1
|
Du F, Deng Y, Deng L, Du B, Xing A, Tao H, Li H, Xie L, Zhang X, Sun T, Li H. T-cell receptor and B-cell receptor repertoires profiling in pleural tuberculosis. Front Immunol 2024; 15:1473486. [PMID: 39664375 PMCID: PMC11632106 DOI: 10.3389/fimmu.2024.1473486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Tuberculosis (TB) is a leading cause of death worldwide from a single infectious agent. In China the most common extra-pulmonary TB (EPTB) is pleural tuberculosis (PLTB). An important clinical feature of PLTB is that the lymphocytes associated with TB will accumulate in the pleural fluid. The adaptive immune repertoires play important roles in Mycobacterium tuberculosis (Mtb) infection. Methods In this study, 10 PLTB patients were enrolled, and their Peripheral Blood Mononuclear Cells(PBMCs) and Pleural Effusion Mononuclear Cells(PEMCs) were collected. After T cells were purified from PBMCs and PEMCs, high-throughput immunosequencing of the TCRβ chain (TRB), TCRγ chain(TRG), and B cell receptor(BCR) immunoglobulin heavy chain (IGH) were conducted on these samples. Results The TRB, TRG, and BCR IGH repertoires were characterized between the pleural effusion and blood in PLTB patients, and the shared clones were analyzed and collected. The binding activity of antibodies in plasma and pleural effusion to Mtb antigens was tested which indicates that different antibodies responses to Mtb antigens in plasma and pleural effusion in PLTB patients. Moreover, GLIPH2 was used to identify the specificity groups of TRB clusters and Mtb-specific TRB sequences were analyzed and collected by VJ mapping. Conclusion We characterize the adaptive immune repertoires and identify the shared clones and Mtb-specific clones in pleural effusion and blood in PLTB patients which can give important clues for TB diagnosis, treatment, and vaccine development.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Tuberculosis, Pleural/immunology
- Tuberculosis, Pleural/diagnosis
- Male
- Female
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Adult
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Aged
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Fengjiao Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Ling Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Boping Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hong Tao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hua Li
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Xie
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinyong Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, China
| | - Hao Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Chen Z, Zhang Y, Wu J, Xu J, Hu Z, Fan XY. A multistage protein subunit vaccine as BCG-booster confers protection against Mycobacterium tuberculosis infection in murine models. Int Immunopharmacol 2024; 139:112811. [PMID: 39068754 DOI: 10.1016/j.intimp.2024.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The eradication of tuberculosis remains a global challenge. Despite being the only licensed vaccine, Bacillus Calmette-Guérin (BCG) confers limited protective efficacy in adults and individuals with latent tuberculosis infections (LTBI). There is an urgent need to develop novel vaccines that can enhance the protective effect of BCG. Protein subunit vaccines have garnered significant research interest due to their safety and plasticity. Based on previous studies, we selected three antigens associated with LTBI (Rv2028c, Rv2029c, Rv3126c) and fused them with an immunodominant antigen Ag85A, resulting in the construction of a multistage protein subunit vaccine named A986. We evaluated the protective effect of recombinant protein A986 adjuvanted with MPL/QS21 as a booster vaccine for BCG against Mycobacterium tuberculosis (Mtb) infection in mice. The A986 + MPL/QS21 induced the secretion of antigen-specific Th1 (IL-2+, IFN-γ+ and TNF-α+) and Th17 (IL-17A+) cytokines in CD4+ and CD8+ T cells within the lung and spleen of mice, while also increased the frequency of central memory and effector memory T cells. Additionally, it also induced the enhanced production of IgG antibodies. Compared to BCG alone, A986 + MPL/QS21 boosting significantly augmented the proliferation of antigen-specific multifunctional T cells and effectively reduced bacterial load in infected mice. Taken together, A986 + MPL/QS21 formulation induced robust antigen-specific immune responses and provided enhanced protection against Mtb infection as a booster of BCG vaccine.
Collapse
Affiliation(s)
- Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Ying Zhang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China.
| |
Collapse
|
3
|
Reid VA, Ramos EI, Veerapandian R, Carmona A, Gadad SS, Dhandayuthapani S. Differential Expression of lncRNAs in HIV Patients with TB and HIV-TB with Anti-Retroviral Treatment. Noncoding RNA 2024; 10:40. [PMID: 39051374 PMCID: PMC11270221 DOI: 10.3390/ncrna10040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Tuberculosis (TB) is the leading cause of death among people with HIV-1 infection. To improve the diagnosis and treatment of HIV-TB patients, it is important to understand the mechanisms underlying these conditions. Here, we used an integrated genomics approach to analyze and determine the lncRNAs that are dysregulated in HIV-TB patients and HIV-TB patients undergoing anti-retroviral therapy (ART) using a dataset available in the public domain. The analyses focused on the portion of the genome transcribed into non-coding transcripts, which historically have been poorly studied and received less focus. This revealed that Mtb infection in HIV prominently up-regulates the expression of long non-coding RNA (lncRNA) genes DAAM2-AS1, COL4A2-AS1, LINC00599, AC008592.1, and CLRN1-AS1 and down-regulates the expression of lncRNAs AC111000.4, AC100803.3, AC016168.2, AC245100.7, and LINC02073. It also revealed that ART down-regulates the expression of some lncRNA genes (COL4A2-AS1, AC079210.1, MFA-AS1, and LINC01993) that are highly up-regulated in HIV-TB patients. Furthermore, the interrogation of the genomic regions that are associated with regulated lncRNAs showed enrichment for biological processes linked to immune pathways in TB-infected conditions. However, intriguingly, TB patients treated with ART showed completely opposite and non-overlapping pathways. Our findings suggest that lncRNAs could be used to identify critical diagnostic, prognostic, and treatment targets for HIV-TB patients.
Collapse
Affiliation(s)
- Victoria A. Reid
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
| | - Areanna Carmona
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
| | - Shrikanth S. Gadad
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
4
|
Lee A, Floyd K, Wu S, Fang Z, Tan TK, Froggatt HM, Powers JM, Leist SR, Gully KL, Hubbard ML, Li C, Hui H, Scoville D, Ruggiero AD, Liang Y, Pavenko A, Lujan V, Baric RS, Nolan GP, Arunachalam PS, Suthar MS, Pulendran B. BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance. Nat Immunol 2024; 25:41-53. [PMID: 38036767 DOI: 10.1038/s41590-023-01700-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katharine Floyd
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shengyang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tze Kai Tan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather M Froggatt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | | | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Fan X, Zhao X, Wang R, Li M, Luan X, Wang R, Wan K, Liu H. A novel multistage antigens ERA005f confer protection against Mycobacterium tuberculosis by driving Th-1 and Th-17 type T cell immune responses. Front Immunol 2023; 14:1276887. [PMID: 38022539 PMCID: PMC10662081 DOI: 10.3389/fimmu.2023.1276887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Tuberculosis (TB) is a major threat to human health. In 2021, TB was the second leading cause of death after COVID-19 among infectious diseases. The Bacillus Calmette-Guérin vaccine (BCG), the only licensed TB vaccine, is ineffective against adult TB. Therefore, there is an urgent need to develop new effective vaccines. Methods In this study, we developed a novel multistage subunit vaccine (ERA005f) comprising various proteins expressed in metabolic states, based on three immunodominant antigens (ESAT-6, Rv2628, and Ag85B). We utilized the E. coli prokaryotic expression system to express ERA005f and subsequently purified the protein using nickel affinity chromatography and anion exchange. Immunogenicity and protective efficacy of ERA005f and ERA005m were evaluated in BALB/c mice. Results ERA005f was consistently expressed as an inclusion body in a prokaryotic expression system, and a highly pure form of the protein was successfully obtained. Both ERA005f and ERA005m significantly improved IgG titers in the serum. In addition, mice immunized with ERA005f and ERA005m generated higher titers of antigen-specific IgG2a than the other groups. Elispot results showed that, compared with other groups, ERA005f increased the numbers of IFN-γ-secreting and IL-4-secreting T cells, especially the number of IFN-γ-secreting T cells. Meanwhile, ERA005f induced a higher number of IFN-γ+ T lymphocytes than ERA005m did. In addition, ERA005f improved the expression of cytokines, including IFN-γ, IL-12p70, TNF-α, IL-17, and GM-CSF and so on. Importantly, both ERA005f and ERA005m significantly inhibited the growth of Mtb. Conclusion The novel multistage antigen ERA005f elicited a strong antigen-specific humoral response and Th-1 and Th-17 cell-mediated immunity in mice. Meanwhile, it can effectively inhibit H37Rv growth in vitro, and represents a correlate of protection in vivo, indicating that ERA005f may exhibit excellent protective efficacy against Mycobacterium tuberculosis H37Rv infection. Our study suggests that ERA005f has the potential to be a promising multistage tuberculosis vaccine candidate.
