1
|
Kim C, Han M, Kim G, Son W, Kim J, Gil M, Rhee YH, Sim NS, Kim CG, Kim HR. Preclinical investigation of anti-tumor efficacy of allogeneic natural killer cells combined with cetuximab for head and neck squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:144. [PMID: 40063100 PMCID: PMC11893940 DOI: 10.1007/s00262-025-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant therapeutic challenge because of the limited effectiveness of current treatments including immunotherapy and chemotherapy. This study investigated the potential of a novel combination therapy using allogeneic natural killer (NK) cells and cetuximab, an anti-epidermal growth factor receptor monoclonal antibody, to enhance anti-tumor efficacy in HNSCC. Allogeneic NK cells were tested against HNSCC cells in vitro and NOG (NOD/Shi-scid/IL-2Rγ null) xenograft mouse models for cytotoxicity. In vitro assays demonstrated enhanced cytotoxicity against HNSCC cells when NK cells were combined with cetuximab, a phenomenon attributed to antibody-dependent cellular cytotoxicity. In vivo, the combination therapy exhibited a significant anti-tumor effect compared to either monotherapy, with high NK cell infiltration and cytotoxic activity in the tumor microenvironment. Tumor infiltration by NK cells was confirmed using flow cytometry and immunohistochemistry, highlighting the increased presence of NK cells (CD3- CD56+). These findings suggest that combination allogeneic NK cells and cetuximab could be a potential therapeutic modality for HNSCC and provide a foundation for future clinical trials to improve patient outcomes.
Collapse
Affiliation(s)
- Chaeyeon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mina Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gamin Kim
- Department of Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonrak Son
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeongah Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam, Republic of Korea
| | | | - Nam Suk Sim
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Rey C, Jones KL, Stacey KB, Evans A, Worboys JD, Howell G, Sheppard S, Davis DM. CD8α and CD70 mark human natural killer cell populations which differ in cytotoxicity. Front Immunol 2025; 16:1526379. [PMID: 40046047 PMCID: PMC11880019 DOI: 10.3389/fimmu.2025.1526379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Natural Killer (NK) cells are innate immune cells that can directly detect and kill cancer cells. Understanding the molecular determinants regulating human NK cell cytotoxicity could help harness these cells for cancer therapies. To this end, we compared the transcriptome of NK cell clones derived from human peripheral blood, which were strongly or weakly cytotoxic against 721.221 and other target cells. After one month of culture, potent NK cell clones showed a significant upregulation in genes involved in cell cycle progression, suggesting that proliferating NK cells were particularly cytotoxic. Beyond two months of culture, NK cell clones which were strongly cytotoxic varied in their expression of 28 genes, including CD8Α and CD70; NK cells with high levels of CD70 expression were weakly cytotoxic while high CD8Α correlated with strong cytotoxicity. Thus, NK cells were cultured and sorted for expression of CD70 and CD8α, and in accordance with the transcriptomic data, CD70+ NK cells showed low cytotoxicity against 721.221 and K562 target cells. Cytotoxicity of CD70+ NK cells could be enhanced using blocking antibodies against CD70, indicating a direct role for CD70 in mediating low cytotoxicity. Furthermore, time-lapse microscopy of NK cell-target cell interactions revealed that CD8α+ NK cells have an increased propensity to sequentially engage and kill multiple target cells. Thus, these two markers relate to NK cell populations which are capable of potent killing (CD70-) or serial killing (CD8α+).
Collapse
Affiliation(s)
- Camille Rey
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Katherine L. Jones
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Kevin B. Stacey
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Alicia Evans
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Jonathan D. Worboys
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Gareth Howell
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Sam Sheppard
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Daniel M. Davis
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
3
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Zhu A, Bai Y, Nan Y, Ju D. Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy. Clin Transl Med 2024; 14:e70046. [PMID: 39472273 PMCID: PMC11521791 DOI: 10.1002/ctm2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Natural killer cell engagers (NKCEs) are a specialised subset of antibodies capable of simultaneously targeting endogenous NK cells and tumour cells, generating precise and effective cytolytic responses against cancer. This review systematically explores NK engagers as a rising star in NK-mediated immunotherapy, specifically focusing on multi-specific engagers. It examines the diverse configuration of NKCEs and how certain biologics could be employed to boost NK activity, including activating receptor engagement and cytokine incorporation. Some challenges and future perspectives of current NKCEs therapy are also discussed, including optimising pharmacokinetics, addressing the immunosuppressive tumour microenvironment and exploring potential combinatorial approaches. By offering an in-depth analysis of the current landscape and future trajectories of multi-specific NKCEs in cancer treatment, this review serves as a valuable resource for understanding this promising field of immunotherapy. HIGHLIGHTS Innovative NKCEs: NK cell engagers (NKCEs) represent a promising new class of immunotherapeutics targeting tumours by activating NK cells. Multi-specific formats: The transition from bi-specific to multi-specific NKCEs enhances their versatility and therapeutic efficacy. MECHANISMS OF ACTION NKCEs have the potential to improve NK cell activation by engaging activating receptors and incorporating cytokines. CLINICAL POTENTIAL Current clinical trials demonstrate the safety and efficacy of various NKCEs across different cancer types. Future research directions: Optimising NKCE designs and exploring combination therapies are essential for overcoming challenges in cancer treatment.
Collapse
Affiliation(s)
- An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Phanabamrung S, Jumnainsong A, Anuwongcharoen N, Phanus-Umporn C, Rareongjai S, Leelayuwat C. Expression and function of the major histocompatibility complex (MHC) class I chain-related A (MICA)*010 in NK cell killing activity. Hum Immunol 2024; 85:111085. [PMID: 39116667 DOI: 10.1016/j.humimm.2024.111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The major histocompatibility complex (MHC) class I chain-related A (MICA) plays an important role in stress cell recognition. High polymorphisms of MICA are relevant to NKG2D binding capacity, responses of NK cells and tumor progression. In this study, MICA genotyping of 97 cholangiocarcinoma patients was performed using PCR-SSP. MICA*010 was positively associated with a corrected p-value of < 0.001 (RR=2.16 (95 % CI, 1.48-3.14)). MICA*010 was previously reported as a non-expressed allele. Thus, the expression of MICA*010 on the cell surface was studied on both MICA*010 transfected cells (HEK 293 T and L929 cells) and stimulated primary monocytes obtained from homozygous MICA*010 individuals using different clones of antibodies (1H10, 1D10, 1C3.1, 1C3.2, 6D4 and 3H5) for detection. Surprisingly, the expression of MICA*010 could be observed on both transfected cells and stimulated monocytes and effectively bound to the NKG2D-Fc fusion protein. The functional study of various MICA alleles revealed the high relative killing activity of NK cells induced by the MICA*010 transfected C1R cells, not following the previously reported rule of the M129V substitution. The structural analysis highlighted the amino acid at position 36 as another important amino acid relevant to preserving the structural integrity of the MICA protein and NKG2D binding. Our data propose a new aspect of functional MICA contributing motifs and that MICA*010 has a potential effect on NK cell functions and might be applicable to other fields of immune responses.
Collapse
Affiliation(s)
- Sonwit Phanabamrung
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Amonrat Jumnainsong
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarayot Rareongjai
- Unit of Excellence in Immunodiagnostic, School of Allied Health Sciences, University of Phayao, Mueang, Phayao 56000, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
6
|
Blanc F, Bertho N, Piton G, Leplat JJ, Egidy G, Bourneuf E, Vincent-Naulleau S, Prévost-Blondel A. Deciphering the immune reaction leading to spontaneous melanoma regression: initial role of MHCII + CD163 - macrophages. Cancer Immunol Immunother 2023; 72:3507-3521. [PMID: 37526660 PMCID: PMC10576715 DOI: 10.1007/s00262-023-03503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The human cutaneous metastatic melanoma is the deadliest skin cancer. Partial, or less frequently complete spontaneous regressions could be observed, mainly mediated by T cells. Nevertheless, the underlying mechanisms are not fully unraveled. We investigated the first events of the immune response related to cancer regression in Melanoma-bearing Libechov Minipigs (MeLiM), a unique swine model of cutaneous melanoma that regresses spontaneously. Using a multiparameter flow cytometry strategy and integrating new clinical and histological criteria of the regression, we show that T cells and B cells are present only in the late stages, arguing against their role in the initial destruction of malignant cells. NK cells infiltrate the tumors before T cells and therefore might be involved in the induction of the regression process. Myeloid cells represent the main immune population within the tumor microenvironment regardless of the regression stage. Among those, MHCII+ CD163- macrophages that differ phenotypically and functionally compared to other tumor-associated macrophages, increase in number together with the first signs of regression suggesting their crucial contribution to initiating the regression process. Our study supports the importance of macrophage reprogramming in humans to improve current immunotherapy for metastatic melanoma.
