1
|
Xu W, Hou H, Yang W, Tang W, Sun L. Immunologic role of macrophages in sepsis-induced acute liver injury. Int Immunopharmacol 2024; 143:113492. [PMID: 39471696 DOI: 10.1016/j.intimp.2024.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Sepsis-induced acute liver injury (SALI), a manifestation of sepsis multi-organ dysfunction syndrome, is associated with poor prognosis and high mortality. The diversity and plasticity of liver macrophage subpopulations explain their different functional responses in different liver diseases. Kupffer macrophages, liver capsular macrophages, and monocyte-derived macrophages are involved in pathogen recognition and clearance and in the regulation of inflammatory responses, exacerbating the progression of SALI through different pathways of pyroptosis, ferroptosis, and autophagy. Concurrently, they play an important role in maintaining hepatic homeostasis and in the injury and repair processes of SALI. Other macrophages are recruited to diseased tissues under pathological conditions and are polarized into various phenotypes (mainly M1 and M2 types) under the influence of signaling molecules, transcription factors, and metabolic reprogramming, thereby exerting different roles and functions. This review provides an overview of the immune role of macrophages in SALI and discusses the multiple roles of macrophages in liver injury and repair to provide a reference for future studies.
Collapse
Affiliation(s)
- Wanling Xu
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Hailong Hou
- Emergency Department, Meihekou Central Hospital, 2668 Aimin Street, Tonghua 135000, Jilin, China
| | - Weiying Yang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Wenjing Tang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
2
|
Stewart JP, Sandall CM, Parriott JE, Curran SM, McCulloh RJ, Ronning DR, Phillips JA, Schroeder R, Neel C, Lechtenberg KF, Cohen SM, Alnouti Y, Daria S, Smith DD, Vetro JA. Early-Stage IM Treatment with the Host-Derived Immunostimulant CPDI-02 Increases Curative Protection of Healthy Outbred Mice Against Subcutaneous Infection with Community-Acquired Methicillin-Resistant Staphylococcus aureus USA300. Pharmaceutics 2024; 16:1621. [PMID: 39771599 PMCID: PMC11677424 DOI: 10.3390/pharmaceutics16121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection. Methods: Female CD-1 mice were challenged SQ with CA-MRSA USA300 LAC, then CPDI-02 or inactive scCPDI-02 was administered by a topical, SQ, IM, or IV route at 6 or 24 h post-challenge. Abscess sizes were compared over 10 days and CA-MRSA burden, neutrophils, MP, and pro-inflammatory cytokines were compared in subcutaneous abscesses. CPDI-02 PK and distribution in female CD-1 mice were compared after IM or IV dosing and CPDI-02 toxicity in male and female CD-1 mice was determined by IM dose escalation and repeat IM dosing. Results: Repeat IM treatment starting at 6 h post-challenge decreased maximum abscess surface area, CA-MRSA burden, and time to resolution, whereas repeat treatment by a topical, SQ, or IV route had no effect. Repeat treatment starting at 24 h post-challenge was ineffective by the current routes. Single IM treatment starting at 6 h post-challenge was as effective as repeat IM treatment, increased systemic exposure to CPDI-02, and, in subcutaneous abscesses, initially decreased IL-1β and increased MP. CPDI-02 was tolerated between 130 and 170 mg/kg after IM dose escalation and between 65 and 130 mg/kg after repeat IM dosing with males being more tolerant. Conclusions: Single early-stage IM treatment with CPDI-02 may increase curative protection against SSTI caused by CA-MRSA and/or other pathogens controlled by activated MP.
Collapse
Affiliation(s)
- Jason P. Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Caleb M. Sandall
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Jacob E. Parriott
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Stephen M. Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Russell J. McCulloh
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Joy A. Phillips
- Biology Department, San Diego State University, San Diego, CA 92182, USA;
| | - Robin Schroeder
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (R.S.); (C.N.); (K.F.L.)
| | - Christy Neel
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (R.S.); (C.N.); (K.F.L.)
| | - Kelly F. Lechtenberg
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (R.S.); (C.N.); (K.F.L.)
| | - Samuel M. Cohen
- Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - Sohel Daria
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
| | - D. David Smith
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. Vetro
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.P.S.); (C.M.S.); (J.E.P.); (S.M.C.); (D.R.R.); (Y.A.); (S.D.)
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Liu J, Li L, He S, Zheng X, Zhu D, Kong G, Li P. EXPLORING THE PROGNOSTIC NECROPTOSIS-RELATED GENES AND UNDERLYING MECHANISM IN SEPSIS USING BIOINFORMATICS. Shock 2024; 62:363-374. [PMID: 38920136 PMCID: PMC11460741 DOI: 10.1097/shk.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Sepsis is a life-threatening disease due to a dysregulated host response to infection, with an unknown regulatory mechanism for prognostic necroptosis-related genes (NRGs). Using GEO datasets GSE65682 and GSE134347, we identified six NRG biomarkers ( ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 ) with survival and diagnostic significance through Kaplan-Meier (KM) and receiver operating characteristic (ROC) analyses. Afterward, the ingenuity pathway analysis (IPA) highlighted enrichment in hepatic fibrosis pathways and BEX2 protein. Moreover, we examined their regulatory targets and functional links with necroptotic signaling molecules via miRDB, TargetScan, Network analyst, and GeneMANIA. The molecular regulatory network displayed that hsa-miR-5195-3p and hsa-miR-145-5p regulated ATRX, BACH2, and CD40, while YY1 showed strong connectivity, concurrently controlling LEF1, ATRX, BCL2, BACH2, and CD40. CD40 exhibited similar expression patterns to RIPK3 and MLKL, and LEF1 was functionally associated with MLKL. Additionally, DrugBank analysis identified paclitaxel, docetaxel, and rasagiline as potential BCL2-targeting sepsis treatments. Finally, real-time quantitative PCR confirmed ATRX, TSC1, and LEF1 downregulation in sepsis samples, contrasting CD40's increased expression in CTL samples. In conclusion, ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 may be critical regulatory targets of necroptosis in sepsis, providing a basis for further necroptosis-related studies in sepsis.
Collapse
Affiliation(s)
- Jie Liu
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuyang He
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zhu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyao Kong
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Li
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Han Y, Wang J, Zhang J, Zheng X, Jiang Y, Liu W, Li W. VX-702 Ameliorates the Severity of Sepsis-Associated Acute Kidney Injury by Downregulating Inflammatory Factors in Macrophages. J Inflamm Res 2024; 17:4037-4054. [PMID: 38919509 PMCID: PMC11198005 DOI: 10.2147/jir.s464018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose Sepsis-associated acute kidney injury (S-AKI) contributes to high mortality, but it is lack of specific treatments. We aimed to investigate the underlying mechanism of S-AKI and to identify target drugs to alleviate AKI. Methods We establish a stable mouse model of S-AKI by Pseudomonas aeruginosa incision infection. Based on high-throughput sequencing and bioinformatics analysis, we investigated the underlying mechanism and selected the target drug (VX-702) for S-AKI. An in vitro model established by co-cultured of kidney tubular epithelial cell line (TCMK-1) cells with lipopolysaccharide (LPS)-induced leukemic monocyte/macrophage cells (RAW264.7), we explored the effect of VX-702 on S-AKI. Results The data showed interleukin (IL)-6 and IL-1β were the hub genes, and the mitogen-activated protein kinase (MAPK) signaling pathway was the main pathway involved in S-AKI. Administration of VX-702 by oral gavage decreased the elevated concentrations of IL-6, IL-1β, serum creatinine, and blood urea nitrogen in mice with S-AKI. Moreover, VX-702 reduced the number of apoptotic cells in damaged kidney tissues. Cell viability was decreased, and the number of apoptotic cells was increased in TCMK-1 cells co-cultured with LPS-induced RAW264.7 cells compared to LPS-induced TCMK-1 cells. VX-702 treatment reversed this effect. VX-702 treatment reduced the levels of phosphorylated p38 MAPK and proinflammatory cytokines in RAW264.7 cells and the supernatant. VX-702 could bind IL-6, IL-1β and MAPK, and affect the binding of IL-1β and its receptor, as demonstrated by molecular docking. Conclusion VX-702 ameliorated S-AKI by inhibiting the release of proinflammatory cytokines from macrophages, indicating its potential as a novel therapeutic for S-AKI treatment.