Collapse
Affiliation(s)
- Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruibai Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuli Luan
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ruihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
7
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
8
|
Wedlich N, Figl J, Liebler-Tenorio EM, Köhler H, von Pückler K, Rissmann M, Petow S, Barth SA, Reinhold P, Ulrich R, Grode L, Kaufmann SHE, Menge C. Video Endoscopy-Guided Intrabronchial Spray Inoculation of Mycobacterium bovis in Goats and Comparative Assessment of Lung Lesions With Various Imaging Methods. Front Vet Sci 2022; 9:877322. [PMID: 35591868 PMCID: PMC9113525 DOI: 10.3389/fvets.2022.877322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) not only poses a zoonotic threat to humans but also has a significant economic impact on livestock production in many areas of the world. Effective vaccines for humans, livestock, and wildlife are highly desirable to control tuberculosis. Suitable large animal models are indispensable for meaningful assessment of vaccine candidates. Here, we describe the refinement of an animal model for bTB in goats. Intrabronchial inoculation procedure via video-guided endoscopy in anesthetized animals, collection of lungs after intratracheal fixation in situ, and imaging of lungs by computed tomography (CT) were established in three goats using barium sulfate as surrogate inoculum. For subsequent infection experiments, four goats were infected with 4.7 × 102 colony-forming units of M. bovis by intrabronchial inoculation using video-guided endoscopy with spray catheters. Defined amounts of inoculum were deposited at five sites per lung. Four age-matched goats were mock-inoculated. None of the goats developed clinical signs until they were euthanized 5 months post infection, but simultaneous skin testing confirmed bTB infection in all goats inoculated with M. bovis. In tissues collected at necropsy, M. bovis was consistently re-isolated from granulomas in lymph nodes, draining the lungs of all the goats infected with M. bovis. Further dissemination was observed in one goat only. Pulmonary lesions were quantified by CT and digital 2D radiography (DR). CT revealed mineralized lesions in all the infected goats ranging from <5 mm to >10 mm in diameter. Small lesions <5 mm predominated. The DR failed to detect small lesions and to determine the exact location of lesions because of overlapping of pulmonary lobes. Relative volume of pulmonary lesions was low in three but high in one goat that also had extensive cavitation. CT lesions could be correlated to gross pathologic findings and histologic granuloma types in representative pulmonary lobes. In conclusion, video-guided intrabronchial inoculation with spray catheters, mimicking the natural way of infection, resulted in pulmonary infection of goats with M. bovis. CT, but not DR, presented as a highly sensitive method to quantify the extent of pulmonary lesions. This goat model of TB may serve as a model for testing TB vaccine efficacy.
Collapse
Affiliation(s)
- Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
- *Correspondence: Elisabeth M. Liebler-Tenorio
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Kerstin von Pückler
- Clinic for Small Animals – Radiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Melanie Rissmann
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Stefanie Petow
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institute, Celle, Germany
| | - Stefanie A. Barth
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | | | - Stefan H. E. Kaufmann
- Director Emeritus, Max Planck Institute for Infection Biology, Berlin, Germany
- Emeritus Group for Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| |
Collapse
|
9
|
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine 2021; 39:7265-7276. [PMID: 34420788 DOI: 10.1016/j.vaccine.2021.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.
Collapse
Affiliation(s)
- Isis Heijmenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Leiden University, Leiden 2311, the Netherlands
| | - Aliabbas Husain
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Julia Seifert
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Socorro Miranda-Hernandez
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Rajpal Singh Kashyap
- Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Matt A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Queensland, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, ACT, Australia
| | | | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia.
| |
Collapse
|
10
|
Koneru G, Batiha GES, Algammal AM, Mabrok M, Magdy S, Sayed S, AbuElmagd ME, Elnemr R, Saad MM, Abd Ellah NH, Hosni A, Muhammad K, Hetta HF. BCG Vaccine-Induced Trained Immunity and COVID-19: Protective or Bystander? Infect Drug Resist 2021; 14:1169-1184. [PMID: 33790587 PMCID: PMC8001200 DOI: 10.2147/idr.s300162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
In late 2019, a new virulent coronavirus (CoV) emerged in Wuhan, China and was named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This virus spread rapidly, causing the coronavirus disease-2019 (COVID-19) pandemic. Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis (TB) vaccine, associated with induction of non-specific cross-protection against unrelated infections. This protection is a memory-like response in innate immune cells (trained immunity), which is caused by epigenetic reprogramming via histone modification in the regulatory elements of specific genes in monocytes. COVID-19 related epidemiological studies showed an inverse relationship between national BCG vaccination policies and COVID-19 incidence and death, suggesting that BCG may induce trained immunity that could confer some protection against SARS-CoV-2. As this pandemic has put most of Earth's population under quarantine, repurposing of the old, well-characterized BCG may ensure some protection against COVID-19. This review focuses on BCG-related cross-protection and acquisition of trained immunity, as well as the correlation between BCG vaccination and COVID-19 incidence and mortality.
Collapse
Affiliation(s)
- Gopala Koneru
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutger New Jersey Medical School, Rutgers University, New Brunswick, NJ, 07103, USA
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhur, 22511, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sara Magdy
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Shrouk Sayed
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mai E AbuElmagd
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham Elnemr
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mahmoud M Saad
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Amal Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
11
|
Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A, Matlashewski G, Nakhasi HL. Revival of Leishmanization and Leishmanin. Front Cell Infect Microbiol 2021; 11:639801. [PMID: 33816344 PMCID: PMC8010169 DOI: 10.3389/fcimb.2021.639801] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis includes a spectrum of diseases ranging from debilitating cutaneous to fatal visceral infections. This disease is caused by the parasitic protozoa of the genus Leishmania that is transmitted by infected sandflies. Over 1 billion people are at risk of leishmaniasis with an annual incidence of over 2 million cases throughout tropical and subtropical regions in close to 100 countries. Leishmaniasis is the only human parasitic disease where vaccination has been successful through a procedure known as leishmanization that has been widely used for decades in the Middle East. Leishmanization involved intradermal inoculation of live Leishmania major parasites resulting in a skin lesion that following natural healing provided protective immunity to re-infection. Leishmanization is however no longer practiced due to safety and ethical concerns that the lesions at the site of inoculation that can last for months in some people. New genome editing technologies involving CRISPR has now made it possible to engineer safer attenuated strains of Leishmania, which induce protective immunity making way for a second generation leishmanization that can enter into human trials. A major consideration will be how the test the efficacy of a vaccine in the midst of the visceral leishmaniasis elimination program. One solution will be to use the leishmanin skin test (LST) that was also used for decades to determine exposure and immunity to Leishmania. The LST involves injection of antigen from Leishmania in the skin dermis resulting in a delayed type hypersensitivity (DTH) immune reaction associated with a Th1 immune response and protection against visceral leishmaniasis. Reintroduction of novel approaches for leishmanization and the leishmanin skin test can play a major role in eliminating leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Abhay Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
12
|
The double-sided effects of Mycobacterium Bovis bacillus Calmette-Guérin vaccine. NPJ Vaccines 2021; 6:14. [PMID: 33495451 PMCID: PMC7835355 DOI: 10.1038/s41541-020-00278-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG), the only vaccine proven to be effective against tuberculosis (TB), is the most commonly used vaccine globally. In addition to its effects on mycobacterial diseases, an increasing amount of epidemiological and experimental evidence accumulated since its introduction in 1921 has shown that BCG also exerts non-specific effects against a number of diseases, such as non-mycobacterial infections, allergies and certain malignancies. Recent Corona Virus Disease 2019 (COVID-19) outbreak has put BCG, a classic vaccine with significant non-specific protection, into the spotlight again. This literature review briefly covers the diverse facets of BCG vaccine, providing new perspectives in terms of specific and non-specific protection mechanisms of this old, multifaceted, and controversial vaccine.
