1
|
Dawood AFA, Alharbi HM, Ismaeel FI, Khan SM, Yassa HD, Welson NN, Abd El-Aziz FEZA. Cadmium-induced pancreatic toxicity in rats: comparing vitamin C and Nigella sativa as protective agents: a histomorphometric and ultrastructural study. Toxicol Mech Methods 2024:1-16. [PMID: 39245987 DOI: 10.1080/15376516.2024.2399779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to assess the toxic effect of cadmium (Cd) on the exocrine and endocrine functions of pancreas, the changes in pancreatic tissue after Cd withdrawal, and the protective effects of vitamin C (VC) and Nigella sativa (NS) against Cd-induced damage. Rats were assigned to: control, Cd-treated (0.5 mg/kg/d intraperitoneal [IP] injection), VC and Cd-treated (receiving 100 mg/kg/d VC orally and Cd concomitantly), NS and Cd-treated (receiving 20 mg/kg/d NS and Cd, simultaneously), and Cd withdrawal (receiving Cd for 30 d then living free for recovery for other 30 d). Blood samples were collected and post-sacrifice pancreatic specimens were processed for light and electron microscope study. Quantitative analyses of pancreatic collagen area%, pancreatic islet parameters, β cell density, and insulin immunoexpression were done. Fasting blood glucose was significantly increased in Cd-treated and Cd-withdrawal groups, while co-treatment with VC and NS caused significant reductions (p < 0.05). Cd-induced extensive degenerative changes in pancreatic acini and islets at light and ultrastructure levels. Obvious fibrosis and congestion of blood vessels were noticed. Significant reductions in pancreatic islet number, volume, and surface area and diminished beta cell count and insulin immunoexpression were observed. After withdrawal of Cd, the whole pancreatic tissue still showed a serious impact. Concomitant treatment with VC or NS obviously reduced these degenerative changes and significantly improved pancreatic islet parameters and insulin immunoexpression. VC showed a better amendment than NS, but this difference was statistically insignificant. Therefore, VC and NS could be used as prophylactic agents that lessen Cd consequences on the pancreas.
Collapse
Affiliation(s)
- Asmaa F A Dawood
- Histology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Faten I Ismaeel
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Shahina M Khan
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Hanan D Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | | |
Collapse
|
2
|
Dong A, He H, Jing X, Zhang T, Ma Y, Wang X, Dong H, Liu W, Fan K, Huo J. Associations of Cadmium Exposure with Peripheral Blood Cell Subtype Counts and Indices in Cadmium-Poisoned Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04271-9. [PMID: 38888856 DOI: 10.1007/s12011-024-04271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
This research was designed to investigate the effects of cadmium on blood cell injury in cadmium-poisoned mice. Twenty mice were randomly divided into two groups: control group and model group. The control group was intraperitoneally injected with normal saline every day and the model group was intraperitoneally injected with 1.4 mg/kg cadmium solution every day. The experimental period was 28 days. The blood of the mice was collected for detection and hematological analysis. The results demonstrated that cadmium increased the number of white blood cells and the number of neutrophils in mice. Cadmium reduced the number of eosinophils, the number of basophils, the number of monocytes, the amount of lymphocytes, the number of red blood cells, the hemoglobin concentration, mean corpusular volume, mean corpusular hemoglobin, mean corpusular hemoglobin concentration, and the number of platelets in mice. In summary, cadmium caused some damage to white blood cells, red blood cells, and platelets in mice, but the direction of damage to different cells was inconsistent. The possible reason for this result is that cadmium damages the generation of blood cells, and the body takes corresponding defense measures.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Hui He
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Xuejie Jing
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Tianmiao Zhang
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yingying Ma
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Xinling Wang
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Huidong Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Wei Liu
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Kaifang Fan
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Junfeng Huo
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
El-Aziz GSA, Hindi EA, Aggad WS, Alturkistani HA, Halawani MM, Alyazidi AS. Evaluation of the Potential Protectivity of Both Allium sativum and Zingiber officinale on the Cadmium-Induced Testicular Damage in Rats. J Microsc Ultrastruct 2024; 12:62-70. [PMID: 39006047 PMCID: PMC11245131 DOI: 10.4103/jmau.jmau_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/11/2022] Open
Abstract
Background Cadmium (Cd) is a widely spread environmental pollutant, listed among the unsafe metals due to known toxic effects on multiple organs, including the testes. In this study, we aim to evaluate the potential protectivity of garlic and ginger extracts on Cd-induced damage of the testis in rats. Materials and Methods Fifty-six adult male albino rats were alienated into seven groups; control group, garlic-treated group, and ginger-treated group were given garlic and ginger extracts at doses of 250 mg and 120 mg/kg b.wt/day, Cd-treated group received 8.8 mg/Kg b.wt/day of Cd chloride, and the protected groups were given Cd and co-treated with garlic, ginger, or both extracts. The testes were subjected to different procedures to assess the oxidative status and histopathological changes. Results Cd-treated rats showed a significant reduction in the testis weight and morphometric measurements of the seminiferous tubules compared to the control group. Cd administration resulted in a marked drop in the testosterone level and activities of antioxidative enzymes. Moreover, Cd induced histopathological changes in the seminiferous tubules. Co-administration of garlic and ginger extracts with the Cd showed partial improvement in the investigated parameters toward the control figures and improvement in the morphological changes. Co-treating both extracts together and the Cd resulted in complete normalization of these adverse effects of Cd. Conclusion These findings indicated that garlic and ginger extracts could ameliorate the harmful effects of Cd on the testis. This effect was more prominent when garlic and ginger extracts were co-administered together with Cd.
