1
|
Mao W, Xu K, Wang K, Zhang H, Ji J, Geng J, Sun S, Gu C, Bhattacharya A, Fang C, Tao T, Chen M, Wu J, Chen S, Sun C, Xu B. Single-cell RNA sequencing and spatial transcriptomics of bladder Ewing sarcoma. iScience 2024; 27:110921. [PMID: 39386756 PMCID: PMC11462044 DOI: 10.1016/j.isci.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Bladder Ewing sarcoma/primitive neuroectodermal tumor (bladder ES/PNET) is a rare and highly malignant tumor associated with a poor prognosis, yet its underlying mechanisms remain poorly understood. Here, we employed a combination of single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and functional analyses to delve into the pathogenesis of bladder ES/PNET. The investigation revealed the presence of specialized types of epithelial cells (referred to as bladder ES-Epi) and mast cells (referred to as bladder ES-Mast) within bladder ES/PNET in comparison to urothelial carcinoma. Notably, TNFRSF12A exhibited significant upregulation in bladder ES/PNET. Furthermore, mast cells possessed the ability to activate epithelial cells through the TNFSF12-TNFRSF12A ligand-receptor signaling pattern. In addition, Enavatuzumab can significantly inhibit the migratory ability of the Ewing sarcoma cell line RD-ES. This groundbreaking study provides unprecedented mechanistic insights into the progression of bladder ES/PNET and introduces a potential therapeutic avenue for treating this challenging malignancy.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People’s Hospital, Yancheng 224000, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jie Ji
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chaoming Gu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Fang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Tao Tao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
3
|
Shi XY, Zhang QK, Li J, Zhu CY, Jin L, Fan S. Mendelian randomization analysis reveals causal relationships between circulating cell traits and renal disorders. Front Med (Lausanne) 2024; 11:1360868. [PMID: 38828235 PMCID: PMC11140107 DOI: 10.3389/fmed.2024.1360868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose The aim of this study was to investigate the causal relationships between circulating cell traits and risk of renal disorders. Methods We applied a comprehensive two-sample Mendelian randomization (MR) analysis. Single nucleotide polymorphisms (SNPs) from publicly available genome-wide association studies (GWAS) databases were utilized. Genetically predicted instrumental variables of human blood cell traits were extracted from Blood Cell Consortium (BCX) while data on renal diseases was obtained from Finngen consortium. The primary MR analysis was conducted using the inverse variance weighted (IVW) method, with the weighted median (WM) and MR-Egger models used as additional methods. Sensitivity analyses, including MR-PRESSO, radial regression and MR-Egger intercept were conducted to detect outliers and assess horizontal pleiotropy. We further utilized the leave-one-out analysis to assess the robustness of the results. Causal associations were considered significant based on false rate correction (FDR), specifically when the IVW method provided a pFDR < 0.05. Results Our results demonstrated that both white blood cell (WBC) count (OR = 1.50, 95% CI = 1.10-2.06, pFDR = 0.033, pIVW = 0.011) and lymphocyte count (OR = 1.50, 95% CI = 1.13-1.98, pFDR = 0.027, pIVW = 0.005) were causally associated with a higher risk of IgA nephropathy. Furthermore, WBC count was identified as a significant genetic risk factor for renal malignant neoplasms (OR = 1.23, 95% CI = 1.06-1.43, pFDR = 0.041, pIVW = 0.007). Additionally, an increased level of genetically predicted eosinophils was found to be causally associated with a higher risk of diabetic nephropathy (OR = 1.21, 95% CI = 1.08-1.36, pFDR = 0.007, pIVW = 0.001). No evidence of pleiotropy was determined. Conclusion Our findings provide evidence of causal associations of circulating WBC count, lymphocyte count and IgA nephropathy, WBC count and renal malignant neoplasms, and eosinophil count and diabetic nephropathy. These results have the potential to contribute to the development of novel diagnostic options and therapeutic strategies for renal disorders.