Collapse
Affiliation(s)
- Yue Han
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jingyi Wang
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jin Zhang
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xi Zheng
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yijia Jiang
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wenxiong Li
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Chen L, Li L, Huang C, Cao X, Jiang Y. Dynamic mRNA network profiles in macrophages challenged with lipopolysaccharide. Am J Transl Res 2024; 16:1643-1659. [PMID: 38883351 PMCID: PMC11170596 DOI: 10.62347/kmaj3260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES To elucidate the transcriptome of macrophages in an inflammation model induced by lipopolysaccharide (LPS), providing insight into the molecular basis of inflammation. METHODS We utilized RNA sequencing (RNA-seq) to analyze dynamic changes in gene expression in RAW264.7 macrophages treated with LPS at multiple time points. Differentially expressed genes (DEGs) were identified using the edgeR package. Short Time-series Expression Miner (STEM) and KEGG pathway enrichment analyses were conducted to determine temporal expression patterns during inflammation. RESULTS We identified 2,512 DEGs, with initial inflammatory responses occurring in two distinct phases at 1 h and 3 h. Venn diagram analysis revealed 78 consistently dysregulated genes throughout the inflammatory process. A key module of 18 dysregulated genes was identified, including Irg1, which may exert an inhibitory effect on inflammation. Further, a second metabolic shift in activated macrophages was observed at the late middle stage (12 h). Multi-omics analysis highlighted the ribosome's potential regulatory role in the inflammatory response. CONCLUSIONS This study provides a detailed view of the molecular mechanisms underlying inflammation in macrophages and reveals a dynamic genetic landscape crucial for further research. Our findings underscore the complex interaction between gene expression, metabolic shifts, and ribosomal functions in response to LPS-induced inflammation.
Collapse
Affiliation(s)
- Li Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, Guangdong, China
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University Guangzhou 510630, Guangdong, China
| | - Lei Li
- Department of Neurology, Shenzhen Hospital of Southern Medical University Shenzhen 518000, Guangdong, China
| | - Chenyang Huang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, Guangdong, China
| | - Xusong Cao
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, Guangdong, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, Guangdong, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University (Dongguan People's Hospital) Dongguan 523059, Guangdong, China
| |
Collapse
|
6
|
Pan Y, Zhang H, Liu Q, Wu H, Du S, Song W, Zhang F, Liu H. Photobiomodulation with 630-nm LED Inhibits M1 Macrophage Polarization via STAT1 Pathway Against Sepsis-Induced Acute Lung Injury. Photobiomodul Photomed Laser Surg 2024; 42:148-158. [PMID: 38301209 DOI: 10.1089/photob.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.
Collapse
Affiliation(s)
- Yue Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
- Departments of Laboratory Diagnosis, Daqing Oilfield General Hospital, Daqing, China
| | - Hanxu Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Siqi Du
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hailiang Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
7
|
Zhan F, Zhang J, He P, Chen W, Ouyang Y. Macrophage-derived exosomal miRNA-141 triggers endothelial cell pyroptosis by targeting NLRP3 to accelerate sepsis progression. Int J Immunopathol Pharmacol 2024; 38:3946320241234736. [PMID: 38652556 PMCID: PMC11041538 DOI: 10.1177/03946320241234736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/07/2024] [Indexed: 04/25/2024] Open
Abstract
Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1β, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.
Collapse
Affiliation(s)
| | | | - Ping He
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenteng Chen
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanhong Ouyang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Meng H, Yang J, Niu M, Zhu H, Zhou Y, Lu J. Risk factors and clinical outcomes of carbapenem-resistant Klebsiella pneumoniae bacteraemia in children: a retrospective study. Int J Antimicrob Agents 2023; 62:106933. [PMID: 37500022 DOI: 10.1016/j.ijantimicag.2023.106933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) is increasingly being identified in children, but data on the clinical outcomes in this population are limited. This study aimed to characterise the risk factors for 30-day mortality with CRKP bloodstream infection (BSI) in children. METHODS A retrospective study was performed from January 2018 to December 2021 at the First Affiliated Hospital of Zhengzhou University. Patients aged < 18 years and with CRKP BSI were included. Multivariable Cox and logistic regression were performed to determine risk factors for death and the development of septic shock following CRKP infection, respectively. RESULTS This study identified 33 neonates aged 0-4 weeks and 37 older children. The 30-day mortality rate was 39.4% in neonates and 43.2% in older children. In the neonatal population, a higher Pitt bacteremia score (HR 1.694; 95% CI 1.313-2.186; P < 0.001) was an independent risk factor for 30-day mortality. In the non-neonatal population, higher platelet count (HR 0.990; 95% CI 0.982-0.998; P = 0.010), the use of carbapenems (HR 0.212; 95% CI 0.064-0.702; P = 0.011) and appropriately targeted antimicrobial treatment (HR 0.327; 95% CI 0.111-0.969; P = 0.044) were associated with decreased 30-day mortality. Monocyte count < 0.1 × 109 cells/L (OR 3.615; 95% CI 1.165-11.444; P = 0.026) and a higher Pitt bacteremia score (OR 1.330; 95% CI 1.048-1.688; P = 0.019) were identified as risk factors for the development of septic shock. CONCLUSIONS Carbapenem-resistant Klebsiella pneumoniae BSI was associated with high mortality in children. Appropriate antimicrobial treatment is important to improve survival, but more work is needed to assess the efficacy of specific treatment regimens in children.
Collapse
Affiliation(s)
- Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jie Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Mengxia Niu
- Department of Pharmacy, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Han Zhu
- Department of Pharmacy, Anyang Maternal and Child Health Care Hospital, Anyang Children's Hospital, Anyang, China
| | - Yuke Zhou
- Department of Pharmacy, The First People's Hospital of Yiyang, Luoyang, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Montaño DE, Hartung S, Wich M, Ali R, Jungnickel B, von Lilienfeld-Toal M, Voigt K. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera, a causative agent of invasive mucormycosis. Front Immunol 2022; 13:882921. [PMID: 36311802 PMCID: PMC9608459 DOI: 10.3389/fimmu.2022.882921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years. However, little is known about the host immune response to Mucorales. Therefore, we characterized the interaction among L. corymbifera—one of the most common causative agents of IM—and human monocytes, which are specialized phagocytes that play an instrumental role in the modulation of the inflammatory response against several pathogenic fungi. This study covered four relevant aspects of the host-pathogen interaction: i) The recognition of L. corymbifera by human monocytes. ii) The intracellular fate of L. corymbifera. iii) The inflammatory response by human monocytes against the most common causative agents of mucormycosis. iv) The main activated Pattern-Recognition Receptors (PRRs) inflammatory signaling cascades in response to L. corymbifera. Here, we demonstrate that L. corymbifera exhibits resistance to intracellular killing over 24 hours, does not germinate, and inflicts minimal damage to the host cell. Nonetheless, viable fungal spores of L. corymbifera induced early production of the pro-inflammatory cytokine IL-1β, and late release of TNF-α and IL-6 by human monocytes. Moreover, we revealed that IL-1β production predominantly depends on Toll-like receptors (TLRs) priming, especially via TLR4, while TNF-α is secreted via C-type lectin receptors (CTLs), and IL-6 is produced by synergistic activation of TLRs and CTLs. All these signaling pathways lead to the activation of NF-kB, a transcription factor that not only regulates the inflammatory response but also the apoptotic fate of monocytes during infection with L. corymbifera. Collectively, our findings provide new insights into the host-pathogen interactions, which may serve for future therapies to enhance the host inflammatory response to L. corymbifera.
