1
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Song Z, Jiao L, Wang D, Qiu Y, Miao J, Zhu T, Yu R, Wang Z, Zhou Y, Cai T, Zhang S, Liu H, Sun H, Sun Y, Liu Z. Controlling the speed of antigens transport in dendritic cells improves humoral and cellular immunity for vaccine. Biomed Pharmacother 2024; 177:117036. [PMID: 38941888 DOI: 10.1016/j.biopha.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Vaccines are an effective intervention for preventing infectious diseases. Currently many vaccine strategies are designed to improve vaccine efficacy by controlling antigen release, typically involving various approaches at the injection site. Yet, strategies for intracellular slow-release of antigens in vaccines are still unexplored. Our study showed that controlling the degradation of antigens in dendritic cells and slowing their transport from early endosomes to lysosomes markedly enhances both antigen-specific T-cell immune responses and germinal center B cell responses. This leads to the establishment of sustained humoral and cellular immunity in vivo imaging and flow cytometry indicated this method not only prolongs antigen retention at the injection site but also enhances antigen concentration in lymph nodes, surpassing traditional Aluminium (Alum) adjuvants. Additionally, we demonstrated that the slow antigen degradation induces stronger follicular helper T cell responses and increases proportions of long-lived plasma cells and memory B cells. Overall, these findings propose that controlling the speed of antigens transport in dendritic cells can significantly boost vaccine efficacy, offering an innovative avenue for developing highly immunogenic next-generation vaccines.
Collapse
Affiliation(s)
- Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruihong Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zheng Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yantong Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Huina Liu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Haifeng Sun
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuechao Sun
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Khamyath M, Melhem H, Balabanian K, Espéli M. New insights into the mechanisms regulating plasma cell survival and longevity. Curr Opin Immunol 2024; 88:102442. [PMID: 38964008 DOI: 10.1016/j.coi.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Plasma cells correspond to the last stage of B cell differentiation and are professional antibody-secreting cells. While most persist for only few days, some may survive for weeks to years in dedicated survival niches. The determination of plasma cell survival rate seems to rely both on intrinsic and extrinsic factors. Although often opposed, the deterministic and environmental models for plasma cell longevity are certainly overlapping. Understanding the contribution and the regulation of these different factors is paramount to develop better vaccines but also to target malignant plasma cells. Here, we review recent literature highlighting new findings pertaining to plasma cell survival rate, intrinsic regulation of plasma cell persistence and function, as well as the plasma cell/niche dialogue. Moreover, the now well-recognised heterogeneity observed among plasma cells is also discussed.
Collapse
Affiliation(s)
- Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Houda Melhem
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
4
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Shim J, Park S, Venkateswaran S, Kumar D, Prince C, Parihar V, Maples L, Waller EK, Kugathasan S, Briones M, Lee M, Henry CJ, Prahalad S, Chandrakasan S. Early B-cell development and B-cell maturation are impaired in patients with active hemophagocytic lymphohistiocytosis. Blood 2023; 142:1972-1984. [PMID: 37624902 PMCID: PMC10731577 DOI: 10.1182/blood.2023020426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Vaunita Parihar
- Cancer Tissue and Pathology Shared Resource Core, Emory University School of Medicine, Atlanta, GA
| | - Larkin Maples
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Curtis J. Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
6
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
7
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
8
|
Marsman C, Verstegen NJM, Streutker M, Jorritsma T, Boon L, ten Brinke A, van Ham SM. Termination of CD40L co-stimulation promotes human B cell differentiation into antibody-secreting cells. Eur J Immunol 2022; 52:1662-1675. [PMID: 36073009 PMCID: PMC9825913 DOI: 10.1002/eji.202249972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.
Collapse
Affiliation(s)
- Casper Marsman
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marij Streutker
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Anja ten Brinke
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
9
|
Wang W, Min Q, Lai N, Csomos K, Wang Y, Liu L, Meng X, Sun J, Hou J, Ying W, Zhou Q, Sun B, Hui X, Ujhazi B, Gordon S, Buchbinder D, Schuetz C, Butte M, Walter JE, Wang X, Wang JY. Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene. Front Immunol 2022; 13:890073. [PMID: 35799777 PMCID: PMC9253290 DOI: 10.3389/fimmu.2022.890073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Activated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM. Objective To explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS. Methods Clinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells. Results The patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient’s DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes. Conclusions The present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange Country (CHOC), Irvine, CA, United States
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manish Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| |
Collapse
|
10
|
Renner P, Crone M, Kornas M, Pioli KT, Pioli PD. Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions. Antib Ther 2022; 5:151-163. [PMID: 35928457 PMCID: PMC9344851 DOI: 10.1093/abt/tbac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Antibody-secreting cells are terminally differentiated B cells that play a critical role in humoral immunity through immunoglobulin secretion along with possessing the potential to be long-lived. It is now appreciated that ASCs regulate multiple aspects of biology through the secretion of various cytokines. In this regard, ICFC is a key tool used to assess the presence of intracellular proteins such as cytokines and transcription factors. Methods Paraformaldehyde plus saponin or the eBioscience Foxp3/Transcription Factor Staining Buffer Set were used to evaluate the non-specific intracellular retention of phycoerythrin-containing antibody conjugates by ASCs. Results We showed that the use of phycoerythrin-containing antibody conjugates led to a false interpretation of ASC intracellular protein expression compared with other cell types. This was mainly due to the inappropriate retention of these antibodies specifically within ASCs. Furthermore, we demonstrated how to reduce this retention which allowed for a more accurate comparison of intracellular protein expression between ASCs and other cell types such as B lymphocytes. Using this methodology, our data revealed that spleen ASCs expressed toll-like receptor 7 as well as the pro-form of the inflammatory cytokine interleukin-1β. Conclusion Increasing the number of centrifugation steps performed on ASCs post-fixation leads to inappropriate retention of phycoerythrin-containing antibody conjugates during ICFC.
Collapse
Affiliation(s)
- Patrick Renner
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Michael Crone
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Matthew Kornas
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - KimAnh T Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Peter D Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Kania AK, Price MJ, George-Alexander LE, Patterson DG, Hicks SL, Scharer CD, Boss JM. H3K27me3 Demethylase UTX Restrains Plasma Cell Formation. THE JOURNAL OF IMMUNOLOGY 2022; 208:1873-1885. [PMID: 35346967 PMCID: PMC9012698 DOI: 10.4049/jimmunol.2100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
B cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [Utx fl/fl Jmjd3 fl/fl Cd19 cre/+] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll. This phenotype occurred in a UTX-dependent manner as UTX single-knockout mice, but not JMJD3 single-knockout mice, mimicked the dKO. Although UTX- and JMJD3-deficient marginal zone B cells showed increased proliferation, dKO follicular B cells also showed increased PC formation. PCs from dKO mice upregulated genes associated with oxidative phosphorylation and exhibited increased spare respiratory capacity. Mechanistically, deletion of Utx and Jmjd3 resulted in higher levels of H3K27me3 at proapoptotic genes and resulted in reduced apoptosis of dKO PCs in vivo. Furthermore, UTX regulated chromatin accessibility at regions containing ETS and IFN regulatory factor (IRF) transcription factor family motifs, including motifs of known repressors of PC fate. Taken together, these data demonstrate that the H3K27me3 demethylases restrain B cell differentiation.