Collapse
Affiliation(s)
- Xing-yu Shi
- Department of Nephrology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Qian-kun Zhang
- Department of Nephrology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jie Li
- Department of Nephrology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Chao-yong Zhu
- Department of Nephrology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Lie Jin
- Department of Nephrology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shipei Fan
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
4
|
Chen J, Wang Z, Zhu Q, Ren S, Xu Y, Wang G, Zhou L. Comprehensive analysis and experimental verification of the mechanism of action of T cell-mediated tumor-killing related genes in Colon adenocarcinoma. Transl Oncol 2024; 43:101918. [PMID: 38412662 PMCID: PMC10907202 DOI: 10.1016/j.tranon.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Zhengfang Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Qin Zhu
- Department of Trauma Hand Surgery, Dalian Third People's Hospital, Dalian 116000, China
| | - Shiqi Ren
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Guangzhou Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| | - Lin Zhou
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
5
|
Files R, Okwu V, Topa N, Sousa M, Silva F, Rodrigues P, Delgado L, Prada J, Pires I. Assessment of Tumor-Associated Tissue Eosinophilia (TATE) and Tumor-Associated Macrophages (TAMs) in Canine Transitional Cell Carcinoma of the Urinary Bladder. Animals (Basel) 2024; 14:519. [PMID: 38338162 PMCID: PMC10854732 DOI: 10.3390/ani14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Transitional cell carcinoma of the urinary bladder is a significant neoplasm in dogs, characterized by a poor prognosis and a high metastatic potential. These canine spontaneous tumors share many characteristics with human transitional cell carcinoma, making them an excellent comparative model. The role of inflammatory infiltration in tumor development and progression is frequently contradictory, especially concerning tumor-associated tissue eosinophils (TATE) and tumor-associated macrophages (TAMs). This study aims to analyze TATE and TAMs in canine transitional cell carcinoma of the urinary bladder. Congo Red staining was used to identify TATE, and immunohistochemistry was performed to detect TAMs in 34 cases of canine transitional cell carcinoma of the bladder carcinomas, categorized into low and high grades. Statistically significant differences were observed between the number of eosinophils and macrophages in the two groups of tumors. The number of TATE was higher in low-grade malignant tumors, but the number of TAMs was higher in high-grade tumors. Our findings suggest the importance of TATEs and TAMs in the aggressiveness of canine transitional cell carcinoma and propose their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Victor Okwu
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Nuno Topa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Marisa Sousa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula Rodrigues
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Specialized Veterinary Services, 4710-503 Braga, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Liu Y, Gu Y, Zhou J, Zhang H, Shang Q, Yang Y, Chen L. Mendelian randomization analysis of atopic dermatitis and esophageal cancer in East Asian and European populations. World Allergy Organ J 2024; 17:100868. [PMID: 38293274 PMCID: PMC10825168 DOI: 10.1016/j.waojou.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Emerging observational studies showed an association between atopic dermatitis (AD) and gastrointestinal cancers. However, it remains unclear whether this association is causal, particularly in the case of cancers like esophageal cancer, which exhibit ancestral genetic traits. Methods To assess the potential causal relationship between AD and esophageal cancer across diverse ancestral backgrounds, we conducted a 2-sample Mendelian randomization study. Independent genetic instruments for AD from the FinnGen consortium (N case = 7024 and N control = 198 740), BioBank Japan (N case = 2385 and N control = 209 651) and Early Genetics and Lifecourse Epidemiology (EAGLE) eczema consortium (N case = 18 900 and N control = 84 166, without the 23andMe study) were used to investigate the association with esophageal cancer in the UK Biobank study (N case = 740 and N control = 372 016) and BioBank Japan esophageal cancer sample (N case = 1300 and N control = 197 045). Results When esophageal cancer extracted from East Asian ancestry was used as a outcome factor, AD data extracted from BioBank Japan (OR = 0.90, 95% CI: 0.83-0.98), FinnGen consortium (OR = 0.86, 95% CI: 0.77-0.96), and EAGLE consortium (OR = 0.92, 95% CI: 0.81-1.06) were negatively associated with esophageal cancer susceptibility. However, AD as a whole did not show an association with esophageal cancer from European ancestry. Conclusion This study provides support for a causal relationship between AD and esophageal cancer in East Asian populations but not between AD and esophageal cancer from European ancestry. The specific associations between esophageal cancer and AD appear to exhibit significant disparities between the East Asian and European regions.