Collapse
Affiliation(s)
- Dolly E. Montaño
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Susann Hartung
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Melissa Wich
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Rida Ali
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Berit Jungnickel
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- *Correspondence: Kerstin Voigt,
| |
Collapse
|
10
|
Hong C, Lu H, Huang X, Chen M, Jin R, Dai X, Gong F, Dong H, Wang H, Gao XM. Neutrophils as regulators of macrophage-induced inflammation in a setting of allogeneic bone marrow transplantation. Stem Cell Reports 2022; 17:1561-1575. [PMID: 35777356 PMCID: PMC9287675 DOI: 10.1016/j.stemcr.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Clinical data reveal that patients with allogeneic hematopoietic stem cell transplantation (HSCT) are vulnerable to infection and prone to developing severe sepsis, which greatly compromises the success of transplantation, indicating a dysregulation of inflammatory immune response in this clinical setting. Here, by using a mouse model of haploidentical bone marrow transplantation (haplo-BMT), we found that uncontrolled macrophage inflammation underlies the pathogenesis of both LPS- and E.coli-induced sepsis in recipient animals with graft-versus-host disease (GVHD). Deficient neutrophil maturation in GVHD mice post-haplo-BMT diminished modulation of macrophage-induced inflammation, which was mechanistically dependent on MMP9-mediated activation of TGF-β1. Accordingly, adoptive transfer of mature neutrophils purified from wild-type donor mice inhibited both sterile and infectious sepsis in GVHD mice post-haplo-BMT. Together, our findings identify a novel mature neutrophil-dependent regulation of macrophage inflammatory response in a haplo-BMT setting and provide useful clues for developing clinical strategies for patients suffering from post-HSCT sepsis. Macrophage inflammation leads to the development of post-haplo-BMT sepsis Impaired neutrophil maturation diminishes regulation of macrophage inflammation Extramedullary granulopoiesis fails to support neutrophil maturation after haplo-BMT Neutrophils regulate macrophage inflammation via MMP9-mediated TGF-β1 activation
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Hongyun Lu
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaohong Huang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Ming Chen
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongliang Dong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongmin Wang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
Luo R, Li X, Wang D. Reprogramming Macrophage Metabolism and its Effect on NLRP3 Inflammasome Activation in Sepsis. Front Mol Biosci 2022; 9:917818. [PMID: 35847986 PMCID: PMC9276983 DOI: 10.3389/fmolb.2022.917818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis, the most common life-threatening multi-organ dysfunction syndrome secondary to infection, lacks specific therapeutic strategy due to the limited understanding of underlying mechanisms. It is currently believed that inflammasomes play critical roles in the development of sepsis, among which NLRP3 inflammasome is involved to most extent. Recent studies have revealed that dramatic reprogramming of macrophage metabolism is commonly occurred in sepsis, and this dysregulation is closely related with the activation of NLRP3 inflammasome. In view of the fact that increasing evidence demonstrates the mechanism of metabolism reprogramming regulating NLRP3 activation in macrophages, the key enzymes and metabolites participated in this regulation should be clearer for better interpreting the relationship of NLRP3 inflammasome and sepsis. In this review, we thus summarized the detail mechanism of the metabolic reprogramming process and its important role in the NLRP3 inflammasome activation of macrophages in sepsis. This mechanism summarization will reveal the applicational potential of metabolic regulatory molecules in the treatment of sepsis.
Collapse
Affiliation(s)
- Ruiheng Luo
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dan Wang,
| |
Collapse
|
12
|
Gao K, Chen X, Zhang L, Yao Y, Chen W, Zhang H, Han Y, Xue T, Wang J, Lu L, Zheng M, Qiu X, Zhu T. Associations between differences in anemia-related blood cell parameters and short-term exposure to ambient particle pollutants in middle-aged and elderly residents in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151520. [PMID: 34762950 DOI: 10.1016/j.scitotenv.2021.151520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Anemia is a highly prevalent disease among older populations, with multiple adverse health outcomes, and particles exposure is a potential risk factor for anemia. However, evidence on associations of exposure to particles with small size with anemia-related blood cell parameters levels in the elderly is limited, and the underlying mechanisms are unclear. Based on a panel study in Beijing, we found that in 135 elderly participants, mass concentrations of particle with an aerodynamic diameter ≤ 2.5 μm (PM2.5), black/elemental carbon (BC/EC, particle size range: 0-2.5 μm), and number concentrations of ultrafine particles (UFPs, particle size range: 5.6-93.1 nm) and accumulated mode particles (Acc, size range: 93.1-560 nm) were significantly associated with levels of red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC). The mean ± SD for PM2.5, UFPs, Acc, BC, OC, and EC were 69.7 ± 61.1 μg/m3, 12.5 ± 4.3 × 103/cm3, 1.6 ± 1.2 × 103/cm3, 3.0 ± 2.0 μg/m3, 8.7 ± 6.7 μg/m3, and 2.1 ± 1.6 μg/m3, respectively. Cotinine (higher than 50 ng/mL) is used as an indicator of smoking exposure. The association between MCHC difference and per interquartile range (IQR) increase in average UFPs concentration 14 d before clinical visits was -0.7% (95% CI: -1.1% to -0.3%). Significant associations of UFPs and Acc exposure with MCHC and MCH levels remain robust after adjustment for other pollutants. Furthermore, 25.2% (95% CI: 7.4% to 64.8%) and 29.8% (95% CI: 5.3% to 214.4%) of the difference in MCHC associated with average UFPs and Acc concentrations 14 d before clinical visits were mediated by the level of tumor necrosis factor α (TNF α), a biomarker of systemic inflammation. Our findings for the first time provide the evidence that short-term UFPs and Acc exposure contributed to the damage of anemia-related blood cell in the elderly, and systemic inflammation was a potential internal mediator.
Collapse
Affiliation(s)
- Ke Gao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Lina Zhang
- Shichahai community health service center, Beijing, China
| | - Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
13
|
Inflammatory Monocytes Promote Granuloma-Mediated Control of Persistent Salmonella Infection. Infect Immun 2022; 90:e0007022. [PMID: 35311578 DOI: 10.1128/iai.00070-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent infections generally involve a complex balance between protective immunity and immunopathology. We used a murine model to investigate the role of inflammatory monocytes in immunity and host defense against persistent salmonellosis. Mice exhibit increased susceptibility to persistent infection when inflammatory monocytes cannot be recruited into tissues or when they are depleted at specific stages of persistent infection. Inflammatory monocytes contribute to the pathology of persistent salmonellosis and cluster with other cells in pathogen-containing granulomas. Depletion of inflammatory monocytes during the chronic phase of persistent salmonellosis causes regression of already established granulomas with resultant pathogen growth and spread in tissues. Thus, inflammatory monocytes promote granuloma-mediated control of persistent salmonellosis and may be key to uncovering new therapies for granulomatous diseases.
Collapse
|
14
|
Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms221910481. [PMID: 34638822 PMCID: PMC8508974 DOI: 10.3390/ijms221910481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.