Collapse
Affiliation(s)
- Anna K Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
12
|
Blackler RJ, Müller-Loennies S, Pokorny-Lehrer B, Legg MSG, Brade L, Brade H, Kosma P, Evans SV. Antigen binding by conformational selection in near-germline antibodies. J Biol Chem 2022; 298:101901. [PMID: 35395245 PMCID: PMC9112003 DOI: 10.1016/j.jbc.2022.101901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility in antibody-combining sites has been hypothesized to facilitate polyspecificity toward multiple unique epitopes and enable the limited germline repertoire to match an overwhelming diversity of potential antigens; however, elucidating the mechanisms of antigen recognition by flexible antibodies has been understandably challenging. Here, multiple liganded and unliganded crystal structures of the near-germline anticarbohydrate antibodies S25–2 and S25–39 are reported, which reveal an unprecedented diversity of complementarity-determining region H3 conformations in apparent equilibrium. These structures demonstrate that at least some germline or near-germline antibodies are flexible entities sensitive to their chemical environments, with conformational selection available as an evolved mechanism that preserves the inherited ability to recognize common pathogens while remaining adaptable to new threats.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | | | - Barbara Pokorny-Lehrer
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max S G Legg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | - Lore Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Helmut Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada.
| |
Collapse
|
13
|
Xiong W, Tsang TK, Perera RAPM, Leung NHL, Fang VJ, Barr IG, Peiris JSM, Cowling BJ. Biphasic waning of hemagglutination inhibition antibody titers after influenza vaccination in children. J Infect Dis 2022; 226:1022-1026. [PMID: 35380689 DOI: 10.1093/infdis/jiac117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the potential for a biphasic pattern in waning of antibody titers after influenza vaccination. We collected blood samples in a randomized controlled trial of influenza vaccination in children, and tested them with hemagglutination inhibition (HAI) assays for influenza A(H3N2) and influenza B/Victoria lineage. Using piecewise log-linear mixed-effect models, we found evidence for a faster initial waning of antibody titers for the first 1-2 years after vaccination and then slower longer-term declines. Children with higher post-vaccination titers had faster antibody decay.
Collapse
Affiliation(s)
- Weijia Xiong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong
| | - Ranawaka A P M Perera
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong
| | - Vicky J Fang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong.,Centre of Immunology and Infection, Hong Kong Science Park, New Territories, Hong Kong
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
14
|
Neu SD, Dittel BN. Characterization of Definitive Regulatory B Cell Subsets by Cell Surface Phenotype, Function and Context. Front Immunol 2022; 12:787464. [PMID: 34987513 PMCID: PMC8721101 DOI: 10.3389/fimmu.2021.787464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cell or “Breg” is a broad term that represents the anti-inflammatory activity of B cells, but does not describe their individual phenotypes, specific mechanisms of regulation or relevant disease contexts. Thus, given the variety of B cell regulatory mechanisms reported in human disease and their animal models, a more thorough and comprehensive identification strategy is needed for tracking and comparing B cell subsets between research groups and in clinical settings. This review summarizes the discovery process and mechanism of action for well-defined regulatory B cell subsets with an emphasis on the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis. We discuss the importance of conducting thorough B cell phenotyping along with mechanistic studies prior to defining a particular subset of B cells as Breg. Since virtually all B cell subsets can exert regulatory activity, it is timely for their definitive identification across studies.
Collapse
Affiliation(s)
- Savannah D Neu
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Pivotal role of PIM2 kinase in plasmablast generation and plasma cell survival, opening new treatment options in myeloma. Blood 2022; 139:2316-2337. [PMID: 35108359 DOI: 10.1182/blood.2021014011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
The differentiation of B cells into plasmablasts (PBs) and then plasma cells (PCs) is associated with extensive cell reprogramming and new cell functions. By using specific inhibition strategies (including a novel morpholino RNA antisense approach), we found that early, sustained upregulation of the proviral integrations of Moloney virus 2 (PIM2) kinase is a pivotal event during human B cell in vitro differentiation and then continues in mature normal and malignant PCs in the bone marrow. In particular, PIM2 sustained the G1/S transition by acting on CDC25A and p27Kip1 and hindering caspase 3-driven apoptosis through BAD phosphorylation and cytoplasmic stabilization of p21Cip1. In PCs, interleukin-6 triggered PIM2 expression, resulting in anti-apoptotic effects on which malignant PCs were particularly dependent. In multiple myeloma, pan-PIM and MCL1 inhibitors displayed synergistic activity. Our results highlight a cell-autonomous function that links kinase activity to the PBs' newly acquired secretion ability and the adaptability observed in both normal and malignant PCs, and finally should prompt the reconsideration of PIM2 as a therapeutic target in multiple myeloma.
Collapse
|
16
|
Glauzy S, Olson B, May CK, Parisi D, Massad C, Hansen JE, Ryu C, Herzog EL, Meffre E. Defective Early B Cell Tolerance Checkpoints in Patients With Systemic Sclerosis Allow the Production of Self Antigen-Specific Clones. Arthritis Rheumatol 2022; 74:307-317. [PMID: 34279059 PMCID: PMC8766600 DOI: 10.1002/art.41927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Early selection steps preventing autoreactive naive B cell production are often impaired in patients with autoimmune diseases, but central and peripheral B cell tolerance checkpoints have not been assessed in patients with systemic sclerosis (SSc). This study was undertaken to characterize early B cell tolerance checkpoints in patients with SSc. METHODS Using an in vitro polymerase chain reaction-based approach that allows the expression of recombinant antibodies cloned from single B cells, we tested the reactivity of antibodies expressed by 212 CD19+CD21low CD10+IgMhigh CD27- new emigrant/transitional B cells and 190 CD19+CD21+CD10-IgM+CD27- mature naive B cells from 10 patients with SSc. RESULTS Compared to serum from healthy donors, serum from patients with SSc displayed elevated proportions of polyreactive and antinuclear-reactive new emigrant/transitional B cells that recognize topoisomerase I, suggesting that defective central B cell tolerance contributes to the production of serum autoantibodies characteristic of the disease. Frequencies of autoreactive mature naive B cells were also significantly increased in SSc patients compared to healthy donors, thus indicating that a peripheral B cell tolerance checkpoint may be impaired in SSc. CONCLUSION Defective counterselection of developing autoreactive naive B cells in SSc leads to the production of self antigen-specific B cells that may secrete autoantibodies and allow the formation of immune complexes, which promote fibrosis in SSc.