Collapse
Affiliation(s)
| | | | | | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Liu X, Zhong R, Huang J, Chen Z, Xu H, Lin L, Cai Q, He M, Lao S, Deng H, Li C, Li J, Zheng Y, Liu X, Zeng R, He J, Liang W. Loratidine is associated with improved prognosis and exerts antineoplastic effects via apoptotic and pyroptotic crosstalk in lung cancer. J Exp Clin Cancer Res 2024; 43:5. [PMID: 38163866 PMCID: PMC10759632 DOI: 10.1186/s13046-023-02914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Tumor-associated inflammation suggests that anti-inflammatory medication could be beneficial in cancer therapy. Loratadine, an antihistamine, has demonstrated improved survival in certain cancers. However, the anticancer mechanisms of loratadine in lung cancer remain unclear. OBJECTIVE This study investigates the anticancer mechanisms of loratadine in lung cancer. METHODS A retrospective cohort of 4,522 lung cancer patients from 2006 to 2018 was analyzed to identify noncancer drug exposures associated with prognosis. Cellular experiments, animal models, and RNA-seq data analysis were employed to validate the findings and explore the antitumor effects of loratadine. RESULTS This retrospective study revealed a positive association between loratadine administration and ameliorated survival outcomes in lung cancer patients, exhibiting dose dependency. Rigorous in vitro and in vivo assays demonstrated that apoptosis induction and epithelial-mesenchymal transition (EMT) reduction were stimulated by moderate loratadine concentrations, whereas pyroptosis was triggered by elevated dosages. Intriguingly, loratadine was found to augment PPARγ levels, which acted as a gasdermin D transcription promoter and caspase-8 activation enhancer. Consequently, loratadine might incite a sophisticated interplay between apoptosis and pyroptosis, facilitated by the pivotal role of caspase-8. CONCLUSION Loratadine use is linked to enhanced survival in lung cancer patients, potentially due to its role in modulating the interplay between apoptosis and pyroptosis via caspase-8.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Jiaxing Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Zisheng Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Department of Respiratory and Critical Care Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Haoxiang Xu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- School of Clinical Medicine, Henan University, Kaifeng, 475000, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Miao He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Shen Lao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Hongsheng Deng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Yongmei Zheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Riqi Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.
- Southern Medical University, Guangzhou, 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.
- The First People's Hospital of Zhaoqing, Zhaoqing, 526000, China.
| |
Collapse
|
8
|
Zhang C, Jing H, Li Y, Li X, Xie G, Liang J. Observational study on obesity: Insights from middle-aged and elderly college staff in Beijing. Medicine (Baltimore) 2023; 102:e36792. [PMID: 38206751 PMCID: PMC10754573 DOI: 10.1097/md.0000000000036792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Obesity poses a serious global public health challenge, particularly among middle-aged, and elderly college staff. This study aims to explore the associated factors of obesity by analyzing the metabolic indicators of 1756 university staff from Minzu University of China, Beijing. Venous blood samples were collected, and blood metabolic indicators were analyzed. The results indicate that middle-aged faculty members are more susceptible to obesity compared to their younger counterparts. Multiple linear regression analysis revealed that BMI values increase with age (B = 0.074, P < .001), uric acid (B = 0.008, P < .001), alanine transaminase (B = 0.043, P < .001), low-density lipoprotein (B = 1.941, P < .001), triglycerides (B = 0.544, P < .001), total cholesterol (TC, B = -1.582, P < .001), and other factors, while decreasing with the increase of high-density lipoprotein (B = -1.493, P < .001). In light of these findings, it is recommended that middle-aged and elderly college staff undergo regular blood indicator checks and enhance weight management to mitigate the risk of obesity and promote their overall health.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
| | - Yan Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, China
- Minzu University of China, Beijing, China
| |
Collapse
|
9
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
12
|
Lu Z, Lu Z, Lai Y, Zhou H, Li Z, Cai W, Xu Z, Luo H, Chen Y, Li J, Zhang J, He Z, Tang F. A comprehensive analysis of FBN2 in bladder cancer: A risk factor and the tumour microenvironment influencer. IET Syst Biol 2023; 17:162-173. [PMID: 37337404 PMCID: PMC10439492 DOI: 10.1049/syb2.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/15/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Bladder cancer (BLCA) is a common and difficult-to-manage disease worldwide. Most common type of BLCA is urothelial carcinoma (UC). Fibrillin 2 (FBN2) was first discovered while studying Marfan syndrome, and its encoded products are associated with elastin fibres. To date, the role of FBN2 in BLCA remains unclear. The authors first downloaded data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The patients were divided into high FBN2 expression and low FBN2 expression groups, and the survival curve, clinical characteristics, tumour microenvironment (TME), and immune cell differences were analysed between the two groups. Then, the differentially expressed genes (DEGs) were filtered, and functional enrichment for DEGs was performed. Finally, chemotherapy drug susceptibility analysis based on the high and low FBN2 groups was conducted. The authors found upregulated expression of FBN2 in BLCA and proved that FBN2 could be an independent prognostic factor for BLCA. TME analysis showed that the expression of FBN2 affects several aspects of the TME. The upregulated expression of FBN2 was associated with a high stromal score, which may lead to immunosuppression and be detrimental to immunotherapy. In addition, the authors found that NK cells resting, macrophage M0 infiltration, and other phenomena of immune cell infiltration appeared in the high expression group of FBN2. The high expression of FBN2 was related to the high sensitivity of some chemotherapy drugs. The authors systematically investigated the effects and mechanisms of FBN2 on BLCA and provided a new understanding of the role of FBN2 as a risk factor and TME influencer in BLCA.