Collapse
Affiliation(s)
- Gamal Said Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mervat M Halawani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Gao T, Luo S, Li H, Su Z, Wen Q. Prospective role of lusianthridin in attenuating cadmium-induced functional and cellular damage in rat thyroid. Heliyon 2024; 10:e27080. [PMID: 38449627 PMCID: PMC10915401 DOI: 10.1016/j.heliyon.2024.e27080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
The thyroid represents the most prevalent form of head and neck and endocrine cancer. The present investigation demonstrates the anticancer effects of Lusianthridin against cadmium (Cd)-induced thyroid cancer in rats. Swiss Wistar rats were utilized in this experimental study. Cd was employed to induce thyroid cancer, and the rats were divided into different groups, receiving oral administration of Lusianthridin (20 mg/kg) for 14 days. Thyroid parameters, deiodinase levels, hepatic parameters, lipid parameters, and antioxidant parameters were respectively estimated. The mRNA expression was assessed using real-time reverse transcriptase polymerase chain reaction (RT-PCR). Lusianthridin significantly (P < 0.001) improved protein levels, T4, T3, free iodine in urine, and suppressed the level of TSH. Lusianthridin significantly (P < 0.001) enhanced the levels of FT3, FT4, and decreased the level of rT3. Lusianthridin significantly (P < 0.001) reduced the levels of D1, D2, D3, and enhanced the levels of hepatic parameters like AST, ALT. Lusianthridin remarkably (P < 0.001) altered the levels of lipid parameters such as LDL, total cholesterol, HDL, and triglycerides; antioxidant parameters viz., MDA, GSH, CAT, and SOD. Lusianthridin significantly altered the mRNA expression of Bcl-2, Bax, MEK1, ERK1, ERK2, p-eIf2α, GRP78, eIf2α, and GRP94. The results clearly state that Lusianthridin exhibits protective effects against thyroid cancer.
Collapse
Affiliation(s)
- Teng Gao
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Sijia Luo
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, China
| | - Hongguang Li
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Zijie Su
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Qinghui Wen
- Department of Clinical Laboratory, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| |
Collapse
|
5
|
Bautista CJ, Arango N, Plata C, Mitre-Aguilar IB, Trujillo J, Ramírez V. Mechanism of cadmium-induced nephrotoxicity. Toxicology 2024; 502:153726. [PMID: 38191021 DOI: 10.1016/j.tox.2024.153726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Heavy metals are found naturally in our environment and have many uses and applications in daily life. However, high concentrations of metals may be a result of pollution due to industrialization. In particular, cadmium (Cd), a white metal abundantly distributed in the terrestrial crust, is found in mines together with zinc, which accumulates after volcanic eruption or is found naturally in the sea and earth. High levels of Cd have been associated with disease. In the human body, Cd accumulates in two ways: via inhalation or consumption, mainly of plants or fish contaminated with high concentrations. Several international organizations have been working to establish the limit values of heavy metals in food, water, and the environment to avoid their toxic effects. Increased Cd levels may induce kidney, liver, or neurological diseases. Cd mainly accumulates in the kidney, causing renal disease in people exposed to moderate to high levels, which leads to the development of end-stage chronic kidney disease or death. The aim of this review is to provide an overview of Cd-induced nephrotoxicity, the mechanisms of Cd damage, and the current treatments used to reduce the toxic effects of Cd exposure.
Collapse
Affiliation(s)
- Claudia J Bautista
- Departamento de Biología de la Reproducción del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - Nidia Arango
- Departamento de Cirugía Experimental del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - Consuelo Plata
- Departamento de Nefrología del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - Irma B Mitre-Aguilar
- Unidad de Bioquímica del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - Joyce Trujillo
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Instituto Potosino de Investigación Científica y Tecnológica A. C. División de Materiales Avanzados (CONAHCYT-IPICYT-DMA), San Luis Potosí, Mexico
| | - Victoria Ramírez
- Departamento de Cirugía Experimental del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico.
| |
Collapse
|
6
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Ameliorative Effects of Zn and Se Supplementation on Heavy Metal Mixture Burden via Increased Renal Metal Excretion and Restoration of Redoxo-Inflammatory Alterations. Biol Trace Elem Res 2024; 202:643-658. [PMID: 37231320 DOI: 10.1007/s12011-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria.
| |
Collapse
|
7
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Potential roles of circulating microRNAs in the healing of type 1 diabetic wounds treated with green tea extract: molecular and biochemical study. Heliyon 2023; 9:e22020. [PMID: 38027999 PMCID: PMC10665742 DOI: 10.1016/j.heliyon.2023.e22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Circulating miRNAs have been implicated in various aspects of diabetic wound healing, including inflammation, angiogenesis, and extracellular matrix remodeling. Thus, in alternative herbal medicine strategies, miRNAs will be potential therapeutic molecular targets in nonhealing wounds. These could be valuable elements for understanding the molecular basis of diabetic wound healing and could be used as good elements in bioinformatics. Objectives To elucidate the molecular mechanisms of microRNAs in association with apoptosis-inducing genes in controlling skin wound healing in diabetic wounds treated with green tea polyphenols (GTPs). Methods Green tea hydro extract (GTE) at doses of100-200 mg/ml was topically applied to the skin tissues of rats with T1DM induced by a single dose of streptozotocin (STZ; 100 mg/kg, in 0.01 M sodium citrate, pH 4.3-4.5) injected intraperitoneally for seven consecutive days to induce T1DM. The rats were treated with green tea for three weeks. A sterile surgical blade was used to inflict a circular wound approximately 2 cm in diameter on the anterior-dorsal side of previously anesthetized rats by a combination of ketamine hydrochloride (50 mg/kg, i.e., body weight) and xylazine hydrochloride. Afterward, the molecular roles of the circulating miRNAs miR-21, miR-23a, miR-146a, and miR-29b and apoptotic genes were determined by quantitative real-time PCR to evaluate Bax, Caspase-3, and Bcl-2 in wound healing. In addition, HPLC analysis was also performed to estimate the active polyphenols (GTPs) present in the hydro extract of green tea leaves. Results Wound healing was