Collapse
|
13
|
Singh DK, Dwivedi VP, Singh SP, Kumari A, Sharma SK, Ranganathan A, Kaer LV, Das G. Luteolin-mediated Kv1.3 K+ channel inhibition augments BCG vaccine efficacy against tuberculosis by promoting central memory T cell responses in mice. PLoS Pathog 2020; 16:e1008887. [PMID: 32956412 PMCID: PMC7529197 DOI: 10.1371/journal.ppat.1008887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/01/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the availability of multiple antibiotics, tuberculosis (TB) remains a major health problem worldwide, with one third of the population latently infected and ~2 million deaths annually. The only available vaccine for TB, Bacillus Calmette Guérin (BCG), is ineffective against adult pulmonary TB. Therefore, alternate strategies that enhance vaccine efficacy are urgently needed. Vaccine efficacy and long-term immune memory are critically dependent on central memory T (TCM) cells, whereas effector memory T (TEM) cells are important for clearing acute infections. Recently, it has been shown that inhibition of the Kv1.3 K+ ion channel, which is predominantly expressed on TEM but not TCM cells, profoundly enhances TCM cell differentiation. We exploited this phenomenon to improve TCM:TEM cell ratios and protective immunity against Mycobacterium tuberculosis infection in response to BCG vaccination of mice. We demonstrate that luteolin, a plant-derived Kv1.3 K+ channel inhibitor, profoundly promotes TCM cells by selectively inhibiting TEM cells, and significantly enhances BCG vaccine efficacy. Thus, addition of luteolin to BCG vaccination may provide a sustainable means to improve vaccine efficacy by boosting host immunity via modulation of memory T cell differentiation. Bacillus Calmette Guérin (BCG) is not effective against adult pulmonary tuberculosis (TB). Inhibition of the Kv1.3 K+ ion channel by the antibiotic clofazimine has been shown to enhance BCG-induced immunity. However, clofazimine has limited efficacy and is associated with substantial side effects in treated patients. Therefore, we explored alternatives to clofazimine. Luteolin is a plant-based flavonoid that inhibits Kv1.3. We show that administration of luteolin during BCG vaccination enhances antigen-specific immunity by promoting the T central memory (TCM) cell pool, which is critically important for long term host protection. Consequently, luteolin-mediated immune modulation enhances vaccine efficacy. As luteolin is a biologically safe food supplement, it could be easily applied during vaccination.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ved Prakash Dwivedi
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
| | - Anjna Kumari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gobardhan Das
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
14
|
Sharma AR, Batra G, Kumar M, Mishra A, Singla R, Singh A, Singh RS, Medhi B. BCG as a game-changer to prevent the infection and severity of COVID-19 pandemic? Allergol Immunopathol (Madr) 2020; 48:507-517. [PMID: 32653224 PMCID: PMC7332934 DOI: 10.1016/j.aller.2020.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023]
Abstract
The impact of COVID-19 is changing with country wise and depend on universal immunization policies. COVID-19 badly affects countries that did not have universal immunization policies or having them only for the selective population of countries (highly prominent population) like Italy, USA, UK, Netherland, etc. Universal immunization of BCG can provide great protection against the COVID-19 infection because the BCG vaccine gives broad protection against respiratory infections. BCG vaccine induces expressions of the gene that are involved in the antiviral innate immune response against viral infections with long-term maintenance of BCG vaccine-induced cellular immunity. COVID-19 cases are reported very much less in the countries with universal BCG vaccination policies such as India, Afghanistan, Nepal, Bhutan, Bangladesh, Israel, Japan, etc. as compared to without BCG implemented countries such as the USA, Italy, Spain, Canada, UK, etc. BCG vaccine provides protection for 50–60 years of immunization, so the elderly population needs to be revaccinated with BCG. Several countries started clinical trials of the BCG vaccine for health care workers and elderly people. BCG can be uses as a prophylactic treatment until the availability of the COVID-19 vaccine.
Collapse
Affiliation(s)
- A R Sharma
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Neurology, India
| | - G Batra
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Neurology, India
| | - M Kumar
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India
| | - A Mishra
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India
| | - R Singla
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India
| | - A Singh
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India
| | - R S Singh
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India
| | - B Medhi
- Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India; Department of Pharmacology, India.
| |
Collapse
|
15
|
BUZIC I, GIUFFRA V. The paleopathological evidence on the origins of human tuberculosis: a review. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2020; 61:E3-E8. [PMID: 32529097 PMCID: PMC7263064 DOI: 10.15167/2421-4248/jpmh2020.61.1s1.1379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) has been one of the most important infectious diseases affecting mankind and still represents a plague on a global scale. In this narrative review the origins of tuberculosis are outlined, according to the evidence of paleopathology. In particular the first cases of human TB in ancient skeletal remains are presented, together with the most recent discoveries resulting from the paleomicrobiology of the tubercle bacillus, which provide innovative information on the history of TB. The paleopathological evidence of TB attests the presence of the disease starting from Neolithic times. Traditionally, it was thought that TB has a zoonotic origin, being acquired by humans from cattle during the Neolithic revolution. However, the biomolecular studies proposed a new evolutionary scenario demonstrating that human TB has a human origin. The researches show that the disease was present in the early human populations of Africa at least 70000 years ago and that it expanded following the migrations of Homo sapiens out of Africa, adapting to the different human groups. The demographic success of TB during the Neolithic period was due to the growth of density and size of the human host population, and not the zoonotic transfer from cattle, as previously hypothesized. These data demonstrate a long coevolution of the disease and its human host. Understanding the changes of TB through time thanks to the advances in the field of paleopathology can help to solve the present problems and understand the future evolution of TB.
Collapse
Affiliation(s)
- I. BUZIC
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
- Doctoral School of History, “1 Decembrie 1918” University of Alba Iulia, Romania
- Correspondence: Ileana Buzic, MA, Doctoral School of History, “1 Decembrie 1918” University of Alba Iulia, 5 G. Bethlen St., 510009 Alba Iulia, Romania. Tel. +40 258806130 - Fax +40 258812630 - E-mail:
| | - V. GIUFFRA
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| |
Collapse
|
16
|
BCG and BCGΔBCG1419c protect type 2 diabetic mice against tuberculosis via different participation of T and B lymphocytes, dendritic cells and pro-inflammatory cytokines. NPJ Vaccines 2020; 5:21. [PMID: 32194998 PMCID: PMC7067831 DOI: 10.1038/s41541-020-0169-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Comorbidity between Tuberculosis (TB) and type 2 diabetes (T2D) is one of the greatest contributors to the spread of Mycobacterium tuberculosis (M. tuberculosis) in low- and middle-income countries. T2D compromises key steps of immune responses against M. tuberculosis and it might affect the protection afforded by vaccine candidates against TB. We compared the protection and immune response afforded by the BCGΔBCG1419c vaccine candidate versus that of wild-type BCG in mice with T2D. Vaccination with both BCGΔBCG1419c, BCG or infection with M. tuberculosis reduced weight loss, hyperglycemia, and insulin resistance during T2D progression, suggesting that metabolic changes affecting these parameters were affected by mycobacteria. For control of acute TB, and compared with non-vaccinated controls, BCG showed a dominant T CD4+ response whereas BCGΔBCG1419c showed a dominant T CD8+/B lymphocyte response. Moreover, BCG maintained an increased response in lung cells via IFN-γ, TNF-α, and IL-4, while BCGΔBCG1419c increased IFN-γ but reduced IL-4 production. As for chronic TB, and compared with non-vaccinated controls, both BCG strains had a predominant presence of T CD4+ lymphocytes. In counterpart, BCGΔBCG1419c led to increased presence of dendritic cells and an increased production of IL-1 β. Overall, while BCG effectively reduced pneumonia in acute infection, it failed to reduce it in chronic infection, whereas we hypothesize that increased production of IL-1 β induced by BCGΔBCG1419c contributed to reduced pneumonia and alveolitis in chronic TB. Our results show that BCG and BCGΔBCG1419c protect T2D mice against TB via different participation of T and B lymphocytes, dendritic cells, and pro-inflammatory cytokines.