Collapse
Affiliation(s)
- Fany Blanc
- INSERM, U1016, Institut Cochin, 75014, Paris, France.
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- CEA, DSV/iRCM/SREIT/LREG, 78350, Jouy-en-Josas, France.
| | - Nicolas Bertho
- Université Paris-Saclay, INRAE, VIM, 78350, Jouy-en-Josas, France
- INRAE, Oniris, BIOEPAR, 44300, Nantes, France
| | - Guillaume Piton
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- CEA, DSV/iRCM/SREIT/LREG, 78350, Jouy-en-Josas, France
| | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- CEA, DSV/iRCM/SREIT/LREG, 78350, Jouy-en-Josas, France
| | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- CEA, DSV/iRCM/SREIT/LREG, 78350, Jouy-en-Josas, France
- Laboratoire de Cancérologie Expérimentale, CEA/DRF/IBFJ/IRCM, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, Paris, France
| | - Silvia Vincent-Naulleau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- CEA, DSV/iRCM/SREIT/LREG, 78350, Jouy-en-Josas, France
- Plateforme animalerie, CEA/DRF/IBFJ/IRCM, 92265, Fontenay-Aux-Roses, France
- Bureau des Etudes Biomédicales chez l'Animal, CEA/DRF/BEBA, 92265, Fontenay-Aux-Roses, France
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institut Cochin, 75014, Paris, France.
- Université Paris Cité, Paris, France.
- CNRS, UMR8104, Paris, France.
| |
Collapse
|
7
|
Gauthier L, Virone-Oddos A, Beninga J, Rossi B, Nicolazzi C, Amara C, Blanchard-Alvarez A, Gourdin N, Courta J, Basset A, Agnel M, Guillot F, Grondin G, Bonnevaux H, Bauchet AL, Morel A, Morel Y, Chiron M, Vivier E. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat Biotechnol 2023; 41:1296-1306. [PMID: 36635380 PMCID: PMC10497414 DOI: 10.1038/s41587-022-01626-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123+ tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123+ cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.
Collapse
Affiliation(s)
| | | | | | | | | | - Céline Amara
- Sanofi Drug Metabolism and Pharmacokinetics, Chilly Mazarin, France
| | | | | | - Jacqueline Courta
- Sanofi TMED Biomarkers and Clinical Bioanalysis, Chilly Mazarin, France
| | | | - Magali Agnel
- Sanofi Global Project Management, Vitry sur-Seine, France
| | | | | | | | | | | | | | | | - Eric Vivier
- Innate Pharma, Marseille, France.
- Aix-Marseille University, Centre of National Scientific Research (CNRS), National Insititute of Health and Medical Research (INSERM), Centre of Immunology at Marseille-Luminy (CIML), Marseille, France.
- APHM, Marseille-Immunopole, University Hospital of Timone, Marseille, France.
| |
Collapse
|
8
|
Wang YA, Ranti D, Bieber C, Galsky M, Bhardwaj N, Sfakianos JP, Horowitz A. NK Cell-Targeted Immunotherapies in Bladder Cancer: Beyond Checkpoint Inhibitors. Bladder Cancer 2023; 9:125-139. [PMID: 38993289 PMCID: PMC11181717 DOI: 10.3233/blc-220109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/15/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND For decades, immunotherapies have been integral for the treatment and management of bladder cancer, with immune checkpoint inhibitors (ICIs) transforming patient care in recent years. However, response rates are poor to T cell-targeted ICIs such as programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) blocking antibodies, framing a critical need for complementary immunotherapies. Promising strategies involve harnessing the activation potential of natural killer (NK) cells. They quickly exert their antitumor activity via signaling through germline-encoded activating receptors and are rapidly sensitized to new tissue microenvironments via their regulation by polymorphic HLA class I, KIR and NKG2A receptors. OBJECTIVE In this review, we examined the roles of currently available NK-targeted antitumor treatment strategies such as engineered viral vectors, small-molecule IMiDs, NK agonist antibodies, interleukins, and chimeric antigen receptor (CAR) NK cells, and their potential for improving the efficacy of immunotherapy in the treatment of bladder cancer. METHODS Through review of current literature, we summarized our knowledge of NK cells in solid tumors and hematologic malignancies as their roles pertain to novel immunotherapies already being applied to the treatment of bladder cancer or that offer rationale for considering as potential novel immunotherapeutic strategies. RESULTS NK cells play a critical role in shaping the tumor microenvironment (TME) that can be exploited to improve T cell-targeted immunotherapies. CONCLUSIONS Emerging evidence suggests that NK cells are a prime target for improving antitumor functions in immunotherapies for the treatment of bladder cancer. Further research into profiling NK cells in settings of immunotherapies for bladder cancer could help identify patients who might maximally benefit from NK cell-targeted immunotherapies and the various approaches for exploiting their antitumor properties.
Collapse
Affiliation(s)
- Yuanshuo A Wang
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Ranti
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine Bieber
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Sfakianos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Lan Y, Jia Q, Feng M, Zhao P, Zhu M. A novel natural killer cell-related signatures to predict prognosis and chemotherapy response of pancreatic cancer patients. Front Genet 2023; 14:1100020. [PMID: 37035749 PMCID: PMC10076548 DOI: 10.3389/fgene.2023.1100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Natural killer (NK) cells are involved in monitoring and eliminating cancers. The purpose of this study was to develop a NK cell-related genes (NKGs) in pancreatic cancer (PC) and establish a novel prognostic signature for PC patients. Methods: Omic data were downloaded from The Cancer Genome Atlas Program (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), and used to generate NKG-based molecular subtypes and construct a prognostic signature of PC. NKGs were downloaded from the ImmPort database. The differences in prognosis, immunotherapy response, and drug sensitivity among subtypes were compared. 12 programmed cell death (PCD) patterns were acquired from previous study. A decision tree and nomogram model were constructed for the prognostic prediction of PC. Results: Thirty-two prognostic NKGs were identified in PC patients, and were used to generate three clusters with distinct characteristics. PCD patterns were more likely to occur at C1 or C3. Four prognostic DEGs, including MET, EMP1, MYEOV, and NGFR, were found among the clusters and applied to construct a risk signature in TCGA dataset, which was successfully validated in PACA-CA and GSE57495 cohorts. The four gene expressions were negatively correlated with methylation level. PC patients were divided into high and low risk groups, which exerts significantly different prognosis, clinicopathological features, immune infiltration, immunotherapy response and drug sensitivity. Age, N stage, and the risk signature were identified as independent factors of PC prognosis. Low group was more easily to happened on PCD. A decision tree and nomogram model were successfully built for the prognosis prediction of PC patients. ROC curves and DCA curves demonstrated the favorable and robust predictive capability of the nomogram model. Conclusion: We characterized NKGs-derived molecular subtypes of PC patients, and established favorable prognostic models for the prediction of PC prognosis, which may serve as a potential tool for prognosis prediction and making personalized treatment in PC.
Collapse
Affiliation(s)
- Yongting Lan
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Qing Jia
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Min Feng
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Peiqing Zhao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Min Zhu
- Department of Neonatology, Zibo Maternal and Child Health Hospital, Zibo, China
- *Correspondence: Min Zhu,
| |
Collapse
|
10
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
11
|
Sun Y, Xu J. Emerging Antibodies in Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yaping Sun
- Section of Infectious Diseases Department of Internal Medicine Yale University School of Medicine New Haven CT 06510 USA
| | - Jian Xu
- School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
12
|
Mirjačić Martinović K, Vuletić A, Mališić E, Srdić-Rajić T, Tišma Miletić N, Babović N, Jurišić V. Increased circulating TGF-β1 is associated with impairment in NK cell effector functions in metastatic melanoma patients. Growth Factors 2022; 40:231-239. [PMID: 36129407 DOI: 10.1080/08977194.2022.2124915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Transforming growth factor beta (TGF-β) plays a complex role in carcinogenesis. In 30 melanoma patients and 20 healthy controls (HC) we analysed functional and phenotypic characteristics of NK cells by Flow cytometry, gene expression of TGF-β1 in peripheral blood mononuclear cells by qPCR and serum and supernatant level of free TGF-β1 by ELISA. Melanoma patients had significantly higher serum level of circulatingTGF-β1 compared to HC, especially those with metastasis into the central nervous system (subclass M1d) and high LDH serum values. Melanoma patients compared to HC had significantly higher level of TGF-β1 gene in PBMC. TGF-β1 serum values negatively correlate with NK cell activity analysed by CD107a (degranulation marker), IFN-γ, NKG2D, and NKp46 in patients. Study shows the association of high level of TGF-β1 with NK cell inhibition in patients represents the main mechanism of tumour immune evasion. Targeting TGF-β may become an important cancer treatment for improving antitumor immunity.