improved in diabetic skin wounds following treatment with GTE at doses of 100-200 mg/dl for three weeks. The wound parameters contraction, epithelialization, and scar formation significantly improved in a short time (14 days) compared to the longer periods identified in diabetic non-treated rats (20 days) and the standard control (15.5 days). Molecular analyses reported a significant increase in the levels of miR-21, miR-23a, and miR-146a and a decrease in the levels of miR-29b in green tea-treated diabetic rats compared to those in the standard control and STZ-diabetic non-treated rats. In addition, the molecular apoptotic genes Bax and caspase-3 significantly increased, and the BcL-2 gene significantly decreased following treatment with green tea polyphenols. Conclusions The data showed that active green tea polyphenols (GTPs) present in GTE significantly improved diabetic wound healing by controlling apoptotic genes and the circulating microRNAs miR-21, miR-23a, miR-146a, and miR-29b, which might be involved in cellular apoptosis and angiogenesis processes. Thus, to establish a future model for the treatment of diabetic wounds, further studies are needed to understand the potential association of these biological parameters with the wound-healing process in diabetic wounds.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
10
|
Sharma P, Verma PK, Sood S, Yousuf R, Kumar A, Raina R, Shabbir MA, Bhat ZF. Protective Effect of Quercetin and Ginger ( Zingiber officinale) Extract against Dimethoate Potentiated Fluoride-Induced Nephrotoxicity in Rats. Foods 2023; 12:foods12091899. [PMID: 37174437 PMCID: PMC10177764 DOI: 10.3390/foods12091899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the potential of quercetin and Zingiber officinale (ZO) Roscoe extract to alleviate the renal damage induced by dimethoate (DM) and fluoride (F-) alone and by their combined exposure in rats. A total of 54 adult Wistar rats were randomly allocated to nine groups (n = 6). A sub-lethal dose of DM (1/10th of the median lethal dose) was administered by oral gavage alone and along with F- (4.5 ppm, three-fold the permissible limit) in their drinking water continuously for 28 days. Chromatographical analysis revealed the presence of quercetin, curcumin, and other phytochemicals with strong antioxidant properties in ZO-rhizome extract. Severe changes were observed in the levels of the renal biomarkers and histoarchitecture after co-administration of the toxicants, indicating greater kidney damage. The administration of ZO extract (300 mg/kg) along with either or both toxicants led to a significant restoration of the biochemical markers and renal antioxidant profile and histology.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Rasia Yousuf
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Amit Kumar
- Quality Management and Instrumentation Division, Indian Institute of Integrative Medicine (CSIR-Lab), Jammu 180016, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu 181102, India
| |
Collapse
|
11
|
Kong Z, Liu C, Olatunji OJ. Asperuloside attenuates cadmium-induced toxicity by inhibiting oxidative stress, inflammation, fibrosis and apoptosis in rats. Sci Rep 2023; 13:5698. [PMID: 37029128 PMCID: PMC10081990 DOI: 10.1038/s41598-023-29504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 04/09/2023] Open
Abstract
This present study investigated the protective effects of asperuloside (ASP) against cadmium-induced nephrocardiac toxicity. Rats were treated with 50 mg/kg of ASP for five weeks and CdCl2 (5 mg/kg, p.o., once daily) during the last 4 weeks of ASP treatment. The serum levels of blood urea nitrogen (BUN), creatinine (Scr), aspartate transaminase (AST), creatine kinase-MB (CK-MB), troponin T (TnT) and lactate dehydrogenase (LDH) were evealuted. Oxido-inflammatory parameters were detected via malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β) and nuclear factor kappa B (NF-κB). Additionally, the cardiorenal levels of caspase 3, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), collagen IV and Bcl2 were measured by ELISA or immunohistochemical assays. The results indicated that ASP significantly decreased Cd-instigated oxidative stress, serum BUN, Scr, AST, CK-MB, TnT and LDH as well as histopathological alterations. Furthermore, ASP notably attenuated Cd-induced cardiorenal and apoptosis and fibrosis by reducing caspase 3 and TGF-β levels, as well as reducing the stain intensity of a-SMA and collagen IV, while increasing Bcl2 intensity. These results revealed that ASP attenuated Cd induced cardiac and renal toxicity which may be attributed to reducing oxidative stress, inflammation, fibrosis and apoptosis.
Collapse
Affiliation(s)
- Zhiyang Kong
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China
| | - Chunhong Liu
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China.
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand.
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
12
|
Karami E, Goodarzi Z, Ghanbari A, Dehdashti A, Bandegi AR, Yosefi S. Atorvastatin prevents cadmium-induced renal toxicity in a rat model. Toxicol Ind Health 2023; 39:218-228. [PMID: 36802990 DOI: 10.1177/07482337231157150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In many industrial processes, worker exposure to cadmium causes kidney damage; thus, protection against cadmium toxicity is important in workplace health. Cadmium toxicity involves oxidative stress by increasing the levels of reactive oxygen species. Statins have shown antioxidant effects that might prevent this increase in oxidative stress. We investigated the potential effects of atorvastatin pretreatment in protecting experimental rats against kidney toxicity caused by cadmium. Experiments were performed on 56 adult male Wistar rats (200 ± 20 g), randomly assigned to eight groups. Atorvastatin was administered by oral gavage for 15 days at 20 mg/kg/day, starting 7 days before cadmium chloride intra-peritoneal administration (at 1, 2, and 3 mg/kg) for 8 days. On day 16, blood samples were collected, and kidneys were excised to evaluate the biochemical and histopathological changes. Cadmium chloride significantly increased malondialdehyde, serum creatinine, blood urea nitrogen, and decreased superoxide dismutase, glutathione, and glutathione peroxidase levels. Pre-administration of rats with atorvastatin at a dose of 20 mg/kg decreased blood urea nitrogen, creatinine, and lipid peroxidation, increased the activities of antioxidant enzymes, and prevented changes in physiological variables compared with animals that were not pretreated. Atorvastatin pretreatment prevented kidney damage following exposure to toxic doses of cadmium. In conclusion, atorvastatin pretreatment in rats with cadmium chloride-induced kidney toxicity could reduce oxidative stress by changing biochemical functions and thereby decreasing damage to kidney tissue.