Collapse
|
17
|
Kaufmann SHE. Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Front Immunol 2020; 11:316. [PMID: 32174919 PMCID: PMC7056705 DOI: 10.3389/fimmu.2020.00316] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health threat. Although a vaccine has been available for almost 100 years termed Bacille Calmette-Guérin (BCG), it is insufficient and better vaccines are urgently needed. This treatise describes first the basic immunology and pathology of TB with an emphasis on the role of T lymphocytes. Better understanding of the immune response to Mycobacterium tuberculosis (Mtb) serves as blueprint for rational design of TB vaccines. Then, disease epidemiology and the benefits and failures of BCG vaccination will be presented. Next, types of novel vaccine candidates are being discussed. These include: (i) antigen/adjuvant subunit vaccines; (ii) viral vectored vaccines; and (III) whole cell mycobacterial vaccines which come as live recombinant vaccines or as dead whole cell or multi-component vaccines. Subsequently, the major endpoints of clinical trials as well as administration schemes are being described. Major endpoints for clinical trials are prevention of infection (PoI), prevention of disease (PoD), and prevention of recurrence (PoR). Vaccines can be administered either pre-exposure or post-exposure with Mtb. A central part of this treatise is the description of the viable BCG-based vaccine, VPM1002, currently undergoing phase III clinical trial assessment. Finally, new approaches which could facilitate design of refined next generation TB vaccines will be discussed.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE, Lay MK, Riedel CA, González PA, Bueno SM, Kalergis AM. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol 2019; 10:2806. [PMID: 31849980 PMCID: PMC6896902 DOI: 10.3389/fimmu.2019.02806] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis vaccine that has the ability to induce non-specific cross-protection against pathogens that might be unrelated to the target disease. Vaccination with BCG reduces mortality in newborns and induces an improved innate immune response against microorganisms other than Mycobacterium tuberculosis, such as Candida albicans and Staphylococcus aureus. Innate immune cells, including monocytes and natural killer (NK) cells, contribute to this non-specific immune protection in a way that is independent of memory T or B cells. This phenomenon associated with a memory-like response in innate immune cells is known as "trained immunity." Epigenetic reprogramming through histone modification in the regulatory elements of particular genes has been reported as one of the mechanisms associated with the induction of trained immunity in both, humans and mice. Indeed, it has been shown that BCG vaccination induces changes in the methylation pattern of histones associated with specific genes in circulating monocytes leading to a "trained" state. Importantly, these modifications can lead to the expression and/or repression of genes that are related to increased protection against secondary infections after vaccination, with improved pathogen recognition and faster inflammatory responses. In this review, we discuss BCG-induced cross-protection and acquisition of trained immunity and potential heterologous effects of recombinant BCG vaccines.
Collapse
Affiliation(s)
- Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abel E Vasquez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy 2019; 16:1021-1043. [PMID: 31462144 DOI: 10.1080/15548627.2019.1658436] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host-directed therapies are gaining considerable impetus because of the emergence of drug-resistant strains of pathogens due to antibiotic therapy. Therefore, there is an urgent need to exploit alternative and novel strategies directed at host molecules to successfully restrict infections. The C-type lectin receptor CLEC4E and Toll-like receptor TLR4 expressed by host cells are among the first line of defense in encountering pathogens. Therefore, we exploited signaling of macrophages through CLEC4E in association with TLR4 agonists (C4.T4) to control the growth of Mycobacterium tuberculosis (Mtb). We observed significant improvement in host immunity and reduced bacterial load in the lungs of Mtb-infected mice and guinea pigs treated with C4.T4 agonists. Further, intracellular killing of Mtb was achieved with a 10-fold lower dose of isoniazid or rifampicin in conjunction with C4.T4 than the drugs alone. C4.T4 activated MYD88, PtdIns3K, STAT1 and RELA/NFKB, increased lysosome biogenesis, decreased Il10 and Il4 gene expression and enhanced macroautophagy/autophagy. Macrophages from autophagy-deficient (atg5 knockout or Becn1 knockdown) mice showed elevated survival of Mtb. The present findings also unveiled the novel role of CLEC4E in inducing autophagy through MYD88, which is required for control of Mtb growth. This study suggests a unique immunotherapeutic approach involving CLEC4E in conjunction with TLR4 to restrict the survival of Mtb through autophagy. ABBREVIATIONS 3MA: 3 methyladenine; AO: acridine orange; Atg5: autophagy related 5; AVOs: acidic vesicular organelles; BECN1: beclin 1, autophagy related; BMDMs: bone marrow derived macrophages; bw: body weight; C4.T4: agonists of CLEC4E (C4/TDB) and TLR4 (T4/ultra-pure-LPS); CFU: colony forming unit; CLEC4E/Mincle: C-type lectin domain family 4, member e; CLR: c-type lectin receptor; INH: isoniazid; LAMP1: lysosomal-associated membrane protein 1; MφC4.T4: Mtb-infected C4.T4 stimulated macrophages; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MDC: monodansylcadaverine; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response 88; NFKB: nuclear factor of kappa light polypeptide gene enhance in B cells; NLR: NOD (nucleotide-binding oligomerization domain)-like receptors; PFA: paraformaldehyde; PPD: purified protein derivative; PtdIns3K: class III phosphatidylinositol 3-kinase; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIF: rifampicin; RLR: retinoic acid-inducible gene-I-like receptors; TDB: trehalose-6,6´-dibehenate; TLR4: toll-like receptor 4; Ultra-pure-LPS: ultra-pure lipopolysaccharide-EK; V-ATPase: vacuolar-type H+ ATPase.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India.,Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India
| | - Mohammad Aqdas
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India.,Biomedical Engineering Department, Indian Institute of Technology Ropar , Rupnagar, India
| |
Collapse
|
20
|
Komine-Aizawa S, Jiang J, Mizuno S, Hayakawa S, Matsuo K, Boyd LF, Margulies DH, Honda M. MHC-restricted Ag85B-specific CD8 + T cells are enhanced by recombinant BCG prime and DNA boost immunization in mice. Eur J Immunol 2019; 49:1399-1414. [PMID: 31135967 PMCID: PMC6722017 DOI: 10.1002/eji.201847988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Satoru Mizuno
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Kazuhiro Matsuo
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Mitsuo Honda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| |
Collapse
|
21
|
Negi S, Pahari S, Das DK, Khan N, Agrewala JN. Curdlan Limits Mycobacterium tuberculosis Survival Through STAT-1 Regulated Nitric Oxide Production. Front Microbiol 2019; 10:1173. [PMID: 31191491 PMCID: PMC6547911 DOI: 10.3389/fmicb.2019.01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Host-directed therapies have emerged as an innovative and promising approach in tuberculosis (TB) treatment due to the observed limitations of current TB regimen such as lengthy duration and emergence of drug resistance. Thus, we explored the role of curdlan (beta glucan polysaccharide) as a novel strategy to activate macrophages against Mycobacterium tuberculosis (Mtb). The aim of the study was to investigate the role of curdlan in restricting the Mtb growth both in vitro and in vivo. Further, the immunomodulatory potential of curdlan against Mtb and the underlying mechanism is largely unknown. We found that curdlan treatment enhanced the antigen presentation, pro-inflammatory cytokines, Mtb uptake and killing activity of macrophages. In vivo studies showed that curdlan therapy significantly reduced the Mtb burden in lung and spleen of mice. Administration of curdlan triggered the protective Th1 and Th17 immunity while boosting the central and effector memory response in Mtb infected mice. Curdlan mediated anti-Mtb activity is through signal transducer and activator of transcription-1 (STAT-1), which regulates nitric oxide (NO) production through inducible NO synthase (iNOS) induction; along with this activation of nuclear factor kappa B (NF-κB) was also evident in Mtb infected macrophages. Thus, we demonstrate that curdlan exerts effective anti-tuberculous activity anti-tuberculous activity. It can be used as a potential host-directed therapy against Mtb.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Deepjyoti Kumar Das
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nargis Khan
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Javed N Agrewala
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
22
|
Can Multi-Stage Recombinant Fusion Proteins Be Considered as Reliable Vaccines Against Tuberculosis? A Letter to the Editor. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/modernc.91493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Mycobacterium tuberculosis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 61:100-115. [PMID: 29356839 DOI: 10.1007/s00103-017-2660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Garnica O, Das K, Devasundaram S, Dhandayuthapani S. Enhanced delivery of Mycobacterium tuberculosis antigens to antigen presenting cells using RVG peptide. Tuberculosis (Edinb) 2019; 116S:S34-S41. [PMID: 31064713 DOI: 10.1016/j.tube.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/26/2022]
Abstract
Among the various strategies to improve vaccines against infectious diseases, targeting of antigens to dendritic cells (DCs), which are professional antigen presenting cells (APCs), has received increased attention in recent years. Here, we investigated whether a synthetic peptide region named RVG, originated from Rabies Virus Glycoprotein that binds to the α-7 subunit of the nicotinic acetylcholine receptors (AchR-α7) of APCs, could be used for the delivery of Mycobacterium tuberculosis (Mtb) peptide antigens to DCs and macrophages. Mouse bone marrow derived DCs (BMDCs) and human THP-1 macrophages stimulated with RVG fused peptide epitopes 85B241 and 85B96 (represent Ag85B241-256 and Ag85B96-111, respectively) from antigen 85B (Ag85B) of Mtb showed enhanced antigen presentation as compared to unfused peptide epitopes and BCG. Further, BMDCs stimulated with RVG fused 85B241 showed higher levels of IL-12 positive cells. Consistent with in vitro data, splenocytes of mice immunized with RVG-85B241 showed increased number of antigen specific IFN-γ, IL-2, and TNF-α producing cells in relation to splenocytes from mice immunized with 85B241 alone. These results suggest that RVG may be a promising tool to develop effective alternate vaccines against tuberculosis (TB).