Collapse
Affiliation(s)
| | - Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Emina Mališić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nevena Tišma Miletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nada Babović
- Department of Medical Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
13
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
14
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Feng Q, Lin S, Liu H, Yang B, Han L, Han X, Xu L, Xie Z. Meta-Analysis of Whole Blood Transcriptome Datasets Characterizes the Immune Response of Respiratory Syncytial Virus Infection in Children. Front Cell Infect Microbiol 2022; 12:878430. [PMID: 35493728 PMCID: PMC9043598 DOI: 10.3389/fcimb.2022.878430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common and critical viral pathogen causing acute lower respiratory tract infection in infants and young children and has a huge disease burden worldwide. At present, there are many studies on RSV transcriptomics exploring the mechanism of disease, but different studies show different gene expression patterns and results due to different sample collection platforms and data analysis strategies. A meta-analysis was performed on eight whole blood transcriptome datasets containing 436 children with acute RSV infection and 241 healthy children. A total of 319 differentially expressed genes (DEGs) (P value <0.0001) were identified in a meta-analysis using a random effect model. Functional enrichment analysis showed that several pathways related to immunity were significantly altered, including the “chemokine signaling pathway”, “natural killer cell mediated cytotoxicity” and “cytokine–cytokine receptor interaction”. Immune cell type analysis showed that the proportion of neutrophils in most RSV-infected children was higher than that in healthy children. These immune characteristics may help to provide new insights into RSV infection in children.
Collapse
Affiliation(s)
- Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
| | - Huifang Liu
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong, China
| | - Bin Yang
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong, China
| | - Lifen Han
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
- *Correspondence: Lili Xu, ; Xiao Han, ; Lifen Han,
| | - Xiao Han
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
- *Correspondence: Lili Xu, ; Xiao Han, ; Lifen Han,
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Lili Xu, ; Xiao Han, ; Lifen Han,
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers (Basel) 2022; 14:1013. [PMID: 35205760 PMCID: PMC8870468 DOI: 10.3390/cancers14041013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising novel therapeutic strategy for cancer treatment. In a relevant percentage of patients, however, clinical benefits are lower than expected, pushing researchers to deeply analyze the immune responses against tumors and find more reliable and efficient tools to predict the individual response to therapy. Novel tissue engineering strategies can be adopted to realize in vitro fully humanized matrix-based models, as a compromise between standard two-dimensional (2D) cell cultures and animal tests, which are costly and hardly usable in personalized medicine. In this review, we describe the main mechanisms allowing cancer cells to escape the immune surveillance, which may play a significant role in the failure of immunotherapies. In particular, we discuss the role of the tumor microenvironment (TME) in the establishment of a milieu that greatly favors cancer malignant progression and impact on the interactions with immune cells. Then, we present an overview of the recent in vitro engineered preclinical three-dimensional (3D) models that have been adopted to resemble the interplays between cancer and immune cells and for testing current therapies and immunotherapeutic approaches. Specifically, we focus on 3D hydrogel-based tools based on different types of polymers, discussing the suitability of each of them in reproducing the TME key features based on their intrinsic or tunable characteristics. Finally, we introduce the possibility to combine the 3D models with technological fluid dynamics platforms, reproducing the dynamic complex interactions between tumor cells and immune effectors migrated in situ via the systemic circulation, pointing out the challenges that still have to be overcome for setting more predictive preclinical assays.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | | | - Silvia Scaglione
- React4life SRL, 16121 Genova, Italy; (M.M.); (S.S.)
- National Research Council of Italy, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), 16149 Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
- IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| |
Collapse
|
17
|
Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, Hu H, Fang Z, Dong S, Cai Q, Hu S, Liu B. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res 2022; 240:64-86. [PMID: 34757194 DOI: 10.1016/j.trsl.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). Oncolytic viruses (OVs) are generally able to directly destroy tumor cells and stimulate the immune system to fight tumors. Natural killer (NK) cells are important components of the innate immune system and critical players against tumor cells. But the detailed interactions between oncolytic viruses and NK cells and these interaction effects on the antitumor immune response remain to be elucidated. In particular, the functions of activating surface receptors and checkpoint inhibitors on oHSV2-treated NK cells and tumor cells are still unknown. In this study, we found that UV-oHSV2 potently activates human peripheral blood mononuclear cells, leading to increased antitumor activity in vitro and in vivo. Further investigation indicated that UV-oHSV2-stimulated NK cells release IFN-γ via Toll-like receptor 2 (TLR2)/NF-κB signaling pathway and exert antitumor activity via TLR2. We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jing Jin
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yuying Li
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qin Zhou
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ruoyi Yao
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhen Wu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Han Hu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, 430000, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Qian Cai
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China; Huazhong Agricultural University, Wuhan, 430068, China
| | - Binlei Liu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
18
|
Sierra JM, Secchiari F, Nuñez SY, Iraolagoitia XLR, Ziblat A, Friedrich AD, Regge MV, Santilli MC, Torres NI, Gantov M, Trotta A, Ameri C, Vitagliano G, Pita HR, Rico L, Rovegno A, Richards N, Domaica CI, Zwirner NW, Fuertes MB. Tumor-Experienced Human NK Cells Express High Levels of PD-L1 and Inhibit CD8 + T Cell Proliferation. Front Immunol 2021; 12:745939. [PMID: 34616407 PMCID: PMC8488336 DOI: 10.3389/fimmu.2021.745939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Jessica M Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sol Y Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ximena L Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Cecilia Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Gantov
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | - Luis Rico
- Hospital Alemán, Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Nicolás Richards
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Pontarini E, Sciacca E, Grigoriadou S, Rivellese F, Lucchesi D, Fossati-Jimack L, Coleby R, Chowdhury F, Calcaterra F, Tappuni A, Lewis MJ, Fabris M, Quartuccio L, Bella SD, Bowman S, Pitzalis C, Mavilio D, De Vita S, Bombardieri M. NKp30 Receptor Upregulation in Salivary Glands of Sjögren's Syndrome Characterizes Ectopic Lymphoid Structures and Is Restricted by Rituximab Treatment. Front Immunol 2021; 12:706737. [PMID: 34594326 PMCID: PMC8477027 DOI: 10.3389/fimmu.2021.706737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease resulting from the inflammatory infiltration of exocrine glands, mainly salivary and lacrimal glands, leading to secretory dysfunction and serious complications including debilitating fatigue, systemic autoimmunity, and lymphoma. Like other autoimmune disorders, a strong interferon (IFN) signature is present among subsets of pSS patients, suggesting the involvement of innate immunity in pSS pathogenesis. NCR3/NKp30 is a natural killer (NK) cell-specific activating receptor regulating the cross talk between NK and dendritic cells including type II IFN secretion upon NK-cell activation. A genetic association between single-nucleotide polymorphisms (SNPs) in the NCR3/NKp30 promoter gene and a higher susceptibility for pSS has been previously described, with pSS patients most frequently carrying the major allele variant associated with a higher NKp30 transcript and IFN-γ release as a consequence of the receptor engagement. In the present study, we combined RNA-sequencing and histology from pSS salivary gland biopsies to better characterize NKp30 (NCR3) and its ligand B7/H6 (NCR3LG1) in pSS salivary gland tissues. Levels of NCR3/NKp30 were significantly increased both in salivary glands and in circulating NK cells of pSS patients compared with sicca controls, especially in salivary glands with organized ectopic lymphoid structures. In line with this observation, a strong correlation between NCR3/NKp30 levels and salivary gland infiltrating immune cells (CD3, CD20) was found. Furthermore, NCR3/NKp30 levels also correlated with higher IFN-γ, Perforin, and Granzyme-B expression in pSS SGs with organized ectopic lymphoid structures, suggesting an activation state of NK cells infiltrating SG tissue. Of note, NKp30+ NK cells accumulated at the border of the inflammatory foci, while the NKp30 ligand, B7/H6, is shown to be expressed mainly by ductal epithelial cells in pSS salivary glands. Finally, immunomodulatory treatment, such as the B-cell depleting agent rituximab, known to reduce the infiltration of immune cells in pSS SGs, prevented the upregulation of NCR3/NKp30 within the glands.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Elisabetta Sciacca