Collapse
Affiliation(s)
- Salome Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brennan Olson
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher K. May
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniele Parisi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher Massad
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James E. Hansen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Erica L. Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA.,Correspondence to: Eric Meffre, Yale University School of Medicine, 300 George Street, Room 353F, New Haven, CT 06511, USA., Phone: 203-737-4535, Fax: 203-785-7903,
| |
Collapse
|
17
|
Gomathy SB, Agarwal A, Vishnu VY. Molecular Therapy in Myasthenia Gravis. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by antibodies that act against the myoneural junction. Conventional immunosuppressants such as corticosteroids, azathioprine and mycophenolate are associated with long-term side effects and many patients do not achieve remission and may become refractory. Thus, there is an unmet need for target-specific therapies that act faster, have fewer side effects and lead to stable disease remission. However, many of the novel therapeutic agents being described are not meeting their primary endpoints. We reviewed the current status of novel immunotherapies for MG, their mechanisms of action, along with the side effect profiles. Fast onset of action, sustained disease remission and relatively low frequency of side effects of the new agents are attractive. However, the unknown long-term safety and high cost are precluding factors. Better preclinical studies and more randomized trials are needed before novel agents are routinely employed.
Collapse
|
18
|
Dang VD, Stefanski AL, Lino AC, Dörner T. B- and Plasma Cell Subsets in Autoimmune Diseases: Translational Perspectives. J Invest Dermatol 2021; 142:811-822. [PMID: 34955289 DOI: 10.1016/j.jid.2021.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
B lymphocytes play a central role in immunity owing to their unique antibody-producing capacity that provides protection against certain infections and during vaccination. In autoimmune diseases, B cells can gain pathogenic relevance through autoantibody production, antigen presentation, and proinflammatory cytokine secretion. Recent data indicate that B and plasma cells can function as regulators through the production of immunoregulatory cytokines and/or employing checkpoint molecules. In this study, we review the key findings that define subsets of B and plasma cells with pathogenic and protective functions in autoimmunity. In addition to harsh B-cell depletion, we discuss the strategies that have the potential to reinstall the balance of pathogenic and protective B cells with the potential of more specific and personalized therapies.
Collapse
Affiliation(s)
- Van Duc Dang
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ana-Luisa Stefanski
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Lau EHY, Hui DSC, Tsang OTY, Chan WH, Kwan MYW, Chiu SS, Cheng SMS, Ko RLW, Li JKC, Chaothai S, Tsang CH, Poon LLM, Peiris M. Long-term persistence of SARS-CoV-2 neutralizing antibody responses after infection and estimates of the duration of protection. EClinicalMedicine 2021; 41:101174. [PMID: 34746725 PMCID: PMC8556690 DOI: 10.1016/j.eclinm.2021.101174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The duration of immunity in SARS-CoV-2 infected people remains unclear. Neutralizing antibody responses are the best available correlate of protection against re-infection. Recent studies estimated that the correlate of 50% protection from re-infection was 20% of the mean convalescent neutralizing antibody titre. METHODS We collected sera from a cohort of 124 individuals with RT-PCR confirmed SARS-CoV-2 infections from Prince of Wales Hospital, Princess Margaret Hospital, Queen Elizabeth Hospital and Queen Mary Hospitals of the Hospital Authority of Hong Kong, for periods up to 386 days after symptom onset and tested these for antibody to SARS-CoV-2 using 50% virus plaque reduction neutralization tests (PRNT50), surrogate neutralization tests and spike receptor binding domain (RBD) binding antibody. Patients were recruited from 21 January 2020 to 16 February 2021 and follow-up samples were collected until 9th March 2021. FINDINGS Because the rate of antibody waning slows with time, we fitted lines of decay to 115 sera from 62 patients collected beyond 90 days after symptom onset and estimate that PRNT50 antibody will remain detectable for around 1,717 days after symptom onset and that levels conferring 50% protection will be maintained for around 990 days post-symptom onset, in symptomatic patients. This would potentially be affected by emerging virus variants. PRNT titres wane faster in children. There was a high level of correlation between PRNT50 antibody titers and the % of inhibition in surrogate virus neutralization tests. INTERPRETATION The data suggest that symptomatic COVID-19 disease is followed by relatively long-lived protection from re-infection by antigenically similar viruses. FUNDING Health and Medical Research Fund, Commissioned research on Novel Coronavirus Disease (COVID-19) (Reference Nos. COVID190126 and COVID1903003) from the Food and Health Bureau and the Theme-based Research Scheme project no. T11-712/19-N, the University Grants Committee of the Hong Kong SAR Government.
Collapse
Affiliation(s)
- Eric HY Lau
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - David SC Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, China
| | - Owen TY Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Wai-Hung Chan
- Department of Paediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Mike YW Kwan
- Department of Paediatric and Adolescent Medicine, Princess Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Susan S Chiu
- Department of Paediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Samuel MS Cheng
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Ronald LW Ko
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - John KC Li
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Chi H Tsang
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Leo LM Poon
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Special Administrative Region of Hong Kong, China
| |
Collapse
|
20
|
Yu TS, Wang HY, Zhao YJ, Yu YF, Hou Y, Liu S, Han PP, Ni XF, Ji XB, Peng J, Liu XG, Hou M. Abnormalities of bone marrow B cells and plasma cells in primary immune thrombocytopenia. Blood Adv 2021; 5:4087-4101. [PMID: 34507351 PMCID: PMC8945629 DOI: 10.1182/bloodadvances.2020003860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoantibody-mediated hemorrhagic disorder in which B cells play an essential role. Previous studies have focused on peripheral blood (PB), but B cells in bone marrow (BM) have not been well characterized. We aimed to explore the profile of B-cell subsets and their cytokine environments in the BM of patients with ITP to further clarify the pathogenesis of the disease. B-cell subpopulations and their cytokine/chemokine receptors were detected by using flow cytometry. Plasma concentrations of cytokines/chemokines were measured by using enzyme-linked immunosorbent assay. Messenger RNA levels of B cell-related transcription factors were determined by using quantitative polymerase chain reaction. Regulatory B cell (Breg) function was assessed by quantifying their inhibitory effects on monocytes and T cells in vitro. Decreased proportions of total B cells, naive B cells, and defective Bregs were observed in patients with ITP compared with healthy controls (HCs), whereas an elevated frequency of long-lived plasma cells was found in BM of autoantibody-positive patients. No statistical difference was observed in plasmablasts or in short-lived plasma cells between patients with ITP and HCs. The immunosuppressive capacity of BM Bregs from patients with ITP was considerably weaker than HCs. An in vivo study using an active ITP murine model revealed that Breg transfusion could significantly alleviate thrombocytopenia. Moreover, overactivation of CXCL13-CXCR5 and BAFF/APRIL systems were found in ITP patient BM. Taken together, B-cell subsets in BM were skewed toward a proinflammatory profile in patients with ITP, suggesting the involvement of dysregulated BM B cells in the development of the disease.
Collapse
Affiliation(s)
- Tian-shu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Hao-yi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ya-jing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ya-fei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuang Liu
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Pan-pan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Xiao-fei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Xue-bin Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; and
| | - Xin-guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; and
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Andersson A, Larsson L, Stenbeck L, Salmén F, Ehinger A, Wu SZ, Al-Eryani G, Roden D, Swarbrick A, Borg Å, Frisén J, Engblom C, Lundeberg J. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun 2021; 12:6012. [PMID: 34650042 PMCID: PMC8516894 DOI: 10.1038/s41467-021-26271-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases.