Collapse
Affiliation(s)
- Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Santhi Devasundaram
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
25
|
Sathkumara HD, Pai S, Aceves-Sánchez MDJ, Ketheesan N, Flores-Valdez MA, Kupz A. BCG Vaccination Prevents Reactivation of Latent Lymphatic Murine Tuberculosis Independently of CD4 + T Cells. Front Immunol 2019; 10:532. [PMID: 30949177 PMCID: PMC6437071 DOI: 10.3389/fimmu.2019.00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major global public health problem causing significant mortality and morbidity. In addition to ~10.4 million cases of active TB annually, it is estimated that about two billion people are latently infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB. Reactivation of latent Mtb infection is the leading cause of death in patients with immunodeficiency virus (HIV) infection. The low efficiency of the only licensed anti-TB vaccine, Bacille Calmette–Guérin (BCG) to reduce pulmonary TB in adults contributes to this problem. Here we investigated if vaccination with conventional BCG or the genetically modified experimental BCGΔBCG1419c strain can prevent reactivation of latent lymphatic TB in a mouse model of induced reactivation, following the depletion of CD4+ T cells, as it occurs in HIV+ individuals. Vaccination with conventional BCG or BCGΔBCG1419c prevented reactivation of Mtb from the infected lymph node and the systemic spread of Mtb to spleen and lung. Prevention of reactivation was independent of vaccination route and was accompanied by reduced levels of circulating inflammatory cytokines and the absence of lung pathology. Our results demonstrate that vaccine-induced CD4+ T cells are not essential to prevent reactivation of latent lymphatic murine TB, and highlight the need to better understand how non-CD4+ immune cell populations participate in protective immune responses to control latent TB.
Collapse
Affiliation(s)
- Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Natkunam Ketheesan
- Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| |
Collapse
|
26
|
PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma. Oncogenesis 2019; 8:22. [PMID: 30872582 PMCID: PMC6418141 DOI: 10.1038/s41389-019-0132-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. PEST-containing nuclear protein (PCNP) has been found in the nucleus of cancer cells. Whether PCNP plays a role in the growth of lung adenocarcinoma is still unknown. In the present study, the results indicated that the level of PCNP in lung adenocarcinoma tissue was significantly higher than that in corresponding adjacent non-tumor tissue. Over-expression of PCNP promoted the proliferation, migration, and invasion of lung adenocarcinoma cells, while down-regulation of PCNP exhibited opposite effects. PCNP over-expression decreased apoptosis through up-regulating the expression levels of phospho (p)-signal transducers and activators of transcription (STAT) 3 and p-STAT5 in lung adenocarcinoma cells, whereas PCNP knockdown showed opposite trends. PCNP overexpression enhanced autophagy by increasing the expression levels of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, and p-mammalian target of rapamycin (mTOR) in lung adenocarcinoma cells, however an opposite trend was observed in the sh-PCNP group. In addition, overexpression of PCNP showed the tumor-promoting effect on xenografted lung adenocarcinoma, while PCNP knockdown reduced the growth of lung adenocarcinoma via regulating angiogenesis. Our study elucidates that PCNP can regulate the procession of human lung adenocarcinoma cells via STAT3/5 and PI3K/Akt/mTOR signaling pathways. PCNP may be considered as a promising biomarker for the diagnosis and prognosis in patients with lung adenocarcinoma. Furthermore, PCNP can be a novel therapeutic target and potent PCNP inhibitors can be designed and developed in the treatment of lung adenocarcinoma.
Collapse
|
27
|
Rappuoli R, Santoni A, Mantovani A. Vaccines: An achievement of civilization, a human right, our health insurance for the future. J Exp Med 2019; 216:7-9. [PMID: 30510147 PMCID: PMC6314523 DOI: 10.1084/jem.20182160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/04/2022] Open
Abstract
Vaccines have made a key, cost-effective contribution to the prolongation of life expectancy and quality. Here we summarize challenges facing vaccinology and immunology at the level of society, scientific innovation, and technology in a global health perspective. We argue that vaccines represent a safety belt and life insurance for humankind.
Collapse
Affiliation(s)
- Rino Rappuoli
- GlaxoSmithKline, Siena, Italy
- Imperial College, Faculty of Medicine, London, UK
| | - Angela Santoni
- Università "La Sapienza", Dipartimento di Medicina Molecolare, Rome, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Limited Pulmonary Mucosal-Associated Invariant T Cell Accumulation and Activation during Mycobacterium tuberculosis Infection in Rhesus Macaques. Infect Immun 2018; 86:IAI.00431-18. [PMID: 30201702 DOI: 10.1128/iai.00431-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023] Open
Abstract
Mucosal-associated invariant T cells (MAITs) are positioned in airways and may be important in the pulmonary cellular immune response against Mycobacterium tuberculosis infection, particularly prior to priming of peptide-specific T cells. Accordingly, there is interest in the possibility that boosting MAITs through tuberculosis (TB) vaccination may enhance protection, but MAIT responses in the lungs during tuberculosis are poorly understood. In this study, we compared pulmonary MAIT and peptide-specific CD4 T cell responses in M. tuberculosis-infected rhesus macaques using 5-OP-RU-loaded MR-1 tetramers and intracellular cytokine staining of CD4 T cells following restimulation with an M. tuberculosis-derived epitope megapool (MTB300), respectively. Two of four animals showed a detectable increase in the number of MAIT cells in airways at later time points following infection, but by ∼3 weeks postexposure, MTB300-specific CD4 T cells arrived in the airways and greatly outnumbered MAITs thereafter. In granulomas, MTB300-specific CD4 T cells were ∼20-fold more abundant than MAITs. CD69 expression on MAITs correlated with tissue residency rather than bacterial loads, and the few MAITs found in granulomas poorly expressed granzyme B and Ki67. Thus, MAIT accumulation in the airways is variable and late, and MAITs display little evidence of activation in granulomas during tuberculosis in rhesus macaques.