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Sofia Grigoriadou
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Farzana Chowdhury
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anwar Tappuni
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Myles J. Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Martina Fabris
- Istituto Di Patologia Clinica, Azienda Sanitaria Universitaria Integrata di Udine (ASUID), Udine, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), University of Udine, School of Rheumatology, Academic Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Simon Bowman
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham National Health System (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Salvatore De Vita
- Clinic of Rheumatology, Department of Medicine (DAME), University of Udine, School of Rheumatology, Academic Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| |
Collapse
|
20
|
Santoni G, Amantini C, Santoni M, Maggi F, Morelli MB, Santoni A. Mechanosensation and Mechanotransduction in Natural Killer Cells. Front Immunol 2021; 12:688918. [PMID: 34335592 PMCID: PMC8320435 DOI: 10.3389/fimmu.2021.688918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Federica Maggi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
21
|
Bottino C, Dondero A, Castriconi R. Inhibitory axes impacting on the activity and fate of Innate Lymphoid Cells. Mol Aspects Med 2021; 80:100985. [PMID: 34176653 DOI: 10.1016/j.mam.2021.100985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023]
Abstract
In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| |
Collapse
|
22
|
Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol 2021; 51:1934-1942. [PMID: 34145579 DOI: 10.1002/eji.202048953] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Immuno-oncology is revolutionizing the treatment of cancers, by inducing the recognition and elimination of tumor cells by the immune system. Recent advances have focused on generating or unleashing tumor antigen-specific T-cell responses, leading to alternative treatment paradigms for many cancers. Despite these successes, the clinical benefit has been limited to a subset of patients and certain tumor types, highlighting the need for alternative strategies. One innovative approach is to broaden and amplify antitumoral immune responses by targeting innate immunity. Particularly, the aim has been to develop new antibody formats capable of stimulating the antitumor activity of innate immune cells, boosting not only their direct role in tumor elimination, but also their function in eliciting multicellular immune responses ultimately resulting in long-lasting tumor control by adaptive immunity. This review covers the development of a new class of synthetic molecules, natural killer cell engagers (NKCEs), which are built from fragments of monoclonal antibodies (mAbs) and are designed to harness the immune functions of NK cells in cancer. As currently shown in preclinical studies and clinical trials, NKCEs are promising candidates for the next generation of tumor immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Eric Vivier
- Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
23
|
Lim SM, Pyo KH, Soo RA, Cho BC. The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treat Rev 2021; 99:102240. [PMID: 34119803 DOI: 10.1016/j.ctrv.2021.102240] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
The development of cancer therapies using monoclonal antibodies has been successful during the last 30 years. Recently much progress was achieved with technologies involving bispecific and multi-specific antibodies. Bispecific antibodies (BsAbs) are antibodies that bind two distinct epitopes, and a large number of potential clinical applications of BsAbs have been described. Here we review mechanism of action, clinical development and future challenges of BsAbs which could be a serve as a valuable arsenal in cancer patients.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
24
|
The effects of stereotactic body radiotherapy on peripheral natural killer and CD3 +CD56 + NKT-like cells in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:240-250. [PMID: 33454220 DOI: 10.1016/j.hbpd.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Both natural killer (NK) and CD3+CD56+natural killer T (NKT)-like cells play critical roles in the antitumor response. This study aimed to explore the effects of stereotactic body radiotherapy (SBRT) on peripheral NK and NKT-like cells in patients with hepatocellular carcinoma (HCC), and to identify possible surface markers on these cells that correlate with the prognosis. METHODS Twenty-five HCC patients were prospectively enrolled in our study, and 10 healthy individuals were served as healthy controls. Flow cytometry was used to determine the counts and the percentages of peripheral NK and NKT-like cells, cells with certain receptors, and cells with intracellular interferon-γ and TNF-α secretion at different time points, including time points of prior to SBRT, at post-SBRT, and 3-month and 6-month after treatment. The Kaplan-Meier method with the log-rank test was applied for survival analysis. RESULTS The peripheral NKT-like cells was increased at post-SBRT. Meanwhile, elevated levels of inhibitory receptors and reduced levels of activating receptors of NK cells were also observed in NK cells at post-SBRT, but the levels was not significantly different at 3-month and 6-month as compared with the baseline levels. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT were associated with poor progression-free survival. In addition, higher percentage of CD3+CD56+ NKT-like cells was associated with a higher overall survival rate in HCC patients. CONCLUSIONS SBRT has an apparent effect on both peripheral NK and CD3+CD56+NKT-like cells. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT are correlated with poor patients' PFS. Higher percentage of CD3+CD56+ NKT-like cells is associated with higher OS in HCC patients.
Collapse
|
25
|
Diaz MA, Gasior M, Molina B, Pérez-Martínez A, González-Vicent M. "Ex-vivo" T-cell depletion in allogeneic hematopoietic stem cell transplantation: New clinical approaches for old challenges. Eur J Haematol 2021; 107:38-47. [PMID: 33899960 DOI: 10.1111/ejh.13636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Allogeneic transplantation still remains as standard of care for patients with high-risk hematological malignancies at diagnosis or after relapse. However, GvHD remains yet as the most relevant clinical complication in the early post-transplant period. TCD allogeneic transplant is now considered a valid option to reduce severe GvHD and to provide a platform for cellular therapy to prevent relapse disease or to treat opportunistic infections.
Collapse
Affiliation(s)
- Miguel A Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Mercedes Gasior
- Department of Hematology, Hospital Universitario La Paz, Madrid, Spain
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology and Stem cell Transplantation Department, Hospital Universitario La Paz, Madrid, Spain
| | - Marta González-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| |
Collapse
|
26
|
Myeloma cells induce the accumulation of activated CD94low NK cells by cell-to-cell contacts involving CD56 molecules. Blood Adv 2021; 4:2297-2307. [PMID: 32453840 DOI: 10.1182/bloodadvances.2019000953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Natural killer (NK) cells represent innate effector cells potentially able to play a role during the immune response against multiple myeloma (MM). To better define the distribution and the specific properties of NK cell subsets during MM disease, we analyzed their features in the bone marrow and peripheral blood of newly diagnosed MM patients. Our findings revealed that, in both compartments, NK cells were more abundant than in healthy donors. Among total MM-NK cells, a significant increase of CD94lowCD56dim NK cell subset was observed, which already appears in clinical precursor conditions leading to MM, namely monoclonal gammopathy of undetermined significance and smoldering MM, and eventually accumulates with disease progression. Moreover, a consistent fraction of CD94lowCD56dim NK cells was in a proliferation phase. When analyzed for their killing abilities, they represented the main cytotoxic NK cell subset against autologous MM cells. In vitro, MM cells could rapidly induce the expansion of the CD94lowCD56dim NK cell subset, thus reminiscent of that observed in MM patients. Mechanistically, this accumulation relied on cell to cell contacts between MM and NK cells and required both activation via DNAM-1 and homophilic interaction with CD56 expressed on MM cells. Considering the growing variety of combination treatments aimed at enhancing NK cell-mediated cytotoxicity against MM, these results may also be informative for optimizing current immunotherapeutic approaches.