Collapse
|
15
|
Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res 2021; 70:915-930. [PMID: 34244821 DOI: 10.1007/s00011-021-01481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. Inflammation is an important factor that causes immune cell dysfunction in the pathogenesis of sepsis. Autophagy is involved in the process of inflammation and also occurs in response to cell and tissue injury in several diseases. We previously demonstrated that hydrogen alleviated the inflammation-induced cell injury and organ damage in septic mice. AIM The focus of the present study was to elucidate whether mitophagy mediates the inflammatory response or oxidative injury in sepsis in vitro and in vivo. Furthermore, we evaluated the role of mitophagy in the protective effects of hydrogen against cell injury or organ dysfunction in sepsis. METHOD RAW 264.7 macrophages induced by lipopolysaccharide (LPS) were used as an in vitro model for inflammation, and cecal ligation and puncture (CLP)-induced acute lung injury mice were used as an in vivo model for sepsis. The key protein associated with mitophagy, PTEN-induced putative kinase 1 (PINK1), was knocked down by PINK1 shRNA transfection in RAW 264.7 macrophages or mice. RESULTS Hydrogen ameliorated cell injury and enhanced mitophagy in macrophages stimulated by LPS. PINK1 was required for the mitigation of the cell impairment in LPS-stimulated macrophages by hydrogen treatment. PINK1 knockdown abrogated the beneficial effects of hydrogen on mitophagy in LPS-stimulated macrophages. Hydrogen inhibited acute lung injury in CLP mice via activation of PINK1-mediated mitophagy. CONCLUSION These results suggest that PINK1-mediated mitophagy plays a key role in the protective effects of hydrogen against cell injury in LPS-induced inflammation and CLP-induced acute lung injury.
Collapse
|
16
|
Cao LQ, Zhou JR, Zhang XH, Xu LP, Wang Y, Chen YH, Chen H, Chen Y, Han W, Yan CH, Zhang YY, Wang FR, Kong J, Wang ZD, Cheng YF, Wang JZ, Mo XD, Han TT, Zhao XS, Chang YJ, Liu KY, Huang XJ, Sun YQ. A Scoring System for Predicting the Prognosis of Late-Onset Severe Pneumonia after Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:870.e1-870.e7. [PMID: 34229053 DOI: 10.1016/j.jtct.2021.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Late-onset severe pneumonia (LOSP) is defined as severe pneumonia developing during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Because of the high mortality in patients with LOSP, it is important to identify prognostic factors. In this study, we aimed to develop a risk score system with broad applicability that can help predict the risk of LOSP-associated mortality. We retrospectively analyzed 100 patients with LOSP after allo-HSCT between June 2009 and July 2017. The assessment variables included immune, nutritional, and metabolic parameters at the onset of LOSP. Of these 100 patients, 45 (45%) eventually died, and 55 (55%) were positive for organisms, most commonly viruses. In the multivariate analysis, higher monocyte count (≥0.20 × 109/L versus <0.20 × 109/L; P = .001), higher albumin level (≥30.5 g/L versus <30.5 g/L; P = .044), lower lactic dehydrogenase level (<250 U/L versus ≥250 U/L; P = .008) and lower blood urea nitrogen concentration (<7.2 mmol/L versus ≥7.2 mmol/L; P = .026) at the onset of LOSP were significantly associated with better 60-day survival. A risk score system based on the foregoing results showed that the probability of 60-day survival decreased with increasing risk factors, from 96.3% in the low-risk group to 49.1% in the intermediate-risk group and 12.5% in the high-risk group. Our results indicate that this scoring system using 4 variables can stratify patients with different probabilities of survival after LOSP, which suggests that patients' immune, nutritional, and metabolic status are crucial factors in determining outcome.
Collapse
Affiliation(s)
- Le-Qing Cao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Rui Zhou
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yao Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
17
|
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 2021; 210:81-100. [PMID: 33934238 PMCID: PMC8088758 DOI: 10.1007/s00430-021-00703-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available control measures are not always successful, therapeutic options are limited, and there is no vaccine available against human leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed to evaluate the immune response development and a diverse range of host immune factors have been described to be associated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has been collected from experimental animal models. Although the data generated from the animal models are crucial, it might not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of protection against human leishmaniasis.
Collapse
Affiliation(s)
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, 14155-6383, Tehran, Iran.
| |
Collapse
|
18
|
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12:653940. [PMID: 33967796 PMCID: PMC8097165 DOI: 10.3389/fphar.2021.653940] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,National Key Clinical Construction Specialty, Luzhou, China
| | - Xiumei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Zongzhe Jiang
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yueli Pu
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Lifang Luo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Impaired DNA repair in mouse monocytes compared to macrophages and precursors. DNA Repair (Amst) 2020; 98:103037. [PMID: 33418482 DOI: 10.1016/j.dnarep.2020.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Previously we showed that human monocytes isolated from peripheral blood display downregulation of several DNA repair proteins, including XRCC1, ligase III, PARP-1 and DNA-PKCS, resulting in a deficiency of DNA repair, while in macrophages derived from monocytes the repair protein expression and DNA repair is restored. To see whether this is a specific phenomenon of human monocytes and macrophages, we assessed the expression of these repair genes in mice. We also addressed the question at which differentiation step in bone marrow cells downregulation of DNA repair gene expression occurs. The study revealed that mouse monocytes, similar to human, lack the expression of XRCC1, ligase III, PARP-1 and DNA-PKCS. If mice were treated with total body irradiation, they showed significant apoptosis in bone marrow monocytes, but not in peritoneal macrophages. This was also observed after treatment with the methylating anticancer drug temozolomide, resulting in high death rate of monocytes, but not macrophages. Monocytes arise from hematopoietic stem cells. Even the early stem cell fraction (LT-HSC) expressed detectable amounts of XRCC1, which was transiently upregulated, achieving the highest expression level in CMP (common myeloid progenitor) and, during the subsequent differentiation process, downregulated up to a non-detectable level in monocytes. The immediate monocyte precursor GMP also expressed ligase III, PARP-1 and DNA-PKCS. All these repair genes lacking in monocytes were upregulated again in macrophages. The sensitivity of monocytes, macrophages and precursor cells roughly correlated with their XRCC1 expression level. Monocytes, but not macrophages, also displayed strong γH2AX focal staining, indicating the presence of non-repaired DNA double-strand breaks following total body irradiation. Overall, the data revealed that murine monocytes exhibit the same DNA repair-impaired phenotype and high sensitivity compared to macrophages as observed in human. Therefore, the repair deficiency previously described for human monocytes appears to be a general property of this cell type.
Collapse
|
20
|
Hine AM, Loke P. Intestinal Macrophages in Resolving Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 203:593-599. [PMID: 31332080 DOI: 10.4049/jimmunol.1900345] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Macrophages not only regulate intestinal homeostasis by recognizing pathogens to control enteric infections but also employ negative feedback mechanisms to prevent chronic inflammation. Hence, macrophages are intriguing targets for immune-mediated therapies, especially when barrier function in the gut is compromised to trigger aberrant inflammatory responses, most notably during inflammatory bowel diseases. Recently, there has been considerable progress in our understanding of human macrophage biology in different tissues, including the intestines. In this review, we discuss some new findings on the properties of distinct populations of intestinal macrophages, how resolution of inflammation and tissue repair by macrophages could be promoted by type 2 cytokines as well as other therapeutic interventions, and highlight some challenges for translating these findings into the future for this exciting area of immunology research.
Collapse
Affiliation(s)
- Ashley M Hine
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
21
|
Zhang C, Lin R, Li Z, Yang S, Bi X, Wang H, Aini A, Zhang N, Abulizi A, Sun C, Li L, Zhao Z, Qin R, Li X, Li L, Aji T, Shao Y, Vuitton DA, Tian Z, Wen H. Immune Exhaustion of T Cells in Alveolar Echinococcosis Patients and Its Reversal by Blocking Checkpoint Receptor TIGIT in a Murine Model. Hepatology 2020; 71:1297-1315. [PMID: 31410870 DOI: 10.1002/hep.30896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The cestode Echinococcus multilocularis infection, a serious health problem worldwide, causes alveolar echinococcosis (AE), a tumor-like disease predominantly located in the liver and able to spread to any organs. Until now, there have been few studies that explore how T-cell exhaustion contributes to the parasite's escape from immune attack and how it might be reversed. APPROACH AND RESULTS In this study, we found that liver T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression was significantly enhanced and positively correlated with lesion activity in AE patients. High TIGIT expression in both liver-infiltrating and blood T cells was associated with their functional exhaustion, and its ligand CD155 was highly expressed by hepatocytes surrounding the infiltrating lymphocytes. In co-culture experiments using human blood T cells and hepatic cell line HL-7702, CD155 induced functional impairment of TIGIT+ T cells, and in vitro blockade with TIGIT antibody restored the function of AE patients' T cells. Similar TIGIT-related functional exhaustion of hepatic T cells and an abundant CD155 expression on hepatocytes were observed in E. multilocularis-infected mice. Importantly, in vivo blocking TIGIT prevented T-cell exhaustion and inhibited disease progression in E. multilocularis-infected mice. Mechanistically, CD4+ T cells were totally and CD8+ T cells partially required for anti-TIGIT-induced regression of parasite growth in mice. CONCLUSIONS This study demonstrates that E. multilocularis can induce T-cell exhaustion through inhibitory receptor TIGIT, and that blocking this checkpoint may reverse the functional impairment of T cells and represent a possible approach to immunotherapy against AE.