Collapse
|
29
|
Wajja A, Namutebi M, Apule B, Oduru G, Kiwanuka S, Akello M, Nassanga B, Kabagenyi J, Mpiima J, Vermaak S, Lawrie A, Satti I, Verweij J, Cose S, Levin J, Kaleebu P, Tukahebwa E, McShane H, Elliott AM. Lessons from the first clinical trial of a non-licensed vaccine among Ugandan adolescents: a phase II field trial of the tuberculosis candidate vaccine, MVA85A. Wellcome Open Res 2018; 3:121. [PMID: 30687792 PMCID: PMC6338128 DOI: 10.12688/wellcomeopenres.14736.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: A more effective vaccine for tuberculosis (TB) is a global public health priority. Vaccines under development will always need evaluation in endemic settings, most of which have limited resources. Adolescents are an important target population for a new TB vaccine and for other vaccines which are relevant at school-age. However, in most endemic settings there is limited experience of trials of investigational products among adolescents, and adolescents are not routinely vaccinated. Methods: We used Modified vaccinia Ankara-expressing Ag85A (MVA85A), a well-tolerated candidate vaccine for tuberculosis, to assess the effect of Schistosoma mansoni infection on vaccine immunogenicity among Ugandan adolescents in primary school. We describe here the challenges and lessons learned in designing and implementing this first clinical trial among Ugandan adolescents using a non-licensed vaccine. Results: The school based immunization study was feasible and adhered to Good Clinical Practice principles. Engagement with the community and all stakeholders was critical for successful implementation of the trial. Creative and adaptable strategies were used to address protocol-specific, operational and logistical challenges. This study provided lessons and solutions that can be applied to other trials among adolescents in similar settings elsewhere, and to school-based immunization programs. Conclusion: Sufficient time and resources should be planned for community preparation and sensitization to ensure buy in and acceptance of a project of this kind. This trial shows that challenges to implementing early field trials in Africa are not insurmountable and that necessary well-planned high-quality ethical trials are feasible and should be encouraged. Trial Registration: ClinicalTrials.gov NCT02178748 03/06/2014.
Collapse
Affiliation(s)
- Anne Wajja
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Milly Namutebi
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Barbara Apule
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | - Mirriam Akello
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | | | - Juma Mpiima
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | - Samantha Vermaak
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alison Lawrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jaco Verweij
- Laboratory for Medical Microbiology and Immunology & Laboratory for Clinical Pathology,, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Jonathan Levin
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Edridah Tukahebwa
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alison M Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
30
|
Hu Z, Gu L, Li CL, Shu T, Lowrie DB, Fan XY. The Profile of T Cell Responses in Bacille Calmette-Guérin-Primed Mice Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine. Front Immunol 2018; 9:1796. [PMID: 30123219 PMCID: PMC6085409 DOI: 10.3389/fimmu.2018.01796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The kinds of vaccine-induced T cell responses that are beneficial for protection against Mycobacterium tuberculosis (Mtb) infection are not adequately defined. We had shown that a novel Sendai virus vectored vaccine, SeV85AB, was able to enhance immune protection induced by bacille Calmette–Guérin (BCG) in a prime-boost model. However, the profile of T cell responses boosted by SeV85AB was not determined. Herein, we show that the antigen-specific CD4+ and CD8+ T cell responses were both enhanced by the SeV85AB boost after BCG. Different profiles of antigen-specific po T cell subsets were induced in the local (lung) and systemic (spleen) sites. In the spleen, the CD4+ T cell responses that were enhanced by the SeV85AB boost were predominately IL-2 responses, whereas in the lung the greater increases were in IFN-γ- and TNF-α-producing CD4+ T cells; in CD8+ T cells, although IFN-γ was enhanced in both the spleen and lung, only IL-2+TNF-α+CD8+ T subset was boosted in the latter. After a challenge Mtb infection, there were significantly higher levels of recall IL-2 responses in T cells. In contrast, IFN-γ-producing cells were barely boosted by SeV85AB. After Mtb challenge a central memory phenotype of responding CD4+ T cells was a prominent feature in SeV85AB-boosted mice. Thus, our data strongly suggest that the enhanced immune protection induced by SeV85AB boosting was associated with establishment of an increased capacity to recall antigen-specific IL-2-mediated T cell responses and confirms this Sendai virus vector system as a promising candidate to be used in a heterologous prime-boost immunization regimen against TB.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chun-Ling Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Khademi F, Taheri RA, Yousefi Avarvand A, Vaez H, Momtazi-Borojeni AA, Soleimanpour S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb Pathog 2018; 121:218-223. [DOI: 10.1016/j.micpath.2018.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
32
|
Khademi F, Taheri RA, Momtazi-Borojeni AA, Farnoosh G, Johnston TP, Sahebkar A. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines. Rev Physiol Biochem Pharmacol 2018; 175:47-69. [PMID: 29700609 DOI: 10.1007/112_2018_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.
Collapse
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M, Soleimanpour S. Multi-stage subunit vaccines against Mycobacterium tuberculosis: an alternative to the BCG vaccine or a BCG-prime boost? Expert Rev Vaccines 2017; 17:31-44. [DOI: 10.1080/14760584.2018.1406309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arshid Yousefi-Avarvand
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Perez-Martinez AP, Ong E, Zhang L, Marrs CF, He Y, Yang Z. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa. INFECTION GENETICS AND EVOLUTION 2017; 55:244-250. [PMID: 28941991 DOI: 10.1016/j.meegid.2017.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023]
Abstract
H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines.
Collapse
Affiliation(s)
- Angy P Perez-Martinez
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| | - Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| | - Lixin Zhang
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| | - Carl F Marrs
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States; Department of Microbiology and Immunology Department, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States; Center of Computational Medicine and Bioinformatics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| | - Zhenhua Yang
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.
| |
Collapse
|
35
|
Darboe F, Adetifa JU, Reynolds J, Hossin S, Plebanski M, Netea MG, Rowland-Jones SL, Sutherland JS, Flanagan KL. Minimal Sex-Differential Modulation of Reactivity to Pathogens and Toll-Like Receptor Ligands following Infant Bacillus Calmette-Guérin Russia Vaccination. Front Immunol 2017; 8:1092. [PMID: 28951731 PMCID: PMC5599783 DOI: 10.3389/fimmu.2017.01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), the only licensed vaccine against tuberculosis, has been shown to provide heterologous protection against unrelated pathogens and enhance antibody responses to several routine expanded program on immunization (EPI) vaccines. Understanding these heterologous effects is important for the development of optimal vaccination strategies. We set out to assess the effect of vaccination with BCG Russia of 6-week-old infants on in vitro reactivity to a panel of toll-like receptor (TLR) agonists (TLR2, 4, and 7/8) and heat-killed pathogens [Streptococcus pneumoniae, Candida albicans (CA), and Escherichia coli], and antibody responses to other EPI vaccines compared to BCG naïve infants. We observed no effect of BCG vaccination on innate (TNF-α) or Th2 (IL-4) cytokine responses, but found enhanced CA-specific CD8+IFN-γ+ responses in BCG vaccinated males and females 1 week after vaccination and decreased IFN-γ:IL4 ratio to SP in females. By 12 weeks (but not 1 week) of post-vaccination, there was significant downmodulation of Th1 cytokine responses in BCG vaccinated infants; and TLR-stimulated IL-10 and IL-17 responses declined in BCG vaccinated females but not males. Significant changes also occurred in the BCG naïve group, mainly at 18 weeks, including decreased Th1 and increased IL-10 responses. The effects at 18 weeks were most likely a result of immune modulation by the intervening EPI vaccines given at 8, 12, and 16 weeks of age. There was no effect of BCG vaccination on EPI antibody levels at either time point. Taken together, our results support minimal early heterologous immune modulation by BCG Russia vaccination that did not persist 12 weeks after vaccination.