Collapse
Affiliation(s)
- Alma Andersson
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linnea Stenbeck
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Salmén
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, the Netherlands
| | - Anna Ehinger
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Sunny Z Wu
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Ghamdan Al-Eryani
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Alex Swarbrick
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Åke Borg
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
22
|
Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood 2021; 137:3050-3063. [PMID: 33512437 DOI: 10.1182/blood.2020007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
The extrafollicular immune response is essential to generate a rapid but transient wave of protective antibodies during infection. Despite its importance, the molecular mechanisms controlling this first response are poorly understood. Here, we demonstrate that enhanced Cxcr4 signaling caused by defective receptor desensitization leads to exacerbated extrafollicular B-cell response. Using a mouse model bearing a gain-of-function mutation of Cxcr4 described in 2 human hematologic disorders, warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome and Waldenström macroglobulinemia, we demonstrated that mutant B cells exhibited enhanced mechanistic target of rapamycin signaling, cycled more, and differentiated more potently into plasma cells than wild-type B cells after Toll-like receptor (TLR) stimulation. Moreover, Cxcr4 gain of function promoted enhanced homing and persistence of immature plasma cells in the bone marrow, a phenomenon recapitulated in WHIM syndrome patient samples. This translated in increased and more sustained production of antibodies after T-independent immunization in Cxcr4 mutant mice. Thus, our results establish that fine-tuning of Cxcr4 signaling is essential to limit the strength and length of the extrafollicular immune response.
Collapse
|
23
|
The prospective Hemophilia Inhibitor PUP Study reveals distinct antibody signatures prior to FVIII inhibitor development. Blood Adv 2021; 4:5785-5796. [PMID: 33232473 DOI: 10.1182/bloodadvances.2020002731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
Preventing factor VIII (FVIII) inhibitors following replacement therapies with FVIII products in patients with hemophilia A remains an unmet medical need. Better understanding of the early events of evolving FVIII inhibitors is essential for risk identification and the design of novel strategies to prevent inhibitor development. The Hemophilia Inhibitor Previously Untreated Patients (PUPs) Study (HIPS; www.clinicaltrials.gov #NCT01652027) is the first prospective cohort study to evaluate comprehensive changes in the immune system during the first 50 exposure days (EDs) to FVIII in patients with severe hemophilia A. HIPS participants were enrolled prior to their first exposure to FVIII or blood products ("true PUPs") and were evaluated for different immunological and clinical parameters at specified time points during their first 50 EDs to a single source of recombinant FVIII. Longitudinal antibody data resulting from this study indicate that there are 4 subgroups of patients expressing distinct signatures of FVIII-binding antibodies. Subgroup 1 did not develop any detectable FVIII-binding immunoglobulin G (IgG) antibodies. Subgroup 2 developed nonneutralizing, FVIII-binding IgG1 antibodies, but other FVIII-binding IgG subclasses were not observed. Subgroup 3 developed transient FVIII inhibitors associated with FVIII-binding IgG1 antibodies, similar to subgroup 2. Subgroup 4 developed persistent FVIII inhibitors associated with an initial development of high-affinity, FVIII-binding IgG1 antibodies, followed by IgG3 and IgG4 antibodies. Appearance of FVIII-binding IgG3 was always associated with persistent FVIII inhibitors and the subsequent development of FVIII-binding IgG4. Some of the antibody signatures identified in HIPS could serve as candidates for early biomarkers of FVIII inhibitor development.
Collapse
|
24
|
Zhao M, Li X, Xie S, Gong M, Yan R, Zheng A, Xu Y, Wu H, Wang Z. The dynamics and association of B and T cell receptor repertoires upon antibody response to hepatitis B vaccination in healthy adults. Hum Vaccin Immunother 2021; 17:3203-3213. [PMID: 33861159 DOI: 10.1080/21645515.2021.1913028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Hepatitis B (HB) vaccine is efficacious in preventing hepatitis B virus infection. However, the association between antibody response to the HB vaccine and dynamic immune repertoire changes in different cell subsets remains unclear. Nine healthy participants were administered three doses of HB vaccine following the 0, 1, 6 month schedule. Peripheral CD4+ T, memory B (MB), naïve B (NB), and plasma cells (PCs) were sorted before vaccination and 7 days following each dose. The complementary determining region 3 of T-cell receptor β (TCRβ) chain and B-cell receptor (BCR) heavy chain (IgG, IgM, IgA) repertoires were analyzed by high-throughput sequencing. All nine participants elicited protective antibody titers to the vaccine at the end of immunization. Compared with the baseline, MB cells showed a significant increase in IgG usage and decreased IgM usage and repertoire diversity at the end of vaccination. TCRβ diversity changes were highly correlated with those of the BCR in MB cells in participants with a faster and robust antibody responses. The percentage of shared clonotypes between NB and MB cells, and MB cells and PCs were much higher than that between NB cells and PCs. The more clonotypes sharing the faster and stronger antibody responses were observed after HB vaccination. These results suggest the integral involvement of MB cells in vaccine immunization. Interaction between CD4+ T and MB cells and B cell differentiation may improve antibody response to HB vaccine.
Collapse
Affiliation(s)
- Miaoxian Zhao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Lechner M, Engleitner T, Babushku T, Schmidt-Supprian M, Rad R, Strobl LJ, Zimber-Strobl U. Notch2-mediated plasticity between marginal zone and follicular B cells. Nat Commun 2021; 12:1111. [PMID: 33597542 PMCID: PMC7889629 DOI: 10.1038/s41467-021-21359-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular B (FoB) and marginal zone B (MZB) cells are functionally and spatially distinct mature B cell populations in the spleen, originating from a Notch2-dependent fate decision after splenic influx of immature transitional B cells. In the B cell follicle, a Notch2-signal is provided by DLL-1-expressing fibroblasts. However, it is unclear whether FoB cells, which are in close contact with these DLL-1 expressing fibroblasts, can also differentiate to MZB cells if they receive a Notch2-signal. Here, we show induced Notch2IC-expression in FoB cells re-programs mature FoB cells into bona fide MZB cells as is evident from the surface phenotype, localization, immunological function and transcriptome of these cells. Furthermore, the lineage conversion from FoB to MZB cells occurs in immunocompetent wildtype mice. These findings demonstrate plasticity between mature FoB and MZB cells that can be driven by a singular signaling event, the activation of Notch2.