Collapse
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health, School of Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health, School of Health, 154203Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Department of Physiology and Pharmacology, 89245Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Dehdashti
- Department of Occupational Health, School of Health, 154203Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Health Sciences and Technologies, Department of Occupational Health, 154203Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Department of Physiology and Pharmacology, 89245Pasteur Institute of Iran, Tehran, Iran
| | - Sedighe Yosefi
- Department of Biochemistry, Faculty of Medicine, 154203Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Karami E, Goodarzi Z, Ghanbari A, Bandegi AR, Yosefi S, Dehdashti A. In vivo antioxidant and kidney protective potential of Atorvastatin against cadmium chloride-induced kidney injury in male Wistar rat. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2126900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health, School of Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Al Ghanbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Bandegi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sedighe Yosefi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Dehdashti
- Department of Occupational Health, School of Health, Semnan University of Medical Sciences, Semnan, Iran
- Department of Occupational Health, Research Center of Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
15
|
Motawee ME, Damanhory AA, Sakr H, Khalifa MM, Atia T, Elfiky MM, Maher M, Sakr HI. An electron microscopic and biochemical study of the potential protective effect of ginger against Cadmium-induced testicular pathology in rats. Front Physiol 2022; 13:996020. [PMID: 36262262 PMCID: PMC9574188 DOI: 10.3389/fphys.2022.996020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Cadmium (Cd) is a toxic heavy metal used in many industries. Since the second half of the 20th century, legislation on Cd use was put to limit the exponential rise in its environmental levels. This study aimed to investigate Cd’s functional and ultrastructural changes on rats’ reproductive systems and the role of Zingiber officinale (Ginger) in protecting against Cd-induced toxicity. Methods: Thirty adult male albino rats were randomly assigned into three equal groups (n = 10); control, Cd-exposed/untreated, and Cd-exposed/Gin-treated. Rat testes were weighed, and testicular tissue sections were examined under the electron microscope. Semen analysis, morphological examination of spermatozoa, and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. In addition, testicular tissue homogenates were analyzed for malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) levels. Results: Cd-induced significant reduction in the mean testicular weight and GSH levels and plasma testosterone, LH and FSH levels with a concomitant increase in testicular MDA and NO levels. There was also a deterioration in semen analysis parameters and spermatozoa morphology, with testicular structural damage in the form of architecture distortion and necrosis of seminiferous tubules and testicular interstitial cells. Daily administration of ginger for 4 weeks protected against CD-induced toxicity, preserving tissue architecture, improved plasma levels of testosterone, LH and FSH and testicular levels of GSH, and reduced testicular levels of MDA, NO. Conclusion: Ginger has a protective effect on Cd-induced deterioration of testicular tissue’s structural and functional integrity by improving testicular tissue antioxidant capacity and steroid production, which ameliorates sex hormone levels in the blood.
Collapse
Affiliation(s)
- Moustafa E. Motawee
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed A. Damanhory
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hany Sakr
- Department of Pathology and Laboratory Medicine, VAMC, Northeast Ohio Health Care System, Louis Stokes, Cleveland, OH, United States
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Atia
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed M. Elfiky
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Muhammad Maher
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Hader I. Sakr,
| |
Collapse
|
16
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
17
|
Yavari M, Jaafari MR, Mirzavi F, Mosayebi G, Ghazavi A, Ganji A. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:890-896. [PMID: 36033959 PMCID: PMC9392564 DOI: 10.22038/ijbms.2022.63870.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES This study aimed to develop a nanoliposomal formulation containing ginger ethanolic extract with a higher therapeutic effect for cancer treatment. MATERIALS AND METHODS The present study aimed to prepare PEGylated nanoliposomal ginger through the thin film hydration method plus extrusion. Physicochemical characteristics were evaluated, and the toxicity of the prepared liposomes was assessed using the MTT assay. In addition, tumor size was monitored in colorectal cancer-bearing mice. Also, the anticancer effects of liposomal ginger were evaluated by gene expression assay of Bax and Bcl-2 and cytokines including TNF-α, TGF-β, and IFN-γ by Real-time PCR. Also, cytotoxic T lymphocytes (CTLs) and regulatory T lymphocytes (Treg cells) were counted in spleen and tumor tissue by flow cytometry assay. RESULTS The nanoliposomes' particle size and polydispersity index (PDI) were 94.95 nm and 0.246 nm, respectively. High encapsulation capacity (80 %) confirmed the technique's efficiency, and the release rate of the extract was 85% at pH 6.5. In addition, this study showed that liposomal ginger at 100 mg/kg/day enhanced the expression of Bax (P<0.05) and IFN-γ (P<0.01) compared with ginger extract in the mouse model. Also, the number of tumor-infiltrating lymphocytes (TILs) and CTLs cell count in tumor tissue showed a significant increase in the LipGin group compared with the Gin group (P<0.05). CONCLUSION Results indicated that the liposomal ginger enhanced the antitumor activity; therefore, the prepared liposomal ginger can be used in future clinical trials.
Collapse
Affiliation(s)
- Maryam Yavari
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran,Corresponding author: Ali Ganji. Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran. Tel: +98-34173548; Fax: +98-34173548;
| |
Collapse
|
18
|
The protective antioxidant activity of ginger extracts (Zingiber Officinale) in acute kidney injury: A systematic review and meta-analysis of animal studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Ahmad A, Saleem S. Thymoquinone and Oleuropein Combination Ameliorates Renal Ischemia-Reperfusion Injury by Attenuating Oxidative Stress in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1151.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, Cetin Z, Saygili EI. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4748447. [PMID: 35585878 PMCID: PMC9110206 DOI: 10.1155/2022/4748447] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The world's population is ageing at an accelerated pace. Ageing is a natural, physiological but highly complex and multifactorial process that all species in the Tree of Life experience over time. Physical and mental disabilities, and age-related diseases, would increase along with the increasing life expectancy. Ginger (Zingiber officinale) is a plant that belongs to the Zingiberaceae family, native to Southeast Asia. For hundreds of years, ginger has been consumed in various ways by the natives of Asian countries, both as culinary and medicinal herb for the treatment of many diseases. Mounting evidence suggests that ginger can promote healthy ageing, reduce morbidity, and prolong healthy lifespan. Ginger, a well-known natural product, has been demonstrated to possess antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as an outstanding antiviral activity due to a high concentration of antiviral compounds. In this review, the current evidence on the potential role of ginger and its active compounds in the prevention of ageing is discussed.