Collapse
Affiliation(s)
| | | | - John Reynolds
- Biostatistics Consulting Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University, Prahran, VIC, Australia
| | | | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Prahran, VIC, Australia.,Monash Institute of Medical Engineering, Monash University, Prahran, VIC, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Nijmegen University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Sarah L Rowland-Jones
- Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Katie L Flanagan
- Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Immunology and Pathology, Monash University, Prahran, VIC, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
36
|
Vaccine research and development: tuberculosis as a global health threat. Cent Eur J Immunol 2017; 42:196-204. [PMID: 28867962 PMCID: PMC5573893 DOI: 10.5114/ceji.2017.69362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
One of the aims of the World Health Organisation (WHO) Millennium Development Goals (MDG) is to reduce the number of cases of tuberculosis (TB) infection by the year 2015. However, 9 million new cases were reported in 2013, with an estimated 480,000 new cases of multi-drug resistant tuberculosis (MDR-TB) globally. Bacille Calmette-Guérin (BCG) is the most available and currently used candidate vaccine against tuberculosis; it prevents childhood TB, but its effectiveness against pulmonary TB in adults and adolescents is disputed. To achieve the goal of the WHO MDG, the need for a new improved vaccine is of primary importance. This review highlights several articles that have reported vaccine development. There are about 16 TB vaccines in different phases of clinical trials at the time of writing, which include recombinant peptide/protein, live-attenuated and recombinant live-attenuated, protein/adjuvant, viral-vectored, and immunotherapeutic vaccine. Further studies in reverse vaccinology and massive campaigns on vaccination are needed in order to achieve the target for TB eradication by 2050.
Collapse
|
37
|
Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H, Singh S, Agrewala JN. Bolstering Immunity through Pattern Recognition Receptors: A Unique Approach to Control Tuberculosis. Front Immunol 2017; 8:906. [PMID: 28824632 PMCID: PMC5539433 DOI: 10.3389/fimmu.2017.00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The global control of tuberculosis (TB) presents a continuous health challenge to mankind. Despite having effective drugs, TB still has a devastating impact on human health. Contributing reasons include the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the AIDS-pandemic, and the absence of effective vaccines against the disease. Indeed, alternative and effective methods of TB treatment and control are urgently needed. One such approach may be to more effectively engage the immune system; particularly the frontline pattern recognition receptor (PRR) systems of the host, which sense pathogen-associated molecular patterns (PAMPs) of Mtb. It is well known that 95% of individuals infected with Mtb in latent form remain healthy throughout their life. Therefore, we propose that clues can be found to control the remainder by successfully manipulating the innate immune mechanisms, particularly of nasal and mucosal cavities. This article highlights the importance of signaling through PRRs in restricting Mtb entry and subsequently preventing its infection. Furthermore, we discuss whether this unique therapy employing PRRs in combination with drugs can help in reducing the dose and duration of current TB regimen.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
38
|
Abstract
Bacille Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine in clinical practice, has limitations in efficacy, immunogenicity and safety. Much current TB vaccine research focuses on engineering live mycobacteria to interfere with phagosome biology and host intracellular pathways including apoptosis and autophagy, with candidates such as BCG Δzmp1, BCG ΔureC::hly, BCG::ESX-1Mmar, Mtb ΔphoP ΔfadD26, Mtb ΔRD1 ΔpanCD and M. smegmatis Δesx-3::esx-3(Mtb) in the development pipeline. Correlates of protection in preclinical studies include increased central memory CD4+ T cells and recruitment of antigen-specific T cells to the lungs, with mucosal vaccination found to be superior to parenteral vaccination. Finally, recent studies suggest beneficial non-specific effects of BCG on immunity, which should be taken into account when considering these vaccines for BCG replacement.
Collapse
|
39
|
Interleukin 1-Beta (IL-1β) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 74:213-220. [PMID: 27654812 DOI: 10.1097/qai.0000000000001181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV coinfection because immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time-points before TB recurrence were stimulated with ligands for Toll-like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multicolor flow cytometry and intracellular cytokine staining were used to detect IL-1β, TNF-α, IL-12, and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS Elevated production of IL-1β from monocytes following TLR-2, TLR-4, and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs, respectively). CONCLUSION Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB.
Collapse
|
40
|
Monedero I, Bhavaraju R, Mendoza-Ticona A, Sánchez-Montalvá A. The paradigm shift to end tuberculosis. Are we ready to assume the changes? Expert Rev Respir Med 2017; 11:565-579. [PMID: 28562103 DOI: 10.1080/17476348.2017.1335599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is the number one infectious disease killer and exemplifies the most neglected of them. Drug-susceptible TB presents with high mortality especially in atypical forms, disproportionally affecting immunosuppressed and vulnerable populations. The drug-resistant TB (DR-TB) epidemic, a world crisis, is sustained and increased through person-to-person transmission in households and the community. TB diagnostics and treatment in recent years are highly evolving fields. New rapid molecular tests are changing the perspectives in diagnosis and resistance screening. Also, new drugs and shorter regimens for DR-TB are appearing. For the first time in recent history, a large number of randomized control trials are incoming. Areas covered: This article reviews most TB advances including new diagnostic tests, drugs, and regimens and outlines upcoming drug trials while disclosing the potential gaps the in development of patient-centered systems and current organizational challenges leading to a delay in the uptake of these innovations. Expert commentary: Innovations are occurring, but not many are implemented on a wide scale in developing countries. TB health systems and staff are not getting updated in parallel. More efforts and funds are needed not only to implement current novelties but also to research for future solutions to eliminate TB.
Collapse
Affiliation(s)
- Ignacio Monedero
- a TB-HIV Department. International Union against Tuberculosis and Lung Disease (The Union) , Paris , France
| | - Rajita Bhavaraju
- b Global Tuberculosis Institute, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Alberto Mendoza-Ticona
- a TB-HIV Department. International Union against Tuberculosis and Lung Disease (The Union) , Paris , France.,c Clinical Research Department , Asociación Civil IMPACTA , Lima , Peru
| | - Adrián Sánchez-Montalvá
- d Infectious diseases department, Tropical Medicine Unit, PROCIS (International Health Program of the Catalan Health Institute) , Vall d'Hebron University Hospital,Universistat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
41
|
Wajja A, Kizito D, Nassanga B, Nalwoga A, Kabagenyi J, Kimuda S, Galiwango R, Mutonyi G, Vermaak S, Satti I, Verweij J, Tukahebwa E, Cose S, Levin J, Kaleebu P, Elliott AM, McShane H. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial. PLoS Negl Trop Dis 2017; 11:e0005440. [PMID: 28472067 PMCID: PMC5417418 DOI: 10.1371/journal.pntd.0005440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Helminth infection may affect vaccine immunogenicity and efficacy. Adolescents, a target population for tuberculosis booster vaccines, often have a high helminth burden. We investigated effects of Schistosoma mansoni (Sm) on the immunogenicity and safety of MVA85A, a model candidate tuberculosis vaccine, in BCG-vaccinated Ugandan adolescents. METHODS In this phase II open label trial we enrolled 36 healthy, previously BCG-vaccinated adolescents, 18 with no helminth infection detected, 18 with Sm only. The primary outcome was immunogenicity measured by Ag85A-specific interferon gamma ELISpot assay. Tuberculosis and schistosome-specific responses were also assessed by whole-blood stimulation and multiplex cytokine assay, and by antibody ELISAs. RESULTS Ag85A-specific cellular responses increased significantly following immunisation but with no differences between the two groups. Sm infection was associated with higher pre-immunisation Ag85A-specific IgG4 but with no change in antibody levels following immunisation. There were no serious adverse events. Most reactogenicity events were of mild or moderate severity and resolved quickly. CONCLUSIONS The significant Ag85A-specific T cell responses and lack of difference between Sm-infected and uninfected participants is encouraging for tuberculosis vaccine development. The implications of pre-existing Ag85A-specific IgG4 antibodies for protective immunity against tuberculosis among those infected with Sm are not known. MVA85A was safe in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT02178748.
Collapse
Affiliation(s)
- Anne Wajja
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Dennison Kizito
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Beatrice Nassanga
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Angela Nalwoga
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Simon Kimuda
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Ronald Galiwango
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Gertrude Mutonyi
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Samantha Vermaak
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jaco Verweij
- Laboratory for Medical Microbiology and Immunology & Laboratory for Clinical Pathology, St. Elisabeth Hospital, Tilburg, The Netherlands
| | | | - Stephen Cose
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jonathan Levin
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pontiano Kaleebu
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Alison M. Elliott
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine 2017; 35:1395-1402. [DOI: 10.1016/j.vaccine.2017.01.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
|
43
|
Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Appl Environ Microbiol 2017; 83:AEM.02289-16. [PMID: 28087528 PMCID: PMC5311400 DOI: 10.1128/aem.02289-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-Mycobacterium shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. MBB, A:E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens.