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuting Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abudusalamu Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abuduaini Abulizi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cheng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Diseases, University of Science and Technology of China, Hefei, China
| | - Liang Li
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhibin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Rongde Qin
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohong Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Hospital, University Bourgogne Franche-Comté, Besançon, France
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Diseases, University of Science and Technology of China, Hefei, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
22
|
Pedersbæk D, Jønsson K, Madsen DV, Weller S, Bohn AB, Andresen TL, Simonsen JB. A quantitativeex vivostudy of the interactions between reconstituted high-density lipoproteins and human leukocytes. RSC Adv 2020; 10:3884-3894. [PMID: 35492676 PMCID: PMC9048990 DOI: 10.1039/c9ra08203d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the interactions between nanoparticles and immune cells is required for optimal design of nanoparticle-based drug delivery systems, either when aiming to avoid phagocytic clearance of the nanoparticles or promote an immune response by delivering therapeutic agents to specific immune cells. Several studies have suggested that reconstituted high-density lipoproteins (rHDL) are attractive drug delivery vehicles. However, detailed studies of rHDL interactions with circulating leukocytes are limited. Here, we evaluated the association of discoidal rHDL with leukocytes in human whole blood (HWB) using quantitative approaches. We found that while the rHDL of various lipid compositions associated preferentially with monocytes, the degree of association depended on the lipid composition. However, consistent with the long circulation half-life of rHDL, we show that only a minor fraction of the rHDL associated with the leukocytes. Furthermore, we used three-dimensional fluorescence microscopy and imaging flow cytometry to evaluate the possible internalization of rHDL cargo into the cells, and we show increased internalization of rHDL cargo in monocytes relative to granulocytes. The preferential rHDL association with monocytes and the internalization of rHDL cargo could possibly be mediated by the scavenger receptor class B type 1 (SR-BI), which we show is expressed to a higher extent on monocytes than on the other major leukocyte populations. Our work implies that drug-loaded rHDL can deliver its cargo to monocytes in circulation, which could lead to some off-target effects when using rHDL for systemic drug delivery, or it could pave the way for novel immunotherapeutic treatments aiming to target the monocytes. We used novel quantitative methods to study the interactions between reconstituted high-density lipoproteins (rHDL) and human leukocytes – showing that rHDL cargo are preferentially taken up by monocytes.![]()
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Katrine Jønsson
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Ditte V. Madsen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Sven Weller
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Anja B. Bohn
- Department of Biomedicine
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Thomas L. Andresen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Jens B. Simonsen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| |
Collapse
|
23
|
Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis 2019; 10:782. [PMID: 31611560 PMCID: PMC6791888 DOI: 10.1038/s41419-019-2015-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection that leads to uncontrolled inflammatory response followed by immunosuppression. However, despite the high mortality rate, no specific treatment modality or drugs with high efficacy is available for sepsis to date. Although improved treatment strategies have increased the survival rate during the initial state of excessive inflammatory response, recent trends in sepsis show that mortality occurs at a period of continuous immunosuppressive state in which patients succumb to secondary infections within a few weeks or months due to post-sepsis “immune paralysis.” Immune cell alteration induced by uncontrolled apoptosis has been considered a major cause of significant immunosuppression. Particularly, apoptosis of lymphocytes, including innate immune cells and adaptive immune cells, is associated with a higher risk of secondary infections and poor outcomes. Multiple postmortem studies have confirmed that sepsis-induced immune cell apoptosis occurs in all age groups, including neonates, pediatric, and adult patients, and it is considered to be a primary contributing factor to the immunosuppressive pathophysiology of sepsis. Therapeutic perspectives targeting apoptosis through various strategies could improve survival in sepsis. In this review article, we will focus on describing the major apoptosis process of immune cells with respect to physiologic and molecular mechanisms. Further, advances in apoptosis-targeted treatment modalities for sepsis will also be discussed.
Collapse
Affiliation(s)
- Chao Cao
- Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China.,Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Muming Yu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Medical University, Tianjin, China.
| |
Collapse
|
24
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
25
|
Circulating Monocyte Counts and its Impact on Outcomes in Patients With Severe Sepsis Including Septic Shock. Shock 2019; 51:423-429. [DOI: 10.1097/shk.0000000000001193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Maione F, Iqbal AJ, Raucci F, Letek M, Bauer M, D'Acquisto F. Repetitive Exposure of IL-17 Into the Murine Air Pouch Favors the Recruitment of Inflammatory Monocytes and the Release of IL-16 and TREM-1 in the Inflammatory Fluids. Front Immunol 2018; 9:2752. [PMID: 30555461 PMCID: PMC6284009 DOI: 10.3389/fimmu.2018.02752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine—one at time 0 and the second after 24 h—showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1β did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michal Letek
- Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| | - Martina Bauer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| |
Collapse
|
27
|
Abstract
The pathogenic entomophthoralean fungi cause infection in insects and mammalian hosts. Basidiobolus and Conidiobolus species can be found in soil and insect, reptile, and amphibian droppings in tropical and subtropical areas. The life cycles of these fungi occur in these environments where infecting sticky conidia are developed. The infection is acquired by insect bite or contact with contaminated environments through open skin. Conidiobolus coronatus typically causes chronic rhinofacial disease in immunocompetent hosts, whereas some Conidiobolus species can be found in immunocompromised patients. Basidiobolus ranarum infection is restricted to subcutaneous tissues but may be involved in intestinal and disseminated infections. Its early diagnosis remains challenging due to clinical similarities to other intestinal diseases. Infected tissues characteristically display eosinophilic granulomas with the Splendore-Höeppli phenomenon. However, in immunocompromised patients, the above-mentioned inflammatory reaction is absent. Laboratory diagnosis includes wet mount, culture serological assays, and molecular methodologies. The management of entomophthoralean fungi relies on traditional antifungal therapies, such as potassium iodide (KI), amphotericin B, itraconazole, and ketoconazole, and surgery. These species are intrinsically resistant to some antifungals, prompting physicians to experiment with combinations of therapies. Research is needed to investigate the immunology of entomophthoralean fungi in infected hosts. The absence of an animal model and lack of funding severely limit research on these fungi.