Collapse
Affiliation(s)
- Mehtap Ozkur
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Christina Vasileiou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Zafer Cetin
- Department of Medical Biology, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Biological and Biomedical Sciences, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Molecular Medicine, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| |
Collapse
|
21
|
Zammel N, Jedli O, Rebai T, Hamadou WS, Elkahoui S, Jamal A, Alam JM, Adnan M, Siddiqui AJ, Alreshidi MM, Naïli H, Badraoui R. Kidney injury and oxidative damage alleviation by Zingiber officinale: pharmacokinetics and protective approach in a combined murine model of osteoporosis. 3 Biotech 2022; 12:112. [PMID: 35462952 PMCID: PMC8995235 DOI: 10.1007/s13205-022-03170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale) is considered as a nutraceutical spice, which possesses several health promotion and benefits. This study was carried out to investigate the phyto-chemical composition, the antioxidant capacities, the drug-likeness, and pharmacokinetic properties of ginger extract on kidney injury-associated osteoporosis in rats. Phenolic and flavonoid contents were assessed by standard chemical analysis methods and HPLC. In vivo protective effect was based on the use of female rats to evaluate the effect on renal injury as a result of combined osteoporosis using biochemical markers, oxidative status, and histological analyses. Results showed that ZO contained appreciable amounts of phenolics and flavonoids and it exhibited high scavenging activity. Ovariectomy-associated corticotherapy induced severe renal injury marked by altered biochemical markers (creatinine, urea, and uric acid), reduced GFR, significative oxidative damage signs, and disrupted antioxidant status in the combined osteoporotic rats. The histopathological examination revealed structural modifications of kidney tissues. However, all these changes were reversed following the use of ZO. These results confirm the renoprotective and antioxidant potential of ginger against renal injuries in osteoporotic rats.
Collapse
Affiliation(s)
- Nourhene Zammel
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Olfa Jedli
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Walid S. Hamadou
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Salem Elkahoui
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Arshad Jamal
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Jahoor M. Alam
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Mohd Adnan
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Arif J. Siddiqui
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Mousa M. Alreshidi
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
| | - Houcine Naïli
- Laboratory of Solid State, Sciences Faculty of Sfax, University of Sfax, 3064 Sfax, Tunisia
| | - Riadh Badraoui
- Department of Biology, University of Ha’il, 81451 Ha’il, Kingdom of Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| |
Collapse
|
22
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
23
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
24
|
Al-Rawaf HA, Gabr SA, Alghadir AH. The Potential Role of Circulating MicroRNAs in Male Rat Infertility Treated with Kaempferia parviflora. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9622494. [PMID: 34956389 PMCID: PMC8709766 DOI: 10.1155/2021/9622494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Therapeutic strategies based on herbal plants and diets containing sufficient amounts of antioxidants and essential vitamins are very important factors in treating reproduction and male infertility worldwide. Thus, the aim of this study was to investigate the potential effects of Kaempferia parviflora (KP) on the role of some microRNAs in treated and nontreated infertile rats. In addition, the correlation of expressed microRNAs with sperm count, sperm motility, and sperm viability was identified. The probable use of these microRNAs as a diagnostic marker for predicting the clinical response of infertility to the treatment with KP was also achieved. METHODS In the present study, the potential effects of Kaempferia parviflora (KP) at different doses (140, 280, and 420 mg/kg) for six weeks on male rats with subinfertility were explored. In addition, the effect of KP on the expression of circulating microRNAs and its correlation with the parameters of sexual infertility was identified by performing both in vitro and in vivo assays. In vitro antioxidant activity, sperm functional analysis, serum testosterone, and expression of circulating microRNAs were conducted using colorimetric, ELISA, and real-time RT-PCR analysis, respectively. RESULTS Kaempferia parviflora (KP) at nontoxic doses of 140-420 mg/kg/day for six weeks significantly improved serum testosterone and epididymal sperm parameters (sperm count, motility, and sperm viability), increased testicular weight, and provided a reduction in the percentage of abnormal spermatozoon in infertile male rats. The expression of miR-328 and miR-19b significantly decreased, and miR-34 significantly increased in infertile rats treated with KP compared to infertile nontreated rats. After six weeks of KP therapy, the change in the expression levels of miRNAs was correlated positively with higher levels of serum testosterone and the measures of epididymal sperm parameters. The respective area under the receiver operating characteristic curve (AUC-ROC) was applied to predict the potential use of miR-328, miR-19b, and miR-34 in the diagnosis of male infertility in treated and nontreated infertile male rats. The data showed that AUC cutoff values of 0.91 for miR-328, 0.89 for miR-19b, and 0.86 for miR34 were the best estimated values for the clinical diagnosis of male rats with infertility. In rats treated with KP for six weeks, AUC cutoff values of 0.76 for miR-328, 0.79 for miR-19b, and 0.81 for miR-34 were the best cutoff values reported for the clinical response of infertility to KP therapy after six weeks. CONCLUSIONS In this study, the improvement of male infertility might proceed via antioxidant and antiapoptotic pathways, which significantly improve spermatogenesis and aphrodisiac properties of males. In addition, the expression of miRNAs, miR-328, miR-34, and miR-19b, in KP-treated and nontreated infertile rats significantly correlated with increased serum testosterone levels and epididymal sperm parameters as well. MicroRNAs, miR-328, miR-34, and miR-19b, might be related to oxidative and apoptotic pathways that proceeded in spermatogenesis. Thus, the use of miRNAs could have a role as diagnostic, therapeutic, and predictive markers for assessing the clinical response of Kaempferia parviflora treatment for six weeks. This may have potential applications in the therapeutic strategies based on herbal plants for male infertility. However, in subsequent studies, the genetic regulatory mechanisms of the expressed miRNAs should be fully characterized.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Quddus A, Yimer N, Jesse FFA, Basit MA, Amir M, Islam MS. Edible bird's nest protects histomorphology of rat's uterus against cadmium (Cd) toxicity through a reduction of Cd deposition and enhanced antioxidant activity. Saudi J Biol Sci 2021; 28:7068-7076. [PMID: 34867008 PMCID: PMC8626256 DOI: 10.1016/j.sjbs.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is often associated with reproductive disorders of mammals. Edible bird's nest (EBN) is a natural food product made of swiftlet's salivary secretion used to make their nests and it has been consumed as a tonic food for decades. This research aimed to study the protective effects of EBN against Cd-induced uterine toxicity in Sprague Dawley rats. Thirty (30) female Sprague Dawley rats were assigned into five groups as follows: group 1- negative control (NC) received distilled water; group 2 - positive control (PC) administered with CdCl2, 5 mg/kg BW; while groups EBN-1, EBN-2, and EBN-3 received CdCl2 (5 mg/kg BW) plus graded concentrations of 60, 90 and 120 mg/kg BW of EBN, respectively. After four weeks of daily oral treatment, rats were euthanized to collect the uterus for evluations of histopathological changes, Cd concentrations and Metallothionein (MT) expressions using H&E stain, inductive coupled plasma mass spectrometry (ICP-MS) and immunohistochemistry, respectively. Blood samples were collected for superoxide dismutase (SOD) analysis using SOD assay kit. Results revealed that the CdCl2 without EBN supplement (PC) group had elevated levels of Cd in the uterus along with increased MT expressions and decreased SOD enzyme activity as compared to the NC group. Moreover, uterine histopathological changes, including glandular cysts and loss of normal structure of luminal epithelium (LE) and glandular epithelium (GE) were found in the PC group. Interestingly, groups treated with CdCl2 along with EBN (EBN1, EBN2, EBN3) showed lower levels of uterine tissue Cd deposition and MT expression, lower degenerative changes with normal histomorphology of glands, and increased SOD activity as compared to the PC group. Overall, the findings revealed that oral exposure to Cd at a dose of 5 mg/kg BW resulted in significant alterations in the rat's uterus. However, the toxicity effect was averted by EBN treatment in a dose dependant manner; highest protection achieved with EBN 120 mg/kg BW, through a possible detoxification mechanism and prevention of Cd deposition.