Collapse
|
27
|
Martínez-Sánchez MV, Fuster JL, Campillo JA, Galera AM, Bermúdez-Cortés M, Llinares ME, Ramos-Elbal E, Pascual-Gázquez JF, Fita AM, Martínez-Banaclocha H, Galián JA, Gimeno L, Muro M, Minguela A. Expression of NK Cell Receptor Ligands on Leukemic Cells Is Associated with the Outcome of Childhood Acute Leukemia. Cancers (Basel) 2021; 13:cancers13102294. [PMID: 34064810 PMCID: PMC8151902 DOI: 10.3390/cancers13102294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Natural killer cells (NK cells) of the innate immune system are suspected of playing an important role in eliminating residual leukemia cells during maintenance chemotherapy given to children with acute lymphoblastic leukemia for about two years. This study analyzes the expression of ligands for the receptors that regulate the function of NK cells on leukemic cells of more than one hundred children with acute lymphoid and myeloid leukemia. Our results show that the loss of expression of some molecules involved in the activation of NK cells is associated with poorer survival. In addition, a genetic combination of molecules that interact to regulate NK cell function seems to be associated with a higher relapse rate during/after chemotherapy and shorter patient survival. Children who carry this genetic combination are refractory to current chemotherapy treatments, and stem cell transplantation does not seem to contribute to their cure either, and therefore, they should be considered as candidates for alternative biological therapies that might offer better results. Abstract Acute leukemia is the most common malignancy in children. Most patients are cured, but refractory/relapsed AML and ALL are the first cause of death from malignancy in children. Maintenance chemotherapy in ALL has improved survival by inducing leukemic cell apoptosis, but immune surveillance effectors such as NK cells might also contribute. The outcome of B-ALL (n = 70), T-ALL (n = 16), and AML (n = 16) pediatric patients was evaluated according to leukemic cell expression of ligands for activating and inhibiting receptors that regulate NK cell functioning. Increased expression of ULBP-1, a ligand for NKG2D, but not that of CD112 or CD155, ligands for DNAM-1, was associated with poorer 5-year event-free survival (5y-EFS, 77.6% vs. 94.9%, p < 0.03). Reduced expression of HLA-C on leukemic cells in patients with the KIR2DL1/HLA-C*04 interaction was associated with a higher rate of relapse (17.6% vs. 4.4%, p = 0.035) and lower 5y-EFS (70.6% vs. 92.6%, p < 0.002). KIR2DL1/HLA-C*04 interaction was an independent predictive factor of events (HR = 4.795, p < 0.005) or death (HR = 6.731, p < 0.005) and might provide additional information to the current risk stratification. Children who carry the KIR2DL1/HLA-C*04 interaction were refractory to current chemotherapy treatments, including allogeneic stem cell transplantation; therefore, they should be considered as candidates for alternative biological therapies that might offer better results.
Collapse
Affiliation(s)
- María Victoria Martínez-Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Mar Bermúdez-Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Eduardo Ramos-Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Juan Francisco Pascual-Gázquez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Ana María Fita
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Helios Martínez-Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Human Anatomy Department, University of Murcia (UM), 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Correspondence: ; Tel.: +34-968-395-379
| |
Collapse
|
28
|
Lenart M, Kluczewska A, Szaflarska A, Rutkowska-Zapała M, Wąsik M, Ziemiańska-Pięta A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Selective downregulation of natural killer activating receptors on NK cells and upregulation of PD-1 expression on T cells in children with severe and/or recurrent Herpes simplex virus infections. Immunobiology 2021; 226:152097. [PMID: 34015527 DOI: 10.1016/j.imbio.2021.152097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Severe, recurrent or atypical Herpes simplex virus (HSV) infections are still posing clinical and diagnostic problem in clinical immunology facilities. However, the molecular background of this disorder is still unclear. The aim of this study was to investigate the expression of activating receptors on NK cells (CD16, NKp46, NKG2D, NKp80, 2B4, CD48 and NTB-A) and checkpoint molecule PD-1 on T lymphocytes and NK cells, in patients with severe and/or recurrent infections with HSV and age-matched healthy control subjects. As a result, we noticed that patients with severe and/or recurrent infection with HSV had significantly lower percentage of CD16brightCD56dim and higher percentage of CD16dimCD56bright NK cell subsets, when compared to control subjects, which may be associated with abnormal NK cell maturation during chronic HSV infection. Patients had also significantly downregulated expression of CD16 receptor on CD16bright NK cells. The expression of activating receptors was significantly reduced on patients' NK cells - either both the percentage of NK cells expressing the receptor and MFI of its expression (NKp46, NKp80 and 2B4 on CD16brightCD56dim cells and NKp46 on CD16dimCD56bright cells) or only MFI (NKG2D on both NK cell subsets). It should be noted that the reduction of receptor expression was limited to NK cells, since there was no differences in the percentage of receptor-positive cells or MFI on T cells. However, NTB-A receptor was the only one which expression was not only simultaneously changed in patients' NK and T cells, but also significantly upregulated on CD16dimCD56bright NK cell and CD8+ cell subsets. Patients had also upregulated proportion of CD4+ T cells expressing PD-1. Thus, we suggest that an increased percentage of PD-1+ cells may represent an independent indirect mechanism of downregulation of antiviral response, separate from the reduction of NK cell activating receptors expression. Altogether, our studies indicate two possible mechanisms which may promote perpetuation of HSV infection: 1) selective inhibition of activating receptors on NK cells, but not on T cells, and 2) upregulation of checkpoint molecule PD-1 on CD4+ T cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Wąsik
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Ziemiańska-Pięta
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland.
| |
Collapse
|
29
|
Intratumor Regulatory Noncytotoxic NK Cells in Patients with Hepatocellular Carcinoma. Cells 2021; 10:cells10030614. [PMID: 33802077 PMCID: PMC7999652 DOI: 10.3390/cells10030614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies support the role of natural killer (NK) cells in controlling hepatocellular carcinoma (HCC) progression. However, ambiguity remains about the multiplicity and the role of different NK cell subsets, as a pro-oncogenic function has been suggested. We performed phenotypic and functional characterization of NK cells infiltrating HCC, with the corresponding nontumorous tissue and liver from patients undergoing liver resection for colorectal liver metastasis used as controls. We identified a reduced number of NK cells in tumors with higher frequency of CD56BRIGHTCD16- NK cells associated with higher expression of NKG2A, NKp44, and NKp30 and downregulation of NKG2D. Liver-resident (CXCR6+) NK cells were reduced in the tumors where T-bethiEomeslo expression was predominant. HCCs showed higher expression of CD49a with particular enrichment in CD49a+Eomes+ NK cells, a subset typically represented in the decidua and playing a proangiogenic function. Functional analysis showed reduced TNF-α production along with impaired cytotoxic capacity that was inversely related to CXCR6-, T-bethiEomeslo, and CD49a+Eomes+ NK cells. In conclusion, we identified a subset of NK cells infiltrating HCC, including non-liver-resident cells that coexpressed CD49a and Eomes and showed reduced cytotoxic potential. This NK cell subset likely plays a regulatory role in proangiogenic function.
Collapse
|
30
|
Cribbs AP, Filippakopoulos P, Philpott M, Wells G, Penn H, Oerum H, Valge-Archer V, Feldmann M, Oppermann U. Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function. Front Immunol 2021; 12:626255. [PMID: 33717143 PMCID: PMC7953504 DOI: 10.3389/fimmu.2021.626255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.
Collapse
Affiliation(s)
- Adam P Cribbs
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | | | - Martin Philpott
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Graham Wells
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Henry Penn
- Arthritis Centre, Northwick Park Hospital, Harrow, United Kingdom
| | - Henrik Oerum
- Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| | - Viia Valge-Archer
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Marc Feldmann
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom.,Freiburg Institute of Advanced Studies, Freiburg, Germany.,Oxford Centre for Translational Myeloma Research, Oxford, United Kingdom
| |
Collapse
|
31
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Chinnery F, King CA, Elliott T, Bateman AR, James E. Viral antigen mediated NKp46 activation of NK cells results in tumor rejection via NK-DC crosstalk. Oncoimmunology 2021; 1:874-883. [PMID: 23162755 PMCID: PMC3489743 DOI: 10.4161/onci.20636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells play a critical role in antitumor immunity, their activation being regulated through NK cell receptors. Although the endogenous ligands for these receptors are largely unknown, viral ligands have been identified. We investigated the ability of an activating NK receptor ligand derived from the mumps virus, haemagglutinin-neuraminidase (HN) to enhance NK activation against tumor cells. HN-expressing B16.OVA tumor cells induced stronger activation of NK cells compared with B16.OVA cells and also promoted dendritic cell (DC) activation toward a DC1 phenotype, in vitro. Moreover, incubation of DCs, NK cells and HN-expressing B16-OVA cells further enhanced NK cell activation through the NK-DC crosstalk, in a cell-to-cell contact- and IL-12-dependent fashion. Immunization of mice with HN-expressing B16-OVA cells resulted in > 85% survival rate after subsequent challenge with parental B16 or B16.OVA tumor cells. Tumor rejection was dependent on both NK and CD8+ T cells but not on CD4+ T cells, demonstrating induction of an effective adaptive immune response through innate immune cell activation. Our data indicate the potential of using robust NK cell activation, which through the NK-DC crosstalk stimulates effective antitumor responses, providing an alternate vaccine strategy.