Collapse
Affiliation(s)
- Markus Lechner
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Marc Schmidt-Supprian
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany.
| |
Collapse
|
26
|
Pracht K, Meinzinger J, Schulz SR, Daum P, Côrte-Real J, Hauke M, Roth E, Kindermann D, Mielenz D, Schuh W, Wittmann J, Jäck HM. miR-148a controls metabolic programming and survival of mature CD19-negative plasma cells in mice. Eur J Immunol 2021; 51:1089-1109. [PMID: 33336366 DOI: 10.1002/eji.202048993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Long-lived antibody-secreting plasma cells are essential to establish humoral memory against pathogens. While a regulatory transcription factor network has been established in plasma cell differentiation, the regulatory role of miRNAs remains enigmatic. We have recently identified miR-148a as the most abundant miRNA in primary mouse and human plasma cells. To determine whether this plasma cell signature miRNA controls the in vivo development of B cells into long-lived plasma cells, we established mice with genomic, conditional, and inducible deletions of miR-148a. The analysis of miR-148a-deficient mice revealed reduced serum Ig, decreased numbers of newly formed plasmablasts and reduced CD19-negative, CD93-positive long-lived plasma cells. Transcriptome and metabolic analysis revealed an impaired glucose uptake, a reduced oxidative phosphorylation-based energy metabolism, and an altered abundance of homing receptors CXCR3 (increase) and CXCR4 (reduction) in miR-148a-deficient plasma cells. These findings support the role of miR-148a as a positive regulator of the maintenance of long-lived plasma cells.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Meinzinger
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Daum
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Joana Côrte-Real
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Edith Roth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothea Kindermann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Lau EHY, Tsang OTY, Hui DSC, Kwan MYW, Chan WH, Chiu SS, Ko RLW, Chan KH, Cheng SMS, Perera RAPM, Cowling BJ, Poon LLM, Peiris M. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun 2021; 12:63. [PMID: 33397909 PMCID: PMC7782739 DOI: 10.1038/s41467-020-20247-4] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 pandemic poses the greatest global public health challenge in a century. Neutralizing antibody is a correlate of protection and data on kinetics of virus neutralizing antibody responses are needed. We tested 293 sera from an observational cohort of 195 reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 infections collected from 0 to 209 days after onset of symptoms. Of 115 sera collected ≥61 days after onset of illness tested using plaque reduction neutralization (PRNT) assays, 99.1% remained seropositive for both 90% (PRNT90) and 50% (PRNT50) neutralization endpoints. We estimate that it takes at least 372, 416 and 133 days for PRNT50 titres to drop to the detection limit of a titre of 1:10 for severe, mild and asymptomatic patients, respectively. At day 90 after onset of symptoms (or initial RT-PCR detection in asymptomatic infections), it took 69, 87 and 31 days for PRNT50 antibody titres to decrease by half (T1/2) in severe, mild and asymptomatic infections, respectively. Patients with severe disease had higher peak PRNT90 and PRNT50 antibody titres than patients with mild or asymptomatic infections. Age did not appear to compromise antibody responses, even after accounting for severity. We conclude that SARS-CoV-2 infection elicits robust neutralizing antibody titres in most individuals.
Collapse
Affiliation(s)
- Eric H Y Lau
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Owen T Y Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Mike Y W Kwan
- Department of Paediatric and Adolescent Medicine, Princess of Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Wai-Hung Chan
- Department of Paediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Susan S Chiu
- Department of Paediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Ronald L W Ko
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Kin H Chan
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Benjamin J Cowling
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
29
|
Hines MJ, Coffre M, Mudianto T, Panduro M, Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez O, Bajwa S, McManus MT, Ansel KM, Melamed D, Koralov SB. miR-29 Sustains B Cell Survival and Controls Terminal Differentiation via Regulation of PI3K Signaling. Cell Rep 2020; 33:108436. [PMID: 33264610 DOI: 10.1016/j.celrep.2020.108436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling cascade downstream of the B cell receptor (BCR) signalosome is essential for B cell maturation. Proper signaling strength is maintained through the PI3K negative regulator phosphatase and tensin homolog (PTEN). Although a role for microRNA (miRNA)-dependent control of the PTEN-PI3K axis has been described, the contribution of individual miRNAs to the regulation of this crucial signaling modality in mature B lymphocytes remains to be elucidated. Our analyses reveal that ablation of miR-29 specifically in B lymphocytes results in an increase in PTEN expression and dampening of the PI3K pathway in mature B cells. This dysregulation has a profound impact on the survival of B lymphocytes and results in increased class switch recombination and decreased plasma cell differentiation. Furthermore, we demonstrate that ablation of one copy of Pten is sufficient to ameliorate the phenotypes associated with miR-29 loss. Our data suggest a critical role for the miR-29-PTEN-PI3K regulatory axis in mature B lymphocytes.
Collapse
Affiliation(s)
- Marcus J Hines
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maryaline Coffre
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Tenny Mudianto
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Marisella Panduro
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Eric J Wigton
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Cosmin Tegla
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | | | - Robin Kageyama
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - David Benhamou
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Oriana Perez
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Sofia Bajwa
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Doron Melamed
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Sergei B Koralov
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
30
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
31
|
Menon D, Barnett C, Bril V. Novel Treatments in Myasthenia Gravis. Front Neurol 2020; 11:538. [PMID: 32714266 PMCID: PMC7344308 DOI: 10.3389/fneur.2020.00538] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Myasthenia gravis (MG) is the prototypical autoimmune disorder caused by specific autoantibodies at the neuromuscular junction. Broad-based immunotherapies, such as corticosteroids, azathioprine, mycophenolate, tacrolimus, and cyclosporine, have been effective in controlling symptoms of myasthenia. While being effective in a majority of MG patients many of these immunosuppressive agents are associated with long-term side effects, often intolerable for patients, and take several months to be effective. With advances in translational research and drug development capabilities, more directed therapeutic agents that can alter the future of MG treatment have been developed. This review focuses on the aberrant immunological processes in MG, the novel agents that target them along with the clinical evidence for efficacy and safety. These agents include terminal complement C5 inhibitors, Fc receptor inhibitors, B cell depleting agents (anti CD 19 and 20 and B cell activating factor [BAFF)]inhibitors), proteosome inhibitors, T cells and cytokine based therapies (chimeric antigen receptor T [CART-T] cell therapy), autologous stem cell transplantation, and subcutaneous immunoglobulin (SCIG). Most of these new agents have advantages over conventional immunosuppressive treatment (IST) for MG therapy in terms of faster onset of action, favourable side effect profile and the potential for a sustained and long-term remission.
Collapse
Affiliation(s)
| | | | - Vera Bril
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Cui ZW, Zhang XY, Wu CS, Zhang YA, Zhou Y, Zhang XJ. Membrane IgM + plasma cells in grass carp (Ctenopharyngodon idella): Insights into the conserved evolution of IgM + plasma cells in vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103613. [PMID: 31935401 DOI: 10.1016/j.dci.2020.103613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Teleost fish are the most primitive bony vertebrates that contain B cells; thus, comparative analysis of teleost naïve/mature B cells and plasma cells can provide helpful evidence for understanding the evolution paradigms of these two B-cell subpopulations in vertebrates. In this study, we developed monoclonal antibody against grass carp IgM and identified two different IgM+ cell subsets: IgM+ lymphocytes (Lym), resembling naïve/mature B cells, and IgM+ myeloid cells (Mye), resembling plasma cells. Like plasma cells in mammals, the size of IgM+ Mye is significantly larger than that of IgM+ Lym, as revealed by flow cytometric analysis and transmission electron microscopy. The IgM+ Mye were further verified as plasma cells because they showed gene expression patterns similar with those of human plasma cells and a great capacity to secrete IgM. Like mammalian IgM+ and IgA+ plasma cells, not IgG+ plasma cells, grass carp IgM+ Mye also expressed membrane immunoglobulins, a feature conserved in IgM+ plasma cells in vertebrates. Furthermore, recombinant CD40L or IL-21 alone could induce the plasma cell generation and IgM secretion, while the combination of CD40L and IL-21 had greater effect on IgM secretion, but not on plasma cell generation. This study fills an important gap in the knowledge of plasma cells in teleost fish and provides critical insights into the conserved evolution of IgM+ plasma cells in vertebrates.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Fishery Drug Development, Ministry of Agriculture, China, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice. J Immunol Res 2020; 2020:2714257. [PMID: 32149156 PMCID: PMC7054799 DOI: 10.1155/2020/2714257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.