Collapse
Affiliation(s)
- Abdul Quddus
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture Water and Marine Science, Uthal, Balochistan, 90150, Pakistan
| | - Nurhusien Yimer
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Corresponding author.
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Maria Amir
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohammed Sirajul Islam
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| |
Collapse
|
26
|
Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol Biol Rep 2021; 49:1201-1211. [PMID: 34792728 DOI: 10.1007/s11033-021-06948-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacological properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the present study. METHODS AND RESULTS In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cadmium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV. CONCLUSIONS The results indicate that CRV has protective properties against Cd-induced lung toxicity.
Collapse
|
27
|
Wang Z, Kong F, Fu L, Li Y, Li M, Yu Z. Responses of Asian clams (Corbicula fluminea) to low concentration cadmium stress: Whether the depuration phase restores physiological characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117182. [PMID: 33901982 DOI: 10.1016/j.envpol.2021.117182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The effect of low concentration Cd stress on bivalves is unclear. In this study, Asian clams (Corbicula fluminea) were continuously exposed to 0, 0.05, 0.10, and 0.20 mg/L Cd for 14 d (exposure phase) and to artificial freshwater for 7 d (depuration phase). A total of 16 variables were measured to explore the toxic effects on C. fluminea. All physiological characteristics were significantly inhibited in the treatments (p < 0.05), and the negative effects of Cd did not return to normal levels in the short term. Tissue damage was found in the feet and gills of C. fluminea in all the treatments. On the 7th day (D7), enzyme activity in all the treatments was significantly higher (p < 0.05) than in the control group. Acetylcholinesterase, superoxide dismutase, and catalase activities were enhanced on D14 in all the treatments. However, only glutathione S-transferase activity was significantly higher in all the treatments (p < 0.05) than in the control group on D21. The instability of the enzymes indicated that the adaptability of C. fluminea became stronger throughout the experiment. In each group, the maximum bioaccumulation of Cd followed the order: 0.20 mg/L > 0.05 mg/L > 0.10 mg/L, which might be caused by the filtration capacity of C. fluminea in the 0.05-mg/L group, which was higher than that of the 0.10-mg/L group. Thus, low Cd concentrations effect the physiological characteristics, tissue health, and antioxidant system of C. fluminea and may require a long recovery time to be restored to normal levels.
Collapse
Affiliation(s)
- Zhen Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lingtao Fu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minghui Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengda Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
28
|
Potential application of ginger, clove and thyme essential oils to improve soft cheese microbial safety and sensory characteristics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Khan A, Azam M, Allemailem KS, Alrumaihi F, Almatroudi A, Alhumaydhi FA, Ahmad HI, Khan MU, Khan MA. Coadministration of Ginger Extract and Fluconazole Shows a Synergistic Effect in the Treatment of Drug-Resistant Vulvovaginal Candidiasis. Infect Drug Resist 2021; 14:1585-1599. [PMID: 33907432 PMCID: PMC8071092 DOI: 10.2147/idr.s305503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Azoles are the most common antifungal drugs used in the treatment of vulvovaginal candidiasis (VVC). The frequency of azole-resistant Candida isolates has increased dramatically in the last two decades. Here, we assessed the antifungal activity of a combination of fluconazole (FLZ) and methanolic extract of ginger (Meth-Gin) against drug-resistant vulvovaginal candidiasis (VVC) in a murine model. METHODS The in vitro activity of FLZ or a combination of FLZ and Meth-Gin was determined against Candida albicans by the agar well diffusion, macrodilution, time-kill and the biofilm eradication methods. The therapeutic efficacy of the formulations was assessed by analyzing the fungal load, pro-inflammatory cytokines, percent apoptotic cells and the histological changes in the vaginal tissues of the mice. Moreover, the renal toxicity the drug formulation was evaluated by analyzing the levels of the blood urea nitrogen (BUN) and creatinine. RESULTS The results of in vitro study demonstrated that FLZ did not show any activity against C. albicans, whereas a combination of FLZ and Meth-Gin demonstrated greater activity as shown by the data of the zone of growth inhibition, MIC and time-kill assay. FLZ or Meth-Gin treatment could not completely cure VVC, whereas a combination of FLZ and Meth-Gin was greatly effective in the treatment of VVC. The vaginal tissue from mice of the infected control group had the highest fungal load of 155370 ± 20617 CFUs. Treatment with FLZ at a dose of 40 mg/kg reduced the fungal load to 120863 ± 10723 CFUs. Interestingly, the mice treated with a combination of FLZ (40 mg/kg) and Meth-Gin (200 mg/kg) had a fungal load of 256 ± 152 CFUs. Besides, FLZ and Meth-Gin combination effectively reduced the pro-inflammatory cytokines (IL-1β, TNF-α and IL-17) and the percentage of apoptotic cells in the vaginal tissues. Likewise, the histological analysis revealed the epithelial necrosis, shedding and ulceration in the vaginal tissue, whereas treatment with FLZ and Meth-Gin combination reversed the histopathological changes in the vaginal epithelium and lamina propria. CONCLUSION The findings of the current study suggest that the co-administration of Meth-Gin and FLZ may have a potential therapeutic effect in the treatment of azole-resistant candidiasis.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hafiz Iqtidar Ahmad
- Department of Tashreeh Wa Munafeul Aza, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, 202002, India
| | - Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
30
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|
31
|