Collapse
Affiliation(s)
- Fay Chinnery
- Cancer Sciences Unit; Faculty of Medicine; University of Southampton; Southampton, UK
| | | | | | | | | |
Collapse
|
33
|
Pasvenskaite A, Liutkeviciene R, Gedvilaite G, Vilkeviciute A, Liutkevicius V, Uloza V. Impact of IL-10 Promoter Polymorphisms and IL-10 Serum Levels on Advanced Laryngeal Squamous Cell Carcinoma and Survival Rate. Cancer Genomics Proteomics 2021; 18:53-65. [PMID: 33419896 DOI: 10.21873/cgp.20241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIM Prognosis of advanced stages of laryngeal squamous cell carcinoma (LSCC) remains poor. To clarify therapeutic targets and improve survival rate, identification of new specific and prognostic biomarkers of LSCC is required. The study aimed to evaluate the impact of IL-10:rs1800871, rs1800872, rs1800896 single nucleotide polymorphisms (SNPs), and IL-10 serum levels on LSCC development and determine associations of selected SNPs with patient survival rate. PATIENTS AND METHODS A total of 300 LSCC patients and 533 controls were included in the study. Genotyping was carried out using RT-PCR; IL-10 serum levels were analyzed by ELISA. RESULTS Significant associations were identified between IL-10 rs1800871 variants and advanced stage of LSCC patient group in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733; p=0.037). Significant variants of IL-10 rs1800872 were determined in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733, p=0.037). The distribution of IL-10 SNPs genotypes did not impact LSCC patient survival rate (respectively, p=0.952; p=0.952; p=0.991). CONCLUSION IL-10:rs1800871 and rs1800872 SNPs are associated with advanced stage of LSCC. The genotypic distribution of IL-10 SNPs does not influence the survival rate of LSCC patients.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
34
|
Qiu H, Gao S, Sun Z, Wang J. Dual role of B7-H6 as a novel prognostic marker in hepatocellular carcinoma. APMIS 2020; 129:105-117. [PMID: 33220098 DOI: 10.1111/apm.13099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
B7 homolog 6 (B7-H6), a new member of the B7 family, is identified as an activating ligand for cytotoxicity triggering receptor 3 (NKp30) expressing on natural killer cells. The purpose of this study was to investigate the clinical significance of B7-H6 in hepatocellular carcinoma (HCC). We evaluated B7-H6 expression by immunohistochemistry in a cohort of 90 HCC tumors with clinical follow-up, the potential relationship between the B7-H6 expression and the clinicopathological characteristics of HCC patients was also analyzed. Stable B7-H6 knockdown in hepatoma cell line was established to explore the function and mechanism of B7-H6 in HCC. This study showed that high expression of B7-H6 was significantly associated with smaller tumor size, single tumor number in HCC, but no significant association was found between B7-H6 overexpression and other clinicopathological parameters. Moreover, Kaplan-Meier survival analysis showed that high expression of B7-H6 was significantly correlated with better survival of HCC patients. Knockdown of B7-H6 inhibited tumor cell proliferation and induced cell apoptosis. However, it also impaired the sensitivity of tumor cells to NK-mediated lysis together with significantly decreased degranulation and IFN-γ release of NK cells. These results indicated that B7-H6 has a dual role in HCC. It could be an independent indicator for better survival of HCC and maybe a potential target for future cancer treatment.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Shangshang Gao
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Ziling Sun
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Jiamin Wang
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
36
|
Anderson KM, Augusto DG, Dandekar R, Shams H, Zhao C, Yusufali T, Montero-Martín G, Marin WM, Nemat-Gorgani N, Creary LE, Caillier S, Mofrad MRK, Parham P, Fernández-Viña M, Oksenberg JR, Norman PJ, Hollenbach JA. Killer Cell Immunoglobulin-like Receptor Variants Are Associated with Protection from Symptoms Associated with More Severe Course in Parkinson Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1323-1330. [PMID: 32709660 DOI: 10.4049/jimmunol.2000144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.
Collapse
Affiliation(s)
- Kirsten M Anderson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Danillo G Augusto
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Hengameh Shams
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Chao Zhao
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Tasneem Yusufali
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304
| | - Stacy Caillier
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720; and
| | - Peter Parham
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | | | - Jorge R Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158;
| |
Collapse
|
37
|
Bhat R, Farrag MA, Almajhdi FN. Double-edged role of natural killer cells during RSV infection. Int Rev Immunol 2020; 39:233-244. [PMID: 32469615 DOI: 10.1080/08830185.2020.1770748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer cells play a vital role in the rejection of tumors and pathogen-infected cells. NK cells are indispensable in the early immune response against viral infections by directly targeting infected cells. Furthermore, NK cells influence adaptive immunity by driving virus-specific T-cell responses. Respiratory syncytial virus, a highly contagious virus that causes bronchiolitis, is the main reason for mortality in infants and elderly patients. RSV infection triggers both innate and adaptive immune responses. However, immunity against RSV is ephemeral due to the impaired development of immunological memory. The role of NK cells during RSV infection remains ambiguous. NK cells play a dual role in RSV infection; initially, their role is a protective one as they utilize their intrinsic cytotoxicity, followed by a detrimental one that induces lung injury due to the inhibition of antibody responses and the secretion of pro-inflammatory factors. Noteworthy, IFN-γ released from NK cells play a critical role in promoting a shift to adaptive responses and inhibiting antibody responses in neonates. Indeed, NK cells have a pro-inflammatory and inhibitory role rather than a cytotoxic one that contributes to the severity of the disease. Therapeutic options, including DNA-protein-based vaccines, synthetic peptides, and attenuated strains, are presently under tests. However, there is a need for effective strategies to augment NK cell activity and circumvent the pro-inflammatory activity to benefit the host. In this review, we focused on the role played by NK cells in the immune response and its outcome on the immunopathogenesis of RSV disease.
Collapse
Affiliation(s)
- Rauf Bhat
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Cristiani CM, Garofalo C, Passacatini LC, Carbone E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand J Immunol 2020; 91:e12861. [PMID: 31879979 DOI: 10.1111/sji.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2023]
Abstract
Human solid malignant tumours may be particularly resistant to conventional therapies. Among solid tumours, immunological features of cutaneous melanoma have been well characterized in the past and today melanoma patients are routinely treated with the anti-immune checkpoints immunotherapy that has completely changed metastatic melanoma treatment and prognosis. Two cytotoxic cell populations may lead to the physical elimination of tumour cell targets: cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Tumour recognition by CTLs depends on major histocompatibility complex (MHC) class I molecules, while NK cells recognize tumours expressing low or null levels of MHC class I molecules. Despite this well-established complementarity, NK cells are still left behind in the optimization of innovative immunotherapy approaches. NK cells are members of innate lymphoid cells (ILCs) that play a critical role in early host defence against invading pathogens and transformed cells. Recent findings suggest that NK cell frequencies directly correlate with the overall survival of ipilimumab-treated melanoma patients. Furthermore, in vitro and in vivo evidences indicate that NK cells can selectively kill cancer stem cells, reducing tumour size and delaying metastatic progression. The aim of this review is to provide a survey of the evidences indicating NK cells as an excellent candidate to complement the newest solid tumour immunotherapy approaches.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
39
|
Bian J, He L, Wu Y, Liu W, Ma H, Sun M, Yu J, Yu Z, Wei M. Anterior gradient 2-derived peptide upregulates major histocompatibility complex class I-related chains A/B in hepatocellular carcinoma cells. Life Sci 2020; 246:117396. [PMID: 32035130 DOI: 10.1016/j.lfs.2020.117396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 12/31/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. Decrease in NKG2D ligand levels and exhaustion of NK cells in HCC patients are major causes of immune escape, high recurrence, poor prognosis, and low overall survival. Enhancing the susceptibility of HCC to NK cells by upregulating NKG2DLs on tumor cells is an effective treatment strategy. This study aimed to identify the effect of the Anterior gradient 2 (AGR2)-derived peptide P1, which was reported to bind to HLA-A*0201 as an epitope, on both the expression of major histocompatibility complex class I-related chains A/B (MICA/B) on HCC cells and the cytotoxicity of NK cells. MAIN METHODS The effect of P1 on MICA/B expression on HCC cells was determined by qRT-PCR, western blotting, and flow cytometry analysis. HCC cells were pre-treated with various pathway inhibitors to identify the molecular pathways associated with P1 treatment. The cytotoxicity of NK cells toward HCC was investigated by LDH cytotoxicity assay. The tumor-suppression effect of P1 was determined in vivo using a NOD/SCID mice HCC model. KEY FINDINGS P1 significantly increased MICA/B expression on HCC cells, thereby enhancing their susceptibility to the cytotoxicity of NK cells in vitro and in vivo. Further, p38 MAPK cell signaling pathway inhibitor SB203580 significantly attenuated the effects of P1 in vivo and in vitro. SIGNIFICANCE P1 upregulates MICA and MICB expression on HCC cells, thereby promoting their recognition and elimination by NK cells, which makes P1 an attractive novel immunotherapy agent.