Collapse
|
44
|
Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B, Johnstone H, van der Spuy G, Maertzdorf J, Kaufmann SHE, Hesseling AC, Walzl G, Cotton MF. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00439-16. [PMID: 27974398 PMCID: PMC5299117 DOI: 10.1128/cvi.00439-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Tuberculosis is a global threat to which infants are especially vulnerable. Effective vaccines are required to protect infants from this devastating disease. VPM1002, a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine previously shown to be safe and immunogenic in adults, was evaluated for safety in its intended target population, namely, newborn infants in a region with high prevalence of tuberculosis. A total of 48 newborns were vaccinated intradermally with VPM1002 (n = 36) or BCG Danish strain (n = 12) in a phase II open-labeled, randomized trial with a 6-month follow-up period. Clinical and laboratory measures of safety were evaluated during this time. In addition, vaccine-induced immune responses to mycobacteria were analyzed in whole-blood stimulation and proliferation assays. The safety parameters and immunogenicity were comparable in the two groups. Both vaccines induced interleukin-17 (IL-17) responses; however, VPM1002 vaccination led to an increase of CD8+ IL-17+ T cells at the week 16 and month 6 time points. The incidence of abscess formation was lower for VPM1002 than for BCG. We conclude that VPM1002 is a safe, well-tolerated, and immunogenic vaccine in newborn infants, confirming results from previous trials in adults. These results strongly support further evaluation of the safety and efficacy of this vaccination in larger studies. (This study has been registered at ClinicalTrials.gov under registration no. NCT01479972.).
Collapse
Affiliation(s)
- André G Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | - Andrea Gutschmidt
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Bernd Eisele
- Vakzine Projekt Management, GmbH, Hanover, Germany
| | | | - Gian van der Spuy
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jeroen Maertzdorf
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Anneke C Hesseling
- Desmond Tutu TB Center, Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerhard Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark F Cotton
- Fam-Cru, Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
45
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
46
|
Pahari S, Khan N, Aqdas M, Negi S, Kaur J, Agrewala JN. Infergen Stimulated Macrophages Restrict Mycobacterium tuberculosis Growth by Autophagy and Release of Nitric Oxide. Sci Rep 2016; 6:39492. [PMID: 28000752 PMCID: PMC5175149 DOI: 10.1038/srep39492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
IFN alfacon-1 (Infergen) is a synthetic form of Interferon (IFN)-α2b. Infergen has immunomodulatory activity and is effective against hepatitis C virus. However, the effect of Infergen (IFG) on Mycobacterium tuberculosis (Mtb) has not yet been reported. Therefore, for the first time, we have studied the influence of IFG in constraining the survival of Mtb in human macrophages. We observed that IFG significantly enhanced the maturation and activation of macrophages. Further, it substantially augmented the secretion of IL-6, nitric oxide (NO) and antigen uptake. Moreover, macrophages exhibited remarkably higher bactericidal activity, as evidenced by reduction in the Mtb growth. Infergen-mediated mechanism was different from the type-1 interferons; since it worked through the activation of NF-κB, phosphorylation of STAT-3 and Akt-PI3K that improved the bactericidal activity through autophagy and NO release. In future, IFG immunotherapy can be a novel strategy for treating patients and controlling TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Nargis Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Javed N. Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
47
|
Das K, Thomas T, Garnica O, Dhandayuthapani S. Recombinant Bacillus subtilis spores for the delivery of Mycobacterium tuberculosis Ag85B-CFP10 secretory antigens. Tuberculosis (Edinb) 2016; 101S:S18-S27. [PMID: 27727129 DOI: 10.1016/j.tube.2016.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuberculosis continues to be a great cause of morbidity and mortality in different parts of the world. Unfortunately, the current BCG vaccine being administered is not fully protective against tuberculosis; therefore, there is a great need for alternate vaccines. With an aim to develop such vaccines, we have analyzed the utility of Bacillus subtilis spores for the expression of two major immunodominant antigens of Mycobacterium tuberculosis, Ag85B and CFP10. We created three recombinant B. subtilis strains to express a truncated fusion of Ag85B191-325 and CFP101-70 antigens (T85BCFP), either on the spore coat (MTAG1 strain) or in the cytosol of B. subtilis (MTAG 2 and MTAG 3 strains). Examination of spores isolated from these strains revealed successful expression of T85BCFP antigens on the spore coat of MTAG1 as well as in the cytosol of vegetatively grown cells of MTAG2 and MTAG3, indicating that spores can indeed express M. tuberculosis antigens. In vitro antigen presentation assays with spore-infected mouse bone marrow derived macrophages (BMDM) showed that all three recombinant spores could deliver these antigens to antigen presenting cells (APCs). Mice immunized with recombinant spores displayed significantly higher levels of Ag85B specific IFN-γ producing cells in the spleen than in mice immunized with wild-type (non-recombinant) spores. In addition, these mice showed relatively higher levels of Ag85B specific IgG antibodies in the serum in comparison to mice immunized with non-recombinant spores, thus providing additional evidence that recombinant spores can deliver these antigens in vivo. These results suggest that B. subtilis spores are ideal vehicles for antigen delivery and have great potential in the development of primary and booster vaccines against tuberculosis.
Collapse
MESH Headings
- Acyltransferases/administration & dosage
- Acyltransferases/biosynthesis
- Acyltransferases/genetics
- Acyltransferases/immunology
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacillus subtilis/genetics
- Bacillus subtilis/immunology
- Bacillus subtilis/metabolism
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cells, Cultured
- Female
- Genetic Vectors
- Immunity, Cellular
- Immunity, Humoral
- Immunization
- Immunoglobulin G/blood
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- Spleen/immunology
- Spleen/metabolism
- Spores, Bacterial
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/biosynthesis
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Tima Thomas
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
| |
Collapse
|
48
|
Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. mBio 2016; 7:mBio.01686-16. [PMID: 27879332 PMCID: PMC5120139 DOI: 10.1128/mbio.01686-16] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. IMPORTANCE BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development.
Collapse
|
49
|
Kaufmann SHE, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis 2016; 56:263-267. [PMID: 27816661 DOI: 10.1016/j.ijid.2016.10.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains the deadliest infectious disease. The widely used bacille Calmette-Guérin (BCG) vaccine offers only limited protection against TB. New vaccine candidates for TB include subunit vaccines and inactivated whole-cell vaccines, as well as live mycobacterial vaccines. Current developments in TB vaccines are summarized in this review.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany.
| | - January Weiner
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - C Fordham von Reyn
- Infectious Disease and International Health, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
50
|
Su H, Kong C, Zhu L, Huang Q, Luo L, Wang H, Xu Y. PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response. Oncotarget 2016; 6:38517-37. [PMID: 26439698 PMCID: PMC4770718 DOI: 10.18632/oncotarget.5956] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/12/2015] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions and the underlying molecular basis of PE /PPE proteins of M. tuberculosis remain largely unknown. In this study, we focused on the link between PPE26 and host response. We demonstrated that PPE26 can induce extensive inflammatory responses in macrophages through triggering the cross-talk of multiple pathways involved in the host response, as revealed by iTRAQ-based subcellular quantitative proteomics. We observed that PPE26 is able to specifically bind to TLR2 leading to the subsequent activation of MAPKs and NF-κB signaling. PPE26 functionally stimulates macrophage activation by augmenting pro-inflammatory cytokine production (TNF-α, IL-6 and IL-12 p40) and the expression of cell surface markers (CD80, CD86, MHC class I and II). We observed that PPE26-treated macrophages effectively polarizes naïve CD4+ T cells to up-regulate CXCR3 expression, and to secrete IFN-γ and IL-2, indicating PPE26 contributes to the Th1 polarization during the immune response. Importantly, rBCG::PPE26 induces stronger antigen-specific TNF-α and IFN-γ activity, and higher levels of the Th1 cytokines TNF-α and IFN-γ comparable to BCG. Moreover, PPE26 effectively induces the reciprocal expansion of effector/memory CD4+/CD8+ CD44highCD62Llow T cells in the spleens of mice immunized with this strain. These results suggest that PPE26 may be a TLR2 agonist that stimulates innate immunity and adaptive immunity, indicating that PPE26 is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Cong Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Liulin Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|