Collapse
Affiliation(s)
- Raquel Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leonel Mendoza
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
28
|
|
29
|
A new biomarker candidate for spinal muscular atrophy: Identification of a peripheral blood cell population capable of monitoring the level of survival motor neuron protein. PLoS One 2018; 13:e0201764. [PMID: 30102724 PMCID: PMC6089418 DOI: 10.1371/journal.pone.0201764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic neuromuscular disorder caused by insufficiency of functional survival motor neuron (SMN) protein. Several clinical trials have been conducted with the aim of upregulating the expression of the SMN protein in SMA patients. In order to evaluate the efficiency of these SMN-targeted approaches, it has become necessary to verify SMN protein levels in the cells of SMA patients. Accordingly, we have developed a method allowing the evaluation of the functional SMN protein with < 1.5 mL of peripheral blood using imaging flow cytometry. The expression of SMN protein in CD3+, CD19+, and CD33++ cells obtained from SMA patients, was significantly reduced compared with that in cells from control subjects. In spot analysis of CD33++ cells, the intensities of SMN spots were significantly reduced in SMA subjects, when compared with that in controls. Therefore, SMN spots implied the presence of functional SMN protein in the cell nucleus. To our knowledge, our results are the first to demonstrate the presence of functional SMN protein in freshly isolated peripheral blood cells. We anticipate that SMN spot analysis will become the primary endpoint assay for the evaluation and monitoring of therapeutic intervention, with SMN serving as a reliable biomarker of therapeutic efficacy in SMA patients.
Collapse
|
30
|
fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho A pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res 2018; 67:711-722. [PMID: 29922854 DOI: 10.1007/s00011-018-1163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study is to uncover the signal transduction pathways of N-formyl methionyl-leucyl-phenylalanine (fMLP) in monocyte. MATERIALS OR SUBJECTS Freshly isolated human peripheral blood monocytes (PBMC) were used for in vitro assessment of signal transduction pathways activated by fMLP. TREATMENT Time-course and dose-response experiments were used to evaluate the effect of fMLP along with the specific inhibitors/stimulators on the activation of downstream signaling kinases. METHODS Freshly isolated human PBMC were stimulated with fMLP for the desired time. Western blot and siRNA analysis were used to evaluate the activated intracellular signaling kinases, and flow analysis was performed to assess the levels of CD11b. Furthermore, luminescence spectrometry was performed to measure the levels of released hydrogen peroxide in the media. RESULTS fMLP strongly stimulated the activation of AKT and ERK1/2 through a RhoA-GTPase-dependent manner and also induced H2O2 release by monocytes. Furthermore, fMLP mediated its effects through restricted activation of formylpeptide receptor-like 1 (FPRL1/FPR2), but independently of either EGFR transactivation or intracellular calcium release. In addition, NAC reversed fMLP- and H2O2-induced activation of Akt and RhoA-GTPase. CONCLUSION Collectively, these data suggested that fMLP-activated ERK1/2 and Akt pathways through specific activation of the FPRL1/ROS/RoA-GTPase pathway.
Collapse
|
31
|
Inflammatory and Anti-inflammatory Responses Co-exist Inside Lung Granuloma of Fatal Cases of Coccidioidomycosis: A Pilot Report. Mycopathologia 2018; 183:709-716. [PMID: 29736739 DOI: 10.1007/s11046-018-0264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Coccidioidomycosis is a fungal disease caused by Coccidioides immitis or Coccidioides posadasii. These fungi are endemic in the southern USA and northern Mexico. Immunocompromised patients are susceptible to develop severe forms of this fungal infection. Cytokines play an important role in controlling the fungal infection, but little is known about the predominant immunological environment in human lung tissue from fatal cases. Our aim was to analyze the pro-inflammatory and anti-inflammatory cytokines and monocyte/macrophages markers (CD14 and CD206) in the granulomas of six fatal cases of coccidioidomycosis. Cytokines and surface markers were higher in coccidioidomycosis cases when compared to control (P < 0.05). CD14 positive cells were increased inside the coccidioidal granuloma when compared to the outside (P < 0.05). No differences were found in the number of CD206+ cells inside the granuloma when compared to the outer population (P > 0.05). Interestingly, an analysis of stain intensity signals showed an increased signaling of CD14, CD206, IL-10 and TNFα inside the granuloma when compared to the outside (P < 0.05). iNOS and IL-12 gene expression were not detected in coccidioidomycosis cases, while IL-10, IL-6 and TGFβ gene expression were detected, but the differences when compared to healthy lungs were not significant (P > 0.05). TNFα gene expression was lower in coccidioidomycosis cases when compared to healthy lung (P = 0.05). In conclusion, pro- and anti-inflammatory responses co-exist inside of the granulomas of fatal cases of coccidioidomycosis and the absent of iNOS and IL-12 gene expression may be related with patient's outcome.
Collapse
|
32
|
Schlieckau F, Schulz D, Fill Malfertheiner S, Entleutner K, Seelbach-Goebel B, Ernst W. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice. Am J Reprod Immunol 2018; 80:e12859. [PMID: 29672989 DOI: 10.1111/aji.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 01/03/2023] Open
Abstract
PROBLEM Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. METHOD OF STUDY Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. RESULTS The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. CONCLUSION The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child.
Collapse
Affiliation(s)
- Florian Schlieckau
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.,Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Daniela Schulz
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.,Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Sara Fill Malfertheiner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Kathrin Entleutner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Birgit Seelbach-Goebel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Wolfgang Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Kumar V. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int Immunopharmacol 2018; 58:173-185. [PMID: 29625385 DOI: 10.1016/j.intimp.2018.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Sepsis is known since the time (470 BC) of great Greek physician, Hippocrates. Advancement in modern medicine and establishment of separate branches of medical science dealing with sepsis research have improved its outcome. However, mortality associated with sepsis still remains higher (25-30%) that further increases to 40-50% in the presence of septic shock. For example, sepsis-associated deaths account more in comparison to deaths-associated with myocardial-infarction and certain cancers (i.e. breast and colorectal cancer). However, it is now well established that profound activation of innate immune cells including macrophages play a very important role in the immunopathogenesis of sepsis. Macrophages are sentinel cells of the innate immune system with their location varying from peripheral blood to various target organs including lungs, liver, brain, kidneys, skin, testes, vascular endothelium etc. Thus, profound and dysregulated activation of these cells during sepsis can directly impact the outcome of sepsis. However, the emergence of the concept of immunometabolism as a major controller of immune response has raised a new hope for identifying new targets for immunomodulatory therapeutic approaches. Thus this present review starts with an introduction of sepsis as a major medical problem worldwide and signifies the role of dysregulated innate immune response including macrophages in its immunopathogenesis. Thereafter, subsequent sections describe changes in immunometabolic stage of macrophages (both M1 and M2) during sepsis. The article ends with the discussion of novel macrophage-specific therapeutic targets targeting their immunometabolism during sepsis and epigenetic regulation of macrophage immunometabolism and vice versa.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
34
|
CCR2 + Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun 2018; 86:IAI.00782-17. [PMID: 29263104 DOI: 10.1128/iai.00782-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023] Open
Abstract
Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.
Collapse
|
35
|
Abstract
Cryptococcus neoformans is the main etiologic agent of cryptococcal meningitis and causes a significant number of deadly infections per year. Although it is well appreciated that host immune responses are crucial for defense against cryptococcosis, our understanding of factors that control the development of effective immunity to this fungus remains incomplete. In previous studies, we identified the F-box protein Fbp1 as a novel determinant of C. neoformans virulence. In this study, we found that the hypovirulence of the fbp1Δ mutant is linked to the development of a robust host immune response. Infection with the fbp1Δ mutant induces a rapid influx of CCR2+ monocytes and their differentiation into monocyte-derived dendritic cells (mo-DCs). Depletion of CCR2+ monocytes and their derivative mo-DCs resulted in impaired activation of a protective inflammatory response and the rapid death of mice infected with the fbp1Δ mutant. Mice lacking B and T cells also developed fungal meningitis and succumbed to infection with the fbp1Δ mutant, demonstrating that adaptive immune responses to the fbp1Δ mutant help to maintain the long-term survival of the host. Adaptive immune responses to the fbp1Δ mutant were characterized by enhanced differentiation of Th1 and Th17 CD4+ T cells together with diminished Th2 responses compared to the H99 parental strain. Importantly, we found that the enhanced immunogenicity of fbp1Δ mutant yeast cells can be harnessed to confer protection against a subsequent infection with the virulent H99 parental strain. Altogether, our findings suggest that Fbp1 functions as a novel virulence factor that shapes the immunogenicity of C. neoformansIMPORTANCECryptococcus neoformans is the most common cause of deadly fungal meningitis, with over 270,000 infections per year. Immune responses are critically required for the prevention of cryptococcosis, and patients with impaired immunity and low CD4+ T cell numbers are at high risk of developing these deadly infections. Although it is well appreciated that the development of protective immunity is shaped by the interactions of the host immune system with fungal cells, our understanding of fungal products that influence this process remains poor. In this study, we found that the activity of F-box protein 1 (Fbp1) in highly virulent C. neoformans clinical strain H99 shapes its immunogenicity and thus affects the development of protective immune responses in the host. The identification of this new mechanism of virulence may facilitate the future development of therapeutic interventions aimed at boosting antifungal host immunity.