Collapse
Affiliation(s)
- Jing Bian
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Linxiu He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Heyao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China..
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China..
| |
Collapse
|
40
|
Jinushi M, Baghdadi M. Role of Innate Immunity in Cancers and Antitumor Response. CANCER IMMUNOLOGY 2020:11-28. [DOI: 10.1007/978-3-030-30845-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Martinović KM, Milićević M, Larsen AK, Džodić R, Jurišić V, Konjević G, Vuletić A. Effect of cytokines on NK cell activity and activating receptor expression in high-risk cutaneous melanoma patients. Eur Cytokine Netw 2019; 30:160-167. [PMID: 32096478 DOI: 10.1684/ecn.2019.0440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Stage II melanoma patients have high risk for regional and distant metastases and may benefit from novel therapeutic strategies. To clarify the role of NK cells in Stage II melanoma, we characterized the cytotoxic activity of NK cells and the expression of various activating and inhibitory receptors in high-risk cutaneous melanoma patients (Stages IIB and IIC) compared to low-risk patients (Stage IA). MATERIALS AND METHODS Native and cytokine-treated peripheral blood mononuclear cells were used for functional and phenotypical analyses. RESULTS Compared to Stage IA-B patients, Stage IIB-C patients showed significantly decreased NK cell activity, as well as decreased expression of the activating NKG2D and CD161 receptors, most likely due to increased serum levels of the immunosuppressive cytokine TGF-β1 in these patients. Interestingly, treatment of periperal blood mononuclear cells with IFN-α, IL-2, IL-12 or the combination of IL-12 and IL-18 significantly induced NK cell activity for both groups of melanoma patients. However, only low-risk patients had a significant increase in the expression of the NKG2D receptor after in vitro treatment with IFN-α, as well as an significant increase in the expression of CD161 after treatment with IFN-α or IL-12. Although IL-2 induced the expression of NKG2D in both groups of patients, this increase was significantly lower in high-risk melanoma. CONCLUSION NK cell parameters may be useful as biomarkers of disease progression in localized melanoma patients. Our results further suggest that the use of NK cell-activating cytokines in combination with inhibitors of immunosuppressive factors like TGF-β1 could be a therapeutic option for the treatment of high-risk cutaneous melanoma patients.
Collapse
Affiliation(s)
- Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Milica Milićević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM U938 and Sorbonne University, Kourilsky building 1st floor, Hôpital Saint-Antoine, 184 rue du Faubourg Saint Antoine, 75571 PARIS Cédex 12 France
| | - Radan Džodić
- Surgical Oncology Clinic, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, P.BOX 124, 34000 Kragujevac, Serbia
| | - Gordana Konjević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
42
|
Diaz MA, Zubicaray J, Molina B, Abad L, Castillo A, Sebastian E, Galvez E, Ruiz J, Vicario JL, Ramirez M, Sevilla J, González-Vicent M. Haploidentical Stem Cell Transplantation in Children With Hematological Malignancies Using αβ + T-Cell Receptor and CD19 + Cell Depleted Grafts: High CD56 dim/CD56 bright NK Cell Ratio Early Following Transplantation Is Associated With Lower Relapse Incidence and Better Outcome. Front Immunol 2019; 10:2504. [PMID: 31736949 PMCID: PMC6831520 DOI: 10.3389/fimmu.2019.02504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
We prospectively analyzed outcomes of haploidentical hematopoietic stem cell transplantation using αβ+ T-cell receptor/CD19+ depleted grafts. Sixty-three transplantations were performed in 60 patients. Twenty-eight patients were diagnosed with acute lymphoblastic leukemia (ALL), 27 patients were diagnosed with acute myelogenous leukemia, and in eight other hematological malignancies were diagnosed. Twenty-three were in first complete remission (CR), 20 in second CR, 20 beyond second CR. Four patients developed graft failure. Median time to neutrophil and platelet recovery was 14 (range 9–25) and 10 days (range 7–30), respectively. The probability of non-relapse mortality (NRM) by day +100 after transplantation was 10 ± 4%. With a median follow-up of 28 months, the probability of relapse was 32 ± 6% and disease-free survival was 52 ± 6%. Immune reconstitution was leaded by NK cells. As such, a high CD56dim/CD56bright NK cell ratio early after transplantation was associated with better disease-free survival (DFS) (≥3.5; 77 ± 8% vs. <3.5; 28 ± 5%; p = 0.001) due to lower relapse incidence (≥3.5; 15 ± 7% vs. <3.5; 37 ± 9%; p = 0.04). T-cell reconstitution was delayed and associated with severe infections after transplant. Viral reactivation/disease and presence of venooclusive disease of liver in the non-caucasian population had a significant impact on NRM. αβ+ T-cell receptor/CD19+ cell-depleted haploidentical transplant is associated with good outcomes especially in patients in early phase of disease. A rapid expansion of “mature” natural killer cells early after transplantation resulted on lower probability of relapse, suggesting a graft vs. leukemia effect independent from graft-vs.-host reactions.
Collapse
Affiliation(s)
- Miguel A Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Josune Zubicaray
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Lorea Abad
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Ana Castillo
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Elena Sebastian
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Eva Galvez
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Julia Ruiz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility Laboratory, Community Transfusion Center of Madrid, Madrid, Spain
| | - Manuel Ramirez
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Julian Sevilla
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Marta González-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| |
Collapse
|
43
|
Abstract
Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
Collapse
|
44
|
Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019; 177:1701-1713.e16. [PMID: 31155232 DOI: 10.1016/j.cell.2019.04.041] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.
Collapse
|
45
|
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing Natural Killer and CD8 + T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8 + T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38:38-59. [PMID: 31009335 PMCID: PMC6634170 DOI: 10.1089/mab.2018.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic NK/CD8+ T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8+ T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival. Failure of cancer patients to respond to natural killer (NK) cell therapies could be due to HLA-E overexpression in tumor tissues. Preventing the inhibitory receptor-ligand interaction by either receptor- or ligand-specific monoclonal antibodies (mAbs) is an innovative passive immunotherapeutic strategy for cancer. Since receptors and ligands can be monomeric or homo- or heterodimeric proteins, the efficacy of mAbs may rely on their ability to distinguish monospecific (private) functional epitopes from nonfunctional common (public) epitopes. We developed monospecific anti-HLA-E mAbs (e.g., TFL-033) that recognize only HLA-E-specific epitopes, but not epitopes shared with other HLA class-I loci as occurs with currently available polyreactive anti-HLA-E mAbs. Interestingly the amino acid sequences in the α1 and α2 helices of HLA-E, critical for the recognition of the mAb TFL-033, are strikingly the same sequences recognized by the CD94/NKG2A inhibitory receptors on NK/CD8+ cells. Such monospecific mAbs can block the CD94/NKG2A interaction with HLA-E to restore NK cell and CD8+ anticancer cell cytotoxicity. Furthermore, the HLA-E monospecific mAbs significantly promoted the proliferation of the CD4-/CD8+ T cells. These monospecific mAbs are also invaluable for the specific demonstration of HLA-E on tumor biopsies, potentially indicating those tumors most likely to respond to such therapy. Thus, they can be used to enhance passive immunotherapy once phased preclinical studies and clinical trials are completed. On principle, we postulate that NK cell passive immunotherapy should capitalize on both of these features of monospecific HLA-E mAbs, that is, the specific determination HLA-E expression on a particular tumor and the enhancement of NK cell/CD8+ cytotoxicity if HLA-E positive.