Collapse
|
34
|
Woodle E, Tremblay S, Brailey P, Girnita A, Alloway R, Aronow B, Dasgupta N, Ebstein F, Kloetzel P, Lee M, Kim K, Singh H, Driscoll J. Proteasomal adaptations underlying carfilzomib-resistance in human bone marrow plasma cells. Am J Transplant 2020; 20:399-410. [PMID: 31595669 PMCID: PMC6984988 DOI: 10.1111/ajt.15634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 01/25/2023]
Abstract
Donor-specific antibodies (DSAs) have a deleterious effect on allografts and remain a major immunologic barrier in transplantation. Current therapies to eliminate DSAs are ineffective in highly HLA-sensitized patients. Proteasome inhibitors have been employed as a strategy to target bone marrow plasma cells (BMPCs), the source of long-term antibody production; however, their efficacy has been limited by poorly defined drug-resistance mechanisms. Here, we performed transcriptomic profiling of CD138+ BMPCs that survived in vivo desensitization therapy with the proteasome inhibitor carfilzomib to identify mechanisms of drug resistance. The results revealed a genomic signature that included increased expression of the immunoproteasome, a highly specialized proteasomal variant. Western blotting and functional studies demonstrated that catalytically active immunoproteasomes and the immunoproteasome activator PA28 were upregulated in carfilzomib-resistant BMPCs. Carfilzomib-resistant BMPCs displayed reduced sensitivity to the proteasome inhibitors carfilzomib, bortezomib, and ixazomib, but enhanced sensitivity to an immunoproteasome-specific inhibitor ONX-0914. Finally, in vitro carfilzomib treatment of BMPCs from HLA-sensitized patients increased levels of the immunoproteasome β5i (PSMB8) catalytic subunit suggesting that carfilzomib therapy directly induces an adaptive immunoproteasome response. Taken together, our results indicate that carfilzomib induces structural changes in proteasomes and immunoproteasome formation.
Collapse
Affiliation(s)
- E.S. Woodle
- Division of Transplantation, Department of Surgery, Cincinnati, OH, 45267, USA,Corresponding authors: E. Steve Woodle, MD; James J. Driscoll, MD, PhD; driscojs@ UCMAIL.UC.EDU
| | - S. Tremblay
- Division of Transplantation, Department of Surgery, Cincinnati, OH, 45267, USA,Department of Environmental Health, Division of Epidemiology, Cincinnati, OH, 45229, USA
| | - P. Brailey
- Hoxworth Blood Center, Transplant Immunology Division, Cincinnati, OH, 45229, USA
| | - A. Girnita
- Division of Transplantation, Department of Surgery, Cincinnati, OH, 45267, USA,Hoxworth Blood Center, Transplant Immunology Division, Cincinnati, OH, 45229, USA
| | - R.R. Alloway
- Division of Transplantation, Department of Surgery, Cincinnati, OH, 45267, USA
| | - B. Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - N. Dasgupta
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - F. Ebstein
- Institute for Biochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - P.M. Kloetzel
- Institute for Biochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - M.J. Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - K.B. Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - H. Singh
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - J.J. Driscoll
- Department of Internal Medicine, Division of Hematology and Oncology, Cincinnati, OH, 45267, USA,University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA,Corresponding authors: E. Steve Woodle, MD; James J. Driscoll, MD, PhD; driscojs@ UCMAIL.UC.EDU
| |
Collapse
|
35
|
Tremblay S, Driscoll JJ, Rike-Shields A, Hildeman DA, Alloway RR, Girnita AL, Brailey PA, Woodle ES. A prospective, iterative, adaptive trial of carfilzomib-based desensitization. Am J Transplant 2020; 20:411-421. [PMID: 31550069 PMCID: PMC7872208 DOI: 10.1111/ajt.15613] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 01/25/2023]
Abstract
Proteasome inhibitor-based strategies hold promise in transplant but have yielded varying results. Carfilzomib, a second-generation proteasome inhibitor, may possess advantages over bortezomib, the first-generation proteasome inhibitors. The purpose of this study was to evaluate the safety, toxicity, and preliminary efficacy of carfilzomib in highly HLA-sensitized kidney transplant candidates. Renal transplant candidates received escalating doses of carfilzomib followed by plasmapheresis (group A) or an identical regimen with additional plasmapheresis once weekly before carfilzomib dosing. Thirteen participants received carfilzomib, which was well tolerated with most adverse events classified as low grade. The safety profile was similar to bortezomib desensitization; however, neurotoxicity was not observed with carfilzomib. Toxicity resulted in permanent dose reduction in 1 participant but caused no withdrawals or deaths. HLA antibodies were substantially reduced with carfilzomib alone, and median maximal immunodominant antibody reduction was 72.8% (69.8% for group A, P = .031, 80.1% for group B, P = .938). After depletion, rebound occurred rapidly and antibody levels returned to baseline between days 81 and 141. Bone marrow studies revealed that approximately 69.2% of plasma cells were depleted after carfilzomib monotherapy. Carfilzomib monotherapy-based desensitization provides an acceptable safety and toxicity profile while leading to significant bone marrow plasma cell depletion and anti-HLA antibody reduction.
Collapse
Affiliation(s)
- Simon Tremblay
- Division of Transplantation, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - James J. Driscoll
- Division of Transplantation, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- University of Cincinnati Cancer Institute, Cincinnati, Ohio
| | - Adele Rike-Shields
- Division of Transplantation, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- The Christ Hospital, Cincinnati, Ohio
| | | | - Rita R. Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Alin L. Girnita
- Division of Transplantation, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Transplantation Immunology Division, Hoxworth Blood Center, Cincinnati, Ohio
| | - Paul A. Brailey
- Transplantation Immunology Division, Hoxworth Blood Center, Cincinnati, Ohio
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
36
|
CD19-positive antibody-secreting cells provide immune memory. Blood Adv 2019; 2:3163-3176. [PMID: 30478153 DOI: 10.1182/bloodadvances.2017015172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Long-lived antibody-secreting cells (ASCs) are critical for the maintenance of humoral immunity through the continued production of antibodies specific for previously encountered pathogen or vaccine antigens. Recent reports describing humoral immune memory have suggested the importance of long-lived CD19- bone marrow (BM) ASCs, which secrete antibodies recognizing previously encountered vaccine antigens. However, these reports do not agree upon the unique contribution of the CD19+ BM ASC subset toward humoral immunity. Here, we found both CD19+ and negative ASCs from human BM were similar in functional capacity to react to a number of vaccine antigens via ELISpot assays. The CD19+ cells were the predominant ASC population found in lymphoid tissues, and unlike the CD19- ASCs, which were found only in spleen and BM, the CD19+ ASCs were found in tonsil and blood. CD19+ ASCs from the BM, spleen, and tonsil were capable of recognizing polio vaccine antigens, indicating the CD19+ ASC cells play a novel role in long-lasting immune defense. Comparative gene expression analysis indicated CD19+ and negative BM ASCs differed significantly by only 14 distinct messenger RNAs and exhibited similar gene expression for cell cycle, autophagy, and apoptosis control necessary for long life. In addition, we show identical CDR-H3 sequences found on both BM ASC subsets, indicating a shared developmental path. Together, these results provide novel insight for the distribution, function, genetic regulation, and development of long-lived ASCs and may not only impact improved cell therapies but also enhance strategies for vaccine development.