Gao L, Lin Y, Wang S, Lin L, Lu D, Zhao Y, Xing H, Wu B. Chronotoxicity of Semen Strychni is associated with circadian metabolism and transport in mice. J Pharm Pharmacol 2021; 73:398-409. [PMID: 33793874 DOI: 10.1093/jpp/rgaa007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed to determine the circadian responses of mice to Semen Strychni and to investigate the role of pharmacokinetics in generating chronotoxicity. METHODS Total extract of Semen Strychni was administered by oral gavage to wild-type (WT) and Bmal1-/- (a circadian clock-deficient model) mice at different circadian time points for toxicity (including survival) and pharmacokinetic characterization. Nephrotoxicity and neurotoxicity were evaluated by measuring plasma creatinine and creatine kinase BB (CK-BB), respectively. Drug metabolism and transport assays were performed using liver/intestine microsomes and everted gut sacs, respectively. KEY FINDINGS Semen Strychni nephrotoxicity and neurotoxicity as well as animal survival displayed significant circadian rhythms (the highest level of toxicity was observed at ZT18 and the lowest level at ZT2 to ZT6). According to pharmacokinetic experiments, herb dosing at ZT18 generated higher plasma concentrations (and systemic exposure) of strychnine and brucine (two toxic constituents) compared with ZT6 dosing. This was accompanied by reduced formation of both dihydroxystrychnine and strychnine glucuronide (two strychnine metabolites) at ZT18. Bmal1 ablation sensitized mice to Semen Strychni-induced toxicity (with increased levels of plasma creatinine and CK-BB) and abolished the time dependency of toxicity. Metabolism of Semen Strychni (strychnine and brucine) in the liver and intestine microsomes of WT mice was more extensive at ZT6 than at ZT18. These time differences in hepatic and intestinal metabolism were lost in Bmal1-/- mice. Additionally, the intestinal efflux transport of Semen Strychni (strychnine and brucine) was more extensive at ZT6 than ZT18 in WT mice. However, the time-varying transport difference was abolished in Bmal1-/- mice. CONCLUSIONS Circadian responses of mice to Semen Strychni are associated with time-varying efflux transport and metabolism regulated by the circadian clock (Bmal1). Our findings may have implications for optimizing phytotherapy with Semen Strychni via timed delivery.
Collapse
Affiliation(s)
- Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Luomin Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yue Zhao
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res 2021; 35:711-742. [PMID: 32954562 DOI: 10.1002/ptr.6858] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/25/2022]
Abstract
Zingiber officinale Rosc. (Zingiberacae), commonly known as ginger, is a perennial and herbaceous plant with long cultivation history. Ginger rhizome is one of the most popular food spices with unique pungent flavor and is prescribed as a well-known traditional Chinese herbal medicine. To date, over 160 constituents, including volatile oil, gingerol analogues, diarylheptanoids, phenylalkanoids, sulfonates, steroids, and monoterpenoid glycosides compounds, have been isolated and identified from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially gastrointestinal-protective, anti-cancer, and obesity-preventive effects. In addition, gingerol analogues such as 6-gingerol and 6-shogaol can be rapidly eliminated in the serum and detected as glucuronide and sulfate conjugates. Structural variation would be useful to improve the metabolic characteristics and bioactivities of lead compounds derived from ginger. Furthermore, some clinical trials have indicated that ginger can be consumed for attenuating nausea and vomiting during early pregnancy; however, there is not sufficient data available to rule out its potential toxicity, which should be monitored especially over longer periods. This review provides an up-to-date understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Basic Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
35
|
Hepatoprotective effect of atorvastatin on Cadmium chloride induced hepatotoxicity in rats. Life Sci 2020; 254:117770. [DOI: 10.1016/j.lfs.2020.117770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023]
|
36
|
Andrade MA, de Oliveira Torres LR, Silva AS, Barbosa CH, Vilarinho F, Ramos F, de Quirós ARB, Khwaldia K, Sendón R. Industrial multi-fruits juices by-products: total antioxidant capacity and phenolics profile by LC–MS/MS to ascertain their reuse potential. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Abdel-Gabbar M, Ahmed RR, Kandeil MA, Mohamed AEDH, Ali SM. Administration of ginger and/or thyme has ameliorative effects on liver and kidney functions of V-line rabbits: Histological and biochemical studies. J Anim Physiol Anim Nutr (Berl) 2019; 103:1758-1767. [PMID: 31441113 DOI: 10.1111/jpn.13166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
This study was conducted to evaluate the effect of Zingiber officinale and Thymus vulgaris aqueous extracts as a natural antioxidant on liver and kidney functions and antioxidant status of growing rabbits. A total of 24 V-line male rabbits, 3 months old, 1.465 ± 0.12 kg average body weight (BW) were used in a complete randomized design. The rabbits were weighed individually and assigned randomly to four groups (6 animals/each). The first group (G1) was taken fresh water and served as control, rabbits of the second group (G2) were taken 100 mg/kg BW in drinking water of the Z. officinale aqueous extract daily. The third group (G3) was taken 50 mg/kg BW in drinking water of the T. vulgaris aqueous extract daily and the fourth group (G4) was taken 100 mg/kg BW of the Z. officinale aqueous extract plus 50 mg/kg BW of the T. vulgaris aqueous extract in drinking water daily. The oral administration of ginger and/or thyme aqueous extracts increased (p < .001) serum protein profile compared with control group. Moreover, results of group 2 showed significant (p < .001) decrease in cholesterol, triglyceride and very low-density lipoprotein cholesterol compared with group 3 and 4. Serum urea, uric acid and creatinine levels were significantly (p < .001) decreased in treated groups compared with control group. Oral administration of ginger and/or thyme aqueous extracts to growing rabbits increased (p < .001) total antioxidant capacity and glutathione content and the activity of superoxide dismutase, catalase and glutathione-S-transferase compared with the control group. In conclusion, the current study showed that oral administration of ginger and thyme aqueous extracts to growing rabbits showed no adverse effects on liver and kidney function parameters, histological structures and improved antioxidant status.