Collapse
Affiliation(s)
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics and Pathology, Children's Hospital, Keck School of Medicine, USC, Los Angeles, California
| |
Collapse
|
46
|
Gimeno L, Martínez-Banaclocha H, Bernardo MV, Bolarin JM, Marín L, López-Hernández R, López-Alvarez MR, Moya-Quiles MR, Muro M, Frias-Iniesta JF, Martínez-Escribano J, Alvarez-López MR, Minguela A, Campillo JA. NKG2D Polymorphism in Melanoma Patients from Southeastern Spain. Cancers (Basel) 2019; 11:cancers11040438. [PMID: 30925758 PMCID: PMC6521179 DOI: 10.3390/cancers11040438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Background: Natural killer (NK) and CD8+ T cells are involved in the immune response against melanoma. C-Type lectin-like NK cell receptors are located in the Natural Killer Complex (NKC) region 12p13.2-p12.3 and play a critical role in regulating the activity of NK and CD8+ T cells. An association between polymorphisms in the NKC region, including the NKG2D gene and NKG2A promoter, and the risk of cancer has been previously described. The aim of this study was to analyze the association of polymorphisms in the NKC region with cutaneous melanoma in patients from southeastern Spain. Methods: Seven single-nucleotide polymorphisms (SNPs) in the NKG2D gene (NKC3,4,7,9,10,11,12), and one SNP in the NKG2A promoter (NKC17) were genotyped by a TaqMan 5′ Nuclease Assay in 233 melanoma patients and 200 matched healthy controls. Results: A linkage disequilibrium analysis of the SNPs performed in the NKC region revealed two blocks of haplotypes (Hb-1 and Hb-2) with 14 and seven different haplotype subtypes, respectively. The third most frequent haplotype from the block Hb-2—NK3 (CAT haplotype)—was significantly more frequent on melanoma patients than on healthy controls (p = 0.00009, Pc = 0.0006). No further associations were found when NKC SNPs were considered independently. Conclusions: Our results suggest an association between NKG2D polymorphisms and the risk of cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | | | - M Victoria Bernardo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Católica de San Antonio de Murcia (UCAM), 30107 Murcia, Spain.
| | - José Miguel Bolarin
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - Luis Marín
- Immunology Section, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain.
| | - Ruth López-Hernández
- Immunology Section, Hospital Universitario de Gran Canaria Doctor Negrín, 35010 Las Palmas de Gran Canaria, Spain.
| | - M Rocío López-Alvarez
- Center for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - M Rosa Moya-Quiles
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - José Francisco Frias-Iniesta
- Dermatology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - Jorge Martínez-Escribano
- Dermatology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - M Rocío Alvarez-López
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| | - José Antonio Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Instituto Murciano de Investigación Biomédica (IMIB), 30120 Murcia, Spain.
| |
Collapse
|
47
|
Targeting natural killer cells in solid tumors. Cell Mol Immunol 2019; 16:415-422. [PMID: 30911118 DOI: 10.1038/s41423-019-0224-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells endowed with cytolytic activity and a capacity to secrete cytokines and chemokines. Several lines of evidence suggest that NK cells play an important role in anti-tumor immunity. Some therapies against hematological malignacies make use of the immune properties of NK cells, such as their ability to kill residual leukemic blasts efficiently after conditioning during haploidentical hematopoietic stem cell transplantation. However, knowledge on NK cell infiltration and the status of NK cell responsiveness in solid tumors is limited so far. The pro-angiogenic role of the recently described NK cell-like type 1 innate lymphoid cells (ILC1s) and their phenotypic resemblance to NK cells are confounding factors that add a level of complexity, at least in mice. Here, we review the current knowledge on the presence and function of NK cells in solid tumors as well as the immunotherapeutic approaches designed to harness NK cell functions in these conditions, including those that aim to reinforce conventional anti-tumor therapies to increase the chances of successful treatment.
Collapse
|
48
|
Ren F, Zhao Q, Huang L, Zheng Y, Li L, He Q, Zhang C, Li F, Maimela NR, Sun Z, Jia Q, Ping Y, Zhang Z, Chen X, Yue Y, Liu S, Cao L, Zhang Y. The R132H mutation in
IDH
1 promotes the recruitment of
NK
cells through
CX
3
CL
1/
CX
3
CR
1 chemotaxis and is correlated with a better prognosis in gliomas. Immunol Cell Biol 2019; 97:457-469. [PMID: 30575118 DOI: 10.1111/imcb.12225] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Feifei Ren
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- School of Life Sciences Zhengzhou University Zhengzhou Henan 450052 China
| | - Qitai Zhao
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Lan Huang
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Yujia Zheng
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Lifeng Li
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Qianyi He
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Chaoqi Zhang
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Feng Li
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Nomathamsanqa R Maimela
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Zhi Sun
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Qingquan Jia
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Yu Ping
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Zhen Zhang
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Xinfeng Chen
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Ying Yue
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- The No. 7 People's Hospital of Zhengzhou Zhengzhou Henan 450052 China
| | - Shasha Liu
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Ling Cao
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Yi Zhang
- Biotherapy Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- School of Life Sciences Zhengzhou University Zhengzhou Henan 450052 China
- Cancer Center The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Key Laboratory for Tumor Immunology and Biotherapy Zhengzhou Henan 450052 China
| |
Collapse
|
49
|
Ito K, Shiraishi R, Higai K. Globo-A Binds to the Recombinant Natural Cytotoxicity Receptor NKp44. Biol Pharm Bull 2018; 41:1480-1484. [PMID: 30175783 DOI: 10.1248/bpb.b18-00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells play an important role in tumor immunity and infection control. The natural cytotoxicity receptors (NCRs) NKp46, NKp44 and NKp30 are involved in the control of the activation of NK cells. Few reports have investigated the ligands of NCRs. We previously reported the NCRs binding affinity to heparin and glycosaminoglycans. We also showed that multimeric sialyl Lewis X-expressing transferrin, secreted by human hepatoma HepG2 cells, binds to NKp46 and NKp44, but not to NKp30. In this study, we investigated the binding between NCRs and glycolipids. The possible binding of glycolipids to NCRs was screened by microarray, using the recombinant extracellular domain of NKp46, NKp44 and NKp30 tagged with 6×His (rNKp46, rNKp44 and rNKp30). We found that rNKp44 binds to Globo-A. However, we did not detect the interaction between rNKp46 or rNKp30 and any of the glycolipids investigated. Direct binding assays supported the results of the microarray screening. Therefore, we concluded that Globo-A is a novel ligand for NKp44 but not NKp46 and NKp30, and showed differences in the ligand selectivity of NCRs.
Collapse
Affiliation(s)
- Kenichiro Ito
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University.,Ryugasaki Saisei-kai Hospital
| | - Ryo Shiraishi
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
50
|
Siu EHL, Chan AWH, Chong CCN, Chan SL, Lo KW, Cheung ST. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Transl Gastroenterol Hepatol 2018; 3:89. [PMID: 30603725 DOI: 10.21037/tgh.2018.10.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The absence of potent therapeutic option accounts for the dismal prognosis of advanced hepatocellular carcinoma (HCC) with high mortality and recurrence rate. For a decade, sorafenib is the only approved systemic drug in the first-line setting and warrants as the standard-of-care for HCC in the advanced stage. Given the common failures of chemotherapies and targeted therapies in the field of HCC treatment, promising breakthroughs were eagerly needed and until recently, immunotherapies have opened a new era of anticancer treatment. The liver organ is perceived as "immunotolerant" owing to its functional role, and the hepatic immune balance is found to be deregulated during chronic liver inflammation and HCC tumorigenesis. Restoring a competent immunity by mitigation of immunosuppression signals is a contemporary approach. In this regard, novel immune checkpoint inhibitors have revolutionized cancer pharmacological treatment options with remarkable clinical outcomes in hematologic malignancy and multiple solid tumors including advanced HCC. Nivolumab, an immunotherapeutic agent to block programmed cell death protein 1 (PD-1), showed high efficacy potential for patients progressed with sorafenib and granted accelerated approval by the US Food and Drug Administration (FDA) recently. The development of this class of immunotherapeutic drug is currently based on myriad studies established on the role of T-cell mediated immunosuppression through immune checkpoints. Heterogeneous results have led to further explorations to the profile of oncogenic processes and signaling pathways associated with PD1/PD-L1 axis. Emerging evidence from preclinical studies implicate natural killer (NK) cells as a mediator to the PD-1 checkpoint signaling immunoevasion. The strategy of adopting immunomodulating ability of NK cells by immune checkpoints inhibitors is potential to additive effects in stimulating anticancer immunity. This idea is not entirely newfound but has recently gained prominence because of advances in defining phenotypic heterogeneity of NK cell populations. The physiological significance and synergistic value of NK cells await further investigation in clinical trials. In this review, an overview of the treatment paradigm shift of HCC management is presented. Current knowledge concerning immunological mechanisms of immune checkpoints attributed to T cell is further discussed and relevant ongoing clinical trials are summarized. We proposed that NK cells should be viewed as part of the network of checkpoint immunoevasion and delineate current evidence of translational clinical research in this area. It is conceivable that immune checkpoint inhibitors in combination with NK cell-based therapeutic strategies will be great promise for treatment of advanced HCC.
Collapse
Affiliation(s)
- Elaine Hon-Lam Siu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|