Collapse
|
37
|
Pioli PD, Casero D, Montecino-Rodriguez E, Morrison SL, Dorshkind K. Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity 2019; 51:351-366.e6. [PMID: 31303400 DOI: 10.1016/j.immuni.2019.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Aging results in increased myelopoiesis, which is linked to the increased incidence of myeloid leukemias and production of myeloid-derived suppressor cells. Here, we examined the contribution of plasma cells (PCs) to age-related increases in myelopoiesis, as PCs exhibit immune regulatory function and sequester in bone marrow (BM). PC number was increased in old BM, and they exhibited high expression of genes encoding inflammatory cytokines and pathogen sensors. Antibody-mediated depletion of PCs from old mice reduced the number of myeloid-biased hematopoietic stem cells and mature myeloid cells to levels in young animals, but lymphopoiesis was not rejuvenated, indicating that redundant mechanisms inhibit that process. PCs also regulated the production of inflammatory factors from BM stromal cells, and disruption of the PC-stromal cell circuitry with inhibitors of the cytokines IL-1 and TNF-α attenuated myelopoiesis in old mice. Thus, the age-related increase in myelopoiesis is driven by an inflammatory network orchestrated by PCs.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Willis SN, Nutt SL. New players in the gene regulatory network controlling late B cell differentiation. Curr Opin Immunol 2019; 58:68-74. [DOI: 10.1016/j.coi.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
|
39
|
Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol 2019; 10:1121. [PMID: 31231360 PMCID: PMC6558388 DOI: 10.3389/fimmu.2019.01121] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
B cell activation and differentiation yields plasma cells with high affinity antibodies to a given antigen in a time-frame that allows for host protection. Although the end product is most commonly humoral immunity, the rapid proliferation and somatic mutation of the B cell receptor also results in oncogenic mutations that cause B cell malignancies including plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common hematological malignancy and results in over 100,000 deaths per year worldwide. The genetic alterations that occur in the germinal center, however, are not sufficient to cause myeloma, but rather impart cell proliferation potential on plasma cells, which are normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy of undetermined significance or MGUS, provides the opportunity for further genetic and epigenetic alterations eventually resulting in a progressive disease that becomes symptomatic. In this review, we will provide a brief history of clonal gammopathies and detail how some of the key discoveries were interwoven with the study of plasma cells. We will also review the genetic and epigenetic alterations discovered over the past 25 years, how these are instrumental to myeloma pathogenesis, and what these events teach us about myeloma and plasma cell biology. These data will be placed in the context of normal B cell development and differentiation and we will discuss how understanding the biology of plasma cells can lead to more effective therapies targeting multiple myeloma.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Paula M. Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
40
|
Measuring Alloreactive B Cell Responses in Transplant Recipients. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Schaid DJ, Poland GA. Current perspectives in assessing humoral immunity after measles vaccination. Expert Rev Vaccines 2019; 18:75-87. [PMID: 30585753 PMCID: PMC6413513 DOI: 10.1080/14760584.2019.1559063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Repeated measles outbreaks in countries with relatively high vaccine coverage are mainly due to failure to vaccinate and importation; however, cases in immunized individuals exist raising questions about suboptimal measles vaccine-induced humoral immunity and/or waning immunity in a low measles-exposure environment. AREAS COVERED The plaque reduction neutralization measurement of functional measles-specific antibodies correlates with protection is the gold standard in measles serology, but it does not assess cellular-immune or other parameters that may be associated with durable and/or protective immunity after vaccination. Additional correlates of protection and long-term immunity and new determinants/signatures of vaccine responsiveness such as specific CD46 and IFI44L genetic variants associated with neutralizing antibody titers after measles vaccination are under investigation. Current and future systems biology studies, coupled with new technology/assays and analytical approaches, will lead to an increasingly sophisticated understanding of measles vaccine-induced humoral immunity and will identify 'signatures' of protective and durable immune responses. EXPERT OPINION This will translate into the development of highly predictive assays of measles vaccine efficacy, effectiveness, and durability for prospective identification of potential low/non-responders and susceptible individuals who require additional vaccine doses. Such new advances may drive insights into the development of new/improved vaccine formulations and delivery systems.
Collapse
Affiliation(s)
| | - Richard B Kennedy
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Daniel J Schaid
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
- b Department of Health Sciences Research , Mayo Clinic , Rochester , MN , USA
| | - Gregory A Poland
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
42
|
Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells. Invest New Drugs 2018; 37:837-848. [DOI: 10.1007/s10637-018-0701-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/14/2018] [Indexed: 01/02/2023]
|
43
|
Activation of the IL-6/JAK2/STAT3 pathway induces plasma cell mastitis in mice. Cytokine 2018; 110:150-158. [DOI: 10.1016/j.cyto.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
|
44
|
Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018; 17:833-849. [PMID: 30173619 PMCID: PMC7103734 DOI: 10.1080/14760584.2018.1516552] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.
Collapse
Affiliation(s)
- Braeden Donaldson
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand.,b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Zabeen Lateef
- c Department of Pharmacology and Toxicology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Greg F Walker
- d School of Pharmacy , University of Otago , Dunedin , New Zealand
| | - Sarah L Young
- b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Vernon K Ward
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
45
|
Pallatto VA, Bechtold MA. Mast cell and plasma cell collision tumor in the spleen of a dog. Vet Clin Pathol 2018; 47:303-306. [PMID: 29902336 DOI: 10.1111/vcp.12596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 9-year-old spayed female English Mastiff was referred for outpatient ultrasound due to a 3-week history of weight loss, vomiting, and decreased appetite. Abdominal ultrasound showed multiple splenic masses of varying sizes and serum chemistry panel showed hyperglobulinemia. Cytologic examination of fine-needle aspirates of the splenic masses indicated a mast cell and plasma cell collision tumor. Results of serum and urine protein electrophoresis and immunofixation indicated the plasma cell neoplasia was producing IgA immunoglobulins.
