties, the seedling growth in the tolerant variety was better than the sensitive variety. The sensitive variety(L7) appeared obvious salt-injury under 3-day salt stress, the tolerant variety (T07339) keep normal growth under 7-day salt stress except that the shoot length was decreased. Through the growth-parameters analysis, most of them in L7 were restrained by salinity and most in T07339 were unaffected. In T07339, the fresh root weight, the content of chlorophyll and the fresh shoot weight were even increased after 7 days of salt stress. A comparison of two-dimensional gel electrophoresis (2-DGE) protein profiles revealed 8 differently expressed proteins. Four proteins were expressed in different pattern between sensitive and tolerant varieties. These results provide novel insights into the investigations of the salt-response proteins that involved in improved salt tolerance.
Collapse
Affiliation(s)
- Yan Liu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Jian Li
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Zhaoqiang Song
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baiguan Lu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ming Chi
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Bo Yang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Derong Qin
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ying-Wai Lam
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dayong Xu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| |
Collapse
|
42
|
Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga EJB, de Magalhães Júnior AM, Maia MAC, da Silva Pinto L. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:865-875. [PMID: 29158635 PMCID: PMC5671449 DOI: 10.1007/s12298-017-0467-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/31/2017] [Indexed: 05/24/2023]
Abstract
The rice cultivar (Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3-CU/Zn, OsSOD2-Cu/Zn, OsSOD-Cu/Zn, OsSOD4-Cu/Zn, OsSODCc1-Cu/Zn, OsSOD-Fe, OsAPX1, OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6, which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.
Collapse
Affiliation(s)
- Tatiana Rossatto
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Marcelo Nogueira do Amaral
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Letícia Carvalho Benitez
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Isabel Lopes Vighi
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Eugenia Jacira Bolacel Braga
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | | | - Mara Andrade Colares Maia
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Bioinformática e Proteômica (BioPro_Lab), Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Bioinformática e Proteômica (BioPro_Lab), Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| |
Collapse
|
43
|
Shelke DB, Pandey M, Nikalje GC, Zaware BN, Suprasanna P, Nikam TD. Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:519-528. [PMID: 28772255 DOI: 10.1016/j.plaphy.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Salt stress affects all the stages of plant growth however seed germination and early seedling growth phases are more sensitive and can be used for screening of crop germplasm. In this study, we aimed to find the most effective indicators of salt tolerance for screening ten genotypes of soybean (SL-295, Gujosoya-2, PS-1042, PK-1029, ADT-1, RKS-18, KDS-344, MAUS-47, Bragg and PK-416). The principal component analysis (PCA) resulted in the formation of three different clusters, salt sensitive (SL-295, Gujosoya-2, PS-1042 and ADT-1), salt tolerant (MAUS-47, Bragg and PK-416) and moderately tolerant/sensitive (RKS-18, PK-1029 and KDS-344) suggesting that there was considerable genetic variability for salt tolerance in the soybean genotypes. Subsequently, genotypes contrasting in salt tolerance were analyzed for their physiological traits, photosynthetic efficiency and mitochondrial respiration at seedling and early germination stages under different salt (NaCl) treatments. It was found that salt mediated increase in AOX-respiration, root and shoot K+/Na+ ratio, improved leaf area and water use efficiency were the key determinants of salinity tolerance, which could modulate the net photosynthesis (carbon assimilation) and growth parameters (carbon allocation). The results suggest that these biomarkers could be can be useful for screening soybean genotypes for salt tolerance.
Collapse
Affiliation(s)
- D B Shelke
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India; Department of Botany, Amruteshwar Art's, Commerce and Science College, Vinzar, Velha, Pune 412213, MS, India
| | - M Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India
| | - G C Nikalje
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India; Department of Botany, R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar- 421003, MS, India
| | - B N Zaware
- P.D.E.A.'s Anantrao Pawar College, Pirangut, Tal. Mulshi, Pune 411 042, MS, India
| | - P Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India.
| |
Collapse
|
44
|
Gupta P, De B. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. PLANT SIGNALING & BEHAVIOR 2017; 12:e1335845. [PMID: 28594277 PMCID: PMC5586353 DOI: 10.1080/15592324.2017.1335845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.
Collapse
Affiliation(s)
- Poulami Gupta
- Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Department of Botany, University of Calcutta, Kolkata, India
- CONTACT Bratati De Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
45
|
Kordrostami M, Rabiei B, Hassani Kumleh H. Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:529-544. [PMID: 28878492 PMCID: PMC5567701 DOI: 10.1007/s12298-017-0440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 05/13/2023]
Abstract
Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.
Collapse
Affiliation(s)
- Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Babak Rabiei
- Department of Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| |
Collapse
|
46
|
Chunthabur S, Sakuanrung S, Wongwarat T, Sanitchon J, Pattanagul W, Theerakulp P. Changes in Anthocyanin Content and Expression of Anthocyanin Synthesis Genes in Seedlings of Black Glutinous Rice in Response to Salt Stress. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajps.2016.56.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|