Collapse
|
36
|
Leonor Fernandes Saraiva JP, Zubiria-Barrera C, Klassert TE, Lautenbach MJ, Blaess M, Claus RA, Slevogt H, König R. Combination of Classifiers Identifies Fungal-Specific Activation of Lysosome Genes in Human Monocytes. Front Microbiol 2017; 8:2366. [PMID: 29238336 PMCID: PMC5712586 DOI: 10.3389/fmicb.2017.02366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Blood stream infections can be caused by several pathogens such as viruses, fungi and bacteria and can cause severe clinical complications including sepsis. Delivery of appropriate and quick treatment is mandatory. However, it requires a rapid identification of the invading pathogen. The current gold standard for pathogen identification relies on blood cultures and these methods require a long time to gain the needed diagnosis. The use of in situ experiments attempts to identify pathogen specific immune responses but these often lead to heterogeneous biomarkers due to the high variability in methods and materials used. Using gene expression profiles for machine learning is a developing approach to discriminate between types of infection, but also shows a high degree of inconsistency. To produce consistent gene signatures, capable of discriminating fungal from bacterial infection, we have employed Support Vector Machines (SVMs) based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint optimization constraining them to the same set of discriminating features increased the consistency of our biomarker list independently of leukocyte-type or experimental setup. Our gene signature showed an enrichment of genes of the lysosome pathway which was not uncovered by the use of independent classifiers. Moreover, our results suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR of the identified lysosome-related genes confirmed the distinct gene expression increase in monocytes during fungal infections. Concluding, our combined classifier approach presented increased consistency and was able to "unmask" signaling pathways of less-present immune cells in the used datasets.
Collapse
Affiliation(s)
- João P Leonor Fernandes Saraiva
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | | | - Markus Blaess
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Rainer König
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Lutz P, Nattermann J. Misery acquaints a man with dangerous bedfellows: But how to get rid of them? Liver Int 2017; 37:1446-1448. [PMID: 28940955 DOI: 10.1111/liv.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,German Center for Infection Research, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,German Center for Infection Research, Bonn, Germany
| |
Collapse
|
38
|
Abstract
Dendritic cells (DCs) play critical roles in activating innate immune cells and initiating adaptive immune responses. The functions of DCs were originally obscured by their overlap with other mononuclear phagocytes, but new mouse models have allowed for the selective ablation of subsets of DCs and have helped to identify their non-redundant roles in the immune system. These tools have elucidated the functions of DCs in host defense against pathogens, autoimmunity, and cancer. This review will describe the mouse models generated to interrogate the role of DCs and will discuss how their use has progressively clarified our understanding of the unique functions of DC subsets.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Hensel M, Grädel L, Kutz A, Haubitz S, Huber A, Mueller B, Schuetz P, Hügle T. Peripheral monocytosis as a predictive factor for adverse outcome in the emergency department: Survey based on a register study. Medicine (Baltimore) 2017; 96:e7404. [PMID: 28700476 PMCID: PMC5515748 DOI: 10.1097/md.0000000000007404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Monocytosis is associated with chronic infections such as tuberculosis or endocarditis as well as rheumatic and myeloproliferative disorders. Monocytes are also involved in the pathogenesis of atherosclerosis, coronary artery disease, and stroke. The value of monocytosis as a prognostic marker in different diagnostic groups in the emergency setting, however, has not been investigated so far.The aim of the article is to study monocytosis as an outcome factor in the emergency setting.In a Swiss register study, we analyzed monocyte counts in 4238 patients aged >18 years who were admitted to the emergency department of a regional tertiary care hospital. Monocytosis was defined as 0.8×10 cells/L. Diagnoses were grouped into infection, cardiovascular, neurological, metabolic, gastrointestinal, pulmonary, or other. Thirty-day mortality was defined as the primary endpointA total of 1217 patients with monocytosis were identified. Patients with monocytosis at admission suffered more frequently from respiratory symptoms (17.7% vs 8.9%, P <.001) and infection as the final diagnosis (20.8% vs 10.3%, P <.001) while neurological diagnoses were significantly lower in the monocytosis group (15.3% vs 30.9%, P <.001). Patients with monocytosis suffered from more comorbidities such as congestive heart failure, chronic obstructive pulmonary disease, tumor, diabetes, or renal failure but not dementia. When adjusted for age, gender, comorbidities, and main diagnosis, the 30-day mortality (P = .002) and length of stay (P = .001) were significantly higher in patients with monocytosis. The 30-day mortality in patients with monocytosis was most notably influenced by a cardiological diagnosis (odds ratio 3.91).An increased monocyte count predicts adverse outcome in patients admitted to the emergency department. Mechanistic studies will be necessary to specify the potentially detrimental role of monocytosis in critical illness.
Collapse
Affiliation(s)
- Mathias Hensel
- Department of Rheumatology, University Hospital Basel, Basel
| | - Lena Grädel
- Department Internal Medicine, Kantonsspital Aarau, Aarau
| | - Alexander Kutz
- Department Internal Medicine, Kantonsspital Aarau, Aarau
| | | | - Andreas Huber
- Department Internal Medicine, Kantonsspital Aarau, Aarau
| | - Beat Mueller
- Department Internal Medicine, Kantonsspital Aarau, Aarau
| | | | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausann (CHUV), Lausann, Switzerland
| |
Collapse
|
40
|
Dos Santos FM, Piffer AC, Schneider RDO, Ribeiro NS, Garcia AWA, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Alterations of zinc homeostasis in response to Cryptococcus neoformans in a murine macrophage cell line. Future Microbiol 2017; 12:491-504. [DOI: 10.2217/fmb-2016-0160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes – metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families – was analyzed by quantitative PCR. Results: Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. Conclusion: These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.
Collapse
Affiliation(s)
- Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Alícia Corbellini Piffer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Rafael de Oliveira Schneider
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Nicole Sartori Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Ane Wichine Acosta Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Lívia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
41
|
de Kouchkovsky DA, Ghosh S, Rothlin CV. Negative Regulation of Type 2 Immunity. Trends Immunol 2017; 38:154-167. [PMID: 28082101 PMCID: PMC5510550 DOI: 10.1016/j.it.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023]
Abstract
Type 2 immunity encompasses the mechanisms through which the immune system responds to helminths and an array of environmental substances such as allergens. In the developing world, billions of individuals are chronically infected with endemic parasitic helminths. In comparison, in the industrialized world, millions of individuals suffer from dysregulated type 2 immunity, referred to clinically as atopic diseases including asthma, allergic rhinitis, and atopic dermatitis. Thus, type 2 immunity must be carefully regulated to mount protective host responses yet avoid inappropriate activation and immunopathology. In this review, we describe the key players and connections at play in type 2 responses and focus on the emerging mechanisms involved in the negative regulation of type 2 immunity.