Collapse
Affiliation(s)
| | - Molly A Bechtold
- Mid-Atlantic Animal specialty Hospital (MASH), Huntington, MD, USA
| |
Collapse
|
46
|
Tijani MK, Reddy SB, Langer C, Beeson JG, Wahlgren M, Nwuba RI, Persson KEM. Factors influencing the induction of high affinity antibodies to Plasmodium falciparum merozoite antigens and how affinity changes over time. Sci Rep 2018; 8:9026. [PMID: 29899351 PMCID: PMC5998021 DOI: 10.1038/s41598-018-27361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
Understanding the functional characteristics of naturally acquired antibodies against P. falciparum merozoite antigens is crucial for determining the protective functions of antibodies. Affinity (measured as kd) of naturally acquired antibodies against two key targets of acquired immunity, EBA175 and PfRh2, was determined using Surface Plasmon Resonance (SPR) in a longitudinal survey in Nigeria. A majority of the participants, 79% and 67%, maintained stable antibody affinities to EBA175 and PfRh2, respectively, over time. In about 10% of the individuals, there was a reciprocal interaction with a reduction over time in antibody affinity for PfRh2 and an increase for EBA175. In general, PfRh2 elicited antibodies with higher affinity compared to EBA175. Individuals with higher exposure to malaria produced antibodies with higher affinity to both antigens. Younger individuals (5–15 years) produced comparable or higher affinity antibodies than adults (>15 years) against EBA175, but not for PfRh2. Correlation between total IgG (ELISA) and affinity varied between individuals, but PfRh2 elicited antibodies with a higher correlation in a majority of the participants. There was also a correlation between antibody inhibition of erythrocyte invasion by merozoites and PfRh2 affinity. This work gives new insights into the generation and maintenance of antibody affinity over time.
Collapse
Affiliation(s)
- Muyideen K Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Sreenivasulu B Reddy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Christine Langer
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Roseangela I Nwuba
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
47
|
Ma Y, Dawicki W, Zhang X, Gordon JR. Contributions of direct versus indirect mechanisms for regulatory dendritic cell suppression of asthmatic allergen-specific IgG1 antibody responses. PLoS One 2018; 13:e0190414. [PMID: 29293622 PMCID: PMC5749789 DOI: 10.1371/journal.pone.0190414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
IL-10-differentiated dendritic cells (DC10) can reverse the asthma phenotype in mice, but how they suppress the asthmatic B cell response is unclear. Herein we assessed the mechanism(s) by which DC10 and DC10-induced Treg affect IgG1 production in asthma. We observed a rapid decline in lung-resident OVA-specific IgG1-secreting B cells on cessation of airway allergen challenge, and intraperitoneal DC10 therapy did not amplify that (p>0.05). It did however increase the loss of IgG1-B cells from the bone marrow (by 45+/-7.2%; p≤0.01) and spleen (by 65+/-17.8%; p≤0.05) over 2 wk. Delivery of OVA-loaded DC10 directly into the airways of asthmatic mice decreased the lung IgG1 B cell response assessed 2 dy later by 33+/-9.7% (p≤0.01), while their co-culture with asthmatic lung cell suspensions reduced the numbers of IgG1-secreting cells by 56.5+/-9.7% (p≤0.01). This effect was dependent on the DC10 carrying intact allergen on their cell surface; DC10 that had phagocytosed and fully processed their allergen were unable to suppress B cell responses, although they did suppress asthmatic Th2 cell responses. We had shown that therapeutic delivery of DC10-induced Treg can effectively suppress asthmatic T and B cell (IgE and IgG1) responses; herein CD4+ cells or Treg from the lungs of DC10-treated OVA-asthmatic mice suppressed in vitro B cell IgG1 production by 52.2+/-8.7% (p≤0.001) or 44.6+/-12.2% (p≤0.05), respectively, but delivery of DC10-induced Treg directly into the airways of asthmatic mice had no discernible impact over 2 dy on the numbers of lung IgG1-secreting cells (p≥0.05). In summary, DC10 treatment down-regulates OVA-specific B cell responses of asthmatic mice. While DC10 that carry intact allergen on their cell surface can dampen this response, DC10-induced Treg are critical for full realization of this outcome. This suggests that infectious tolerance is an essential element in regulatory DC control of the B cell response in allergic asthma.
Collapse
Affiliation(s)
- Yanna Ma
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wojciech Dawicki
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaobei Zhang
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John R. Gordon
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
48
|
Mohr M, Hose D, Seckinger A, Marciniak-Czochra A. Quantification of plasma cell dynamics using mathematical modelling. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170759. [PMID: 29410799 PMCID: PMC5792876 DOI: 10.1098/rsos.170759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
Plasma cells (PCs) are the main antibody-producing cells in humans. They are long-lived so that specific antibodies against either pathogens or vaccines are produced for decades. PC longevity is attributed to specific areas within the bone marrow micro-environment, the so-called 'niche', providing the cells with required growth and survival factors. With antigen encounters, e.g. infection or vaccination, new PCs are generated and home to the bone marrow where they compete with resident PCs for the niche. We propose a parametrized mathematical model describing healthy PC dynamics in the bone marrow. The model accounts for competition for the niche between newly produced PCs owing to vaccination and resident PCs. Mathematical analysis and numerical simulations of the model allow explanation of the recovery of PC homoeostasis after a vaccine-induced perturbation, and the fraction of vaccine-specific PCs inside the niche. The model enables quantification of the niche-related dynamics of PCs, i.e. the duration of PC transition into the niche and the impact of different rates for PC transitions into and out of the niche on the observed cell dynamics. Ultimately, it provides a potential basis for further investigations in health and disease.
Collapse
Affiliation(s)
- Marcel Mohr
- Heidelberg University, Institute of Applied Mathematics, BIOQUANT and IWR, Heidelberg, Germany
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Dirk Hose
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Anja Seckinger
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Heidelberg University, Institute of Applied Mathematics, BIOQUANT and IWR, Heidelberg, Germany
| |
Collapse
|
49
|
Guo M, Price MJ, Patterson DG, Barwick BG, Haines RR, Kania AK, Bradley JE, Randall TD, Boss JM, Scharer CD. EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:1039-1052. [PMID: 29288200 DOI: 10.4049/jimmunol.1701470] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Ezh2 Following stimulation with influenza virus or LPS, Ezh2-deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC. In the absence of EZH2, genes that normally gained histone H3 lysine 27 trimethylation were dysregulated and exhibited increased chromatin accessibility. Furthermore, EZH2 was also required for maximal Ab secretion by ASC, in part due to reduced mitochondrial respiration, impaired glucose metabolism, and poor expression of the unfolded-protein response pathway. Together, these data demonstrate that EZH2 is essential in facilitating epigenetic changes that regulate ASC fate, function, and metabolism.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322; and
| | - Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| | | |
Collapse
|
50
|
Carrell J, Groves CJ. OMIP-043: Identification of human antibody secreting cell subsets. Cytometry A 2017; 93:190-193. [DOI: 10.1002/cyto.a.23305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey Carrell
- Department of Respiratory; Inflammation and Autoimmunity Research, MedImmune LLC, One MedImmune Way; Gaithersburg Maryland 20878
| | - Christopher J. Groves
- Department of Respiratory; Inflammation and Autoimmunity Research, MedImmune LLC, One MedImmune Way; Gaithersburg Maryland 20878
| |
Collapse
|