Collapse
Affiliation(s)
| | - Rasha R Ahmed
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Shimaa M Ali
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
38
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4352470. [PMID: 31428171 PMCID: PMC6679851 DOI: 10.1155/2019/4352470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. AIM In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. METHODS Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT-PCR and immunoassay analysis. RESULTS Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P < 0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. CONCLUSION Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Hegazy MG, Emam MA, Khattab HI, Helal NM. Biological activity of Echinops spinosus on inhibition of paracetamol-induced renal inflammation. Biochem Cell Biol 2019; 97:176-186. [DOI: 10.1139/bcb-2018-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was designed to evaluate the possible mechanisms through which Echinops spinosus (ES) extract demonstrates nephroprotective effect on the paracetamol acetominophen (N-acetyl-p-aminophenol (APAP)) induced nephrotoxicity in rats. Twenty-four Swiss albino rats were divided into four groups (six rats each). The placebo group was orally administered sterile saline, the APAP group received APAP (200 mg·kg–1·day–1 i.p.) daily, the ES group was given ES extract orally (250 mg/kg), and the APAP + ES group received APAP as for the APAP group and administrated the ES extract as for the ES group. Pretreatment of methyl alcohol extract of ES reduced the protein expression of inflammatory parameters including cyclooxygenase-2 and nuclear factor κB in the kidney. It also reduced the mRNA gene expression of tumor necrosis factor-α and interleukin-1β. The ES extract compensated for deficits in the total antioxidant activity, suppressed lipid peroxidation, and amended the APAP-induced histopathological kidney alterations. Moreover, ES treatment restored the elevated levels of urea nitrogen in the blood and creatinine in the serum by APAP. The ES extract attenuated the APAP-induced elevations in renal nitric oxide levels. We clarified that the ES extract has the potential to defend the kidney from APAP-induced inflammation, and the protection mechanism might be through decreasing oxidative stress and regulating the inflammatory signaling pathway through modulating key signaling inflammatory biomarkers.
Collapse
Affiliation(s)
- Marwa G.A. Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Manal A. Emam
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Hemmat I. Khattab
- Botany Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nesma M. Helal
- Botany Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
40
|
Ahd K, Dhibi S, Akermi S, Bouzenna H, Samout N, Elfeki A, Hfaiedh N. Protective effect of ginger ( Zingiber officinale) against PCB-induced acute hepatotoxicity in male rats. RSC Adv 2019; 9:29120-29130. [PMID: 35528415 PMCID: PMC9071811 DOI: 10.1039/c9ra03136g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022] Open
Abstract
After absorption by the organism, polychlorinated biphenyls (PCBs) cross cellular membranes and pass into blood vessels and the lymphatic system. It is generally in the liver, adipose tissues, brain and skin that we find the strongest concentrations of PCBs. Herbal medicine remains as a discipline intended to treat and to prevent certain functional disorders and/or pathologies caused by oxidative stress, which can be induced by pesticides, medicines or pollutants. The objective of this study is to verify the toxic and oxidative effects of PCBs and to investigate the protective effect of ginger (Zingiber officinale) in the liver of male rats of the “Wistar” strain. These rats are divided into 6 groups: a control group (T), two groups treated with PCB at two different concentrations (P1 and P2), a group treated with ginger extract (G), a group pretreated with ginger extract and then injected with the first concentration of PCBs (P1G), and a group pretreated with ginger and then injected with the second concentration of PCBs (P2G). The results showed that the administration of PCBs led to an increase in the relative weight of the liver, and a significant increase in all of the hepatic biomarker levels (glucose, cholesterol, triglycerides, AST, ALT, and LDH) in the serum. Furthermore, an increase in the rate of lipid peroxidation and a decrease in the antioxidant enzyme activities (catalase, superoxide dismutase and glutathione peroxidase) were observed under the influence of PCBs in the liver. The histological test showed that the PCBs induced hepatocyte vacuolization, prominent and peripheralized nuclei, hepatocellular hypertrophy and turgor of the vein in the centriacinar regions. Pretreatment with ginger extract restored all of the biochemical and oxidative parameters to the normal values and reduced the injuries caused by the PCBs. In conclusion, in our experimental conditions, ginger effectively protects the liver against the hepatotoxic effects induced by PCBs. After absorption by the organism, polychlorinated biphenyls (PCBs) cross cellular membranes and pass into blood vessels and the lymphatic system.![]()
Collapse
Affiliation(s)
- Khedher Ahd
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
| | - Sabah Dhibi
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
| | - Sarra Akermi
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
| | - Hafsia Bouzenna
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
| | - Noura Samout
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
| | - Abdelfattah Elfeki
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
- Faculty of Sciences of Sfax
- Sfax
- Tunisia
| | - Najla Hfaiedh
- Unity of Macromolecular Biochemistry and Genetics Faculty of Sciences
- Gafsa
- Tunisia
- Laboratory of Environmental Physiopathology
- Valorization of Bioactive Molecules and Mathematical Modeling
| |
Collapse
|
41
|
S. Abd El-Aziz G, N. Mustafa H, Abdulraouf Saleh H, M.O. El-Fark2 M. Zingiber Officinale Alleviates Maternal and Fetal Hepatorenal Toxicity Induced by Prenatal Cadmium. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was designed to address the protective effects of Zingiber officinale on the toxic outcomes of prenatal Cadmium administration on pregnancy outcome. Pregnant female Sprague-Dawley rats were randomly divided into four groups (eight rats/each), control group received distilled water, 2nd group treated with 8.8 mg of CdCl2/kg b. wt, 3rd group treated with 250 mg of Zingiber officinale/kg b. wt, and 4th group treated with 250 mg of Zingiber officinale/kg b. wt, followed by 8.8 mg of CdCl2/kg b.wt. Daily body weight of pregnant was recorded from GD1-GD20, and then pregnant rats were sacrificed at GD20. Samples of maternal and fetal livers and kidneys were processed for histological examination. Administration of Cd to pregnant rats showed adverse effects on pregnant mothers and their fetuses; reduced maternal weight gain, reduced absolute organ weights, reduced fetal growth parameters and placental weights together with altered histological appearance of the maternal and fetal livers and kidneys. While co-administration of Zingiber officinale showed an improvement of these toxic alterations. Zingiber officinale through its antioxidant activity could be beneficial against toxic outcomes of Cd exposure during pregnancy.
Collapse
Affiliation(s)
- Gamal S. Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham N. Mustafa
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamid Abdulraouf Saleh
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy M.O. El-Fark2
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|