Collapse
Affiliation(s)
| | - Sourav Ghosh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Hess NJ, Felicelli C, Grage J, Tapping RI. TLR10 suppresses the activation and differentiation of monocytes with effects on DC-mediated adaptive immune responses. J Leukoc Biol 2017; 101:1245-1252. [PMID: 28235773 DOI: 10.1189/jlb.3a1116-492r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022] Open
Abstract
TLRs are important pattern-recognition receptors involved in the activation of innate immune responses against foreign pathogens. TLR10 is the only TLR family member without a known ligand, signaling pathway, or clear cellular function. Previous work has shown that TLR10 suppresses proinflammatory cytokine production in response to TLR agonists in a mixed human mononuclear cell population. We report that TLR10 is preferentially expressed on monocytes and suppresses proinflammatory cytokine production resulting from either TLR or CD40 stimulation. TLR10 engagement affects both the MAPK and Akt signaling pathways, leading to changes in the transcriptome of isolated human monocytes. Differentiation of monocytes into dendritic cells in the presence of an αTLR10 mAb reduced the expression of maturation markers and the induction of proinflammatory cytokines, again in response to either TLR or CD40 stimulation. Finally, in coculture experiments, TLR10 differentiated dendritic cells exhibited a decreased capacity to activate T cells as measured by IL-2 and IFN-γ production. These data demonstrate that TLR10 is a novel regulator of innate immune responses and of the differentiation of primary human monocytes into effective dendritic cells.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, USA; and
| | - Christopher Felicelli
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, USA; and
| | - Jennifer Grage
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, USA; and
| | - Richard I Tapping
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, USA; and .,College of Medicine, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
43
|
Ponath V, Kaina B. Death of Monocytes through Oxidative Burst of Macrophages and Neutrophils: Killing in Trans. PLoS One 2017; 12:e0170347. [PMID: 28099491 PMCID: PMC5242493 DOI: 10.1371/journal.pone.0170347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
Monocytes and their descendants, macrophages, play a key role in the defence against pathogens. They also contribute to the pathogenesis of inflammatory diseases. Therefore, a mechanism maintaining a balance in the monocyte/macrophage population must be postulated. Our previous studies have shown that monocytes are impaired in DNA repair, rendering them vulnerable to genotoxic stress while monocyte-derived macrophages are DNA repair competent and genotoxic stress-resistant. Based on these findings, we hypothesized that monocytes can be selectively killed by reactive oxygen species (ROS) produced by activated macrophages. We also wished to know whether monocytes and macrophages are protected against their own ROS produced following activation. To this end, we studied the effect of the ROS burst on DNA integrity, cell death and differentiation potential of monocytes. We show that monocytes, but not macrophages, stimulated for ROS production by phorbol-12-myristate-13-acetate (PMA) undergo apoptosis, despite similar levels of initial DNA damage. Following co-cultivation with ROS producing macrophages, monocytes displayed oxidative DNA damage, accumulating DNA single-strand breaks and a high incidence of apoptosis, reducing their ability to give rise to new macrophages. Killing of monocytes by activated macrophages, termed killing in trans, was abolished by ROS scavenging and was also observed in monocytes co-cultivated with ROS producing activated granulocytes. The data revealed that monocytes, which are impaired in the repair of oxidised DNA lesions, are vulnerable to their own ROS and ROS produced by macrophages and granulocytes and support the hypothesis that this is a mechanism regulating the amount of monocytes and macrophages in a ROS-enriched inflammatory environment.
Collapse
Affiliation(s)
- Viviane Ponath
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
44
|
Castronovo G, Clemente AM, Antonelli A, D’Andrea MM, Tanturli M, Perissi E, Paccosi S, Parenti A, Cozzolino F, Rossolini GM, Torcia MG. Differences in Inflammatory Response Induced by Two Representatives of Clades of the Pandemic ST258 Klebsiella pneumoniae Clonal Lineage Producing KPC-Type Carbapenemases. PLoS One 2017; 12:e0170125. [PMID: 28081233 PMCID: PMC5231394 DOI: 10.1371/journal.pone.0170125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
ST258-K. pneumoniae (ST258-KP) strains, the most widespread multidrug-resistant hospital-acquired pathogens, belong to at least two clades differing in a 215 Kb genomic region that includes the cluster of capsule genes. To investigate the effects of the different capsular phenotype on host-pathogen interactions, we studied representatives of ST258-KP clades, KKBO-1 and KK207-1, for their ability to activate monocytes and myeloid dendritic cells from human immune competent hosts. The two ST258-KP strains strongly induced the production of inflammatory cytokines. Significant differences between the strains were found in their ability to induce the production of IL-1β: KK207-1/clade I was much less effective than KKBO-1/clade II in inducing IL-1β production by monocytes and dendritic cells. The activation of NLRP3 inflammasome pathway by live cells and/or purified capsular polysaccharides was studied in monocytes and dendritic cells. We found that glibenclamide, a NLRP3 inhibitor, inhibits more than 90% of the production of mature IL-1β induced by KKBO1 and KK207-1. KK207-1 was always less efficient compared to KKBO-1 in: a) inducing NLRP3 and pro-IL-1β gene and protein expression; b) in inducing caspase-1 activation and pro-IL-1β cleavage. Capsular composition may play a role in the differential inflammatory response induced by the ST258-KP strains since capsular polysaccharides purified from bacterial cells affect NLRP3 and pro-IL-1β gene expression through p38MAPK- and NF-κB-mediated pathways. In each of these functions, capsular polysaccharides from KK207-1 were significantly less efficient compared to those purified from KKBO-1. On the whole, our data suggest that the change in capsular phenotype may help bacterial cells of clade I to partially escape innate immune recognition and IL-1β-mediated inflammation.
Collapse
Affiliation(s)
- Giuseppe Castronovo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Ann Maria Clemente
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Maria D’Andrea
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Eloisa Perissi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Sara Paccosi
- Department of Health Sciences, University of Firenze, Firenze, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Firenze, Firenze, Italy
| | - Federico Cozzolino
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Firenze, Italy
- IRCCS Don Carlo Gnocchi Foundation, Firenze, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- * E-mail:
| |
Collapse
|
45
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
46
|
Bocian K, Borysowski J, Zarzycki M, Wierzbicki P, Kłosowska D, Weber-Dąbrowska B, Korczak-Kowalska G, Górski A. LPS-Activated Monocytes Are Unresponsive to T4 Phage and T4-Generated Escherichia coli Lysate. Front Microbiol 2016; 7:1356. [PMID: 27630621 PMCID: PMC5005318 DOI: 10.3389/fmicb.2016.01356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022] Open
Abstract
A growing body of data shows that bacteriophages can interact with different kinds of immune cells. The objective of this study was to investigate whether T4 bacteriophage and T4-generated Escherichia coli lysate affect functions of monocytes, the key population of immune cells involved in antibacterial immunity. To that end, we evaluated how T4 and E. coli lysate influence the expression of main costimulatory molecules including CD40, CD80 and CD86, TLR2, TLR4 on monocytes, as well as the production of IL-6 and IL-12 in cultures of peripheral blood mononuclear cells (PBMCs). Separate experiments were performed on unactivated and LPS-activated PBMCs cultures. Both studied preparations significantly increased the percentage of CD14+CD16-CD40+ and CD14+CD16-CD80+ monocytes in unactivated PBMCs cultures, as well as the concentration of IL-6 and IL-12 in culture supernates. However, neither purified T4 nor E. coli lysate had any significant effect on monocytes in LPS-activated PBMCs cultures. We conclude that LPS-activated monocytes are unresponsive to phages and products of phage-induced lysis of bacteria. This study is highly relevant to phage therapy because it suggests that in patients with infections caused by Gram-negative bacteria the administration of phage preparations to patients and lysis of bacteria by phages are not likely to overly stimulate monocytes.
Collapse
Affiliation(s)
- Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw Warsaw, Poland
| | - Michał Zarzycki
- Department of Immunology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Piotr Wierzbicki
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw Warsaw, Poland
| | - Danuta Kłosowska
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of WarsawWarsaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| | - Andrzej Górski
- Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland; Laboratory of Bacteriophages, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| |
Collapse
|