Collapse
Affiliation(s)
- Zechao Lu
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zeguang Lu
- The Second Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yongchang Lai
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Haobin Zhou
- The First Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhibiao Li
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wanyan Cai
- Department of Social and Behavioural SciencesCity University of Hong KongHong KongChina
| | - Zeyao Xu
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hongcheng Luo
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yushu Chen
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jianyu Li
- The First Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jishen Zhang
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zhaohui He
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Fucai Tang
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
13
|
Gao L, Yuan C, Fu J, Tian T, Huang H, Zhang L, Li D, Liu Y, Meng S, Liu Y, Zhang Y, Xu J, Jia C, Zhang D, Zheng T, Fu Q, Tan S, Lan L, Yang C, Zhao Y, Liu Y. Prognostic scoring system based on eosinophil- and basophil-related markers for predicting the prognosis of patients with stage II and stage III colorectal cancer: a retrospective cohort study. Front Oncol 2023; 13:1182944. [PMID: 37519795 PMCID: PMC10375403 DOI: 10.3389/fonc.2023.1182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Systemic inflammation is associated with the prognosis of colorectal cancer (CRC). The current study aimed to construct a comprehensively inflammatory prognostic scoring system named risk score (RS) based on eosinophil- and basophil-related markers and assess its prognostic value in patients with stage II and stage III CRC. Patients and methods A total of 3,986 patients were enrolled from January 2007 to December 2013. The last follow-up time was January 2019. They were randomly assigned to the training set and testing set in a 3:2 split ratio. Least absolute shrinkage and selection operator (LASSO)-Cox regression analysis was performed to select the optimal prognostic factors in the construction of RS. The Kaplan-Meier curve, time-dependent receiver operating characteristic (ROC), and Cox analysis were used to evaluate the association between RS and overall survival (OS). Results In the training set, all inflammatory markers showed certain prognostic values. Based on LASSO-Cox analysis, nine markers were integrated to construct RS. The Kaplan-Meier curve showed that a higher RS (RS > 0) had a significantly worse prognosis (log-rank p< 0.0001). RS (>0) remained an independent prognostic factor for OS (hazard ratio (HR): 1.70, 95% confidence interval (CI), 1.43-2.03, p< 0.001). The prognostic value of RS was validated in the entire cohort. Time-dependent ROC analysis showed that RS had a stable prognostic effect throughout the follow-up times and could enhance the prognostic ability of the stage by combination. Nomogram was established based on RS and clinicopathological factors for predicting OS in the training set and validated in the testing set. The area under the curve (AUC) values of the 3-year OS in the training and testing sets were 0.748 and 0.720, respectively. The nomogram had a satisfactory predictive accuracy and had better clinical application value than the tumor stage alone. Conclusions RS might be an independent prognostic factor for OS in patients with stage II and III CRC, which is helpful for risk stratification of patients. Additionally, the nomogram might be used for personalized prediction and might contribute to formulating a better clinical treatment plan.
Collapse
Affiliation(s)
- Lijing Gao
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Yuan
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jinming Fu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Huang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Dapeng Li
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yupeng Liu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuhan Meng
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Liu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanyuan Zhang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Xu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenyang Jia
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Ding Zhang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Zheng
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingzhen Fu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiheng Tan
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Lan
- Division of Chronic and Non-communicable Diseases, Harbin Center for Diseases Control and Prevention, Harbin, Heilongjiang, China
| | - Chao Yang
- Division of Chronic and Non-communicable Diseases, Harbin Center for Diseases Control and Prevention, Harbin, Heilongjiang, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Baran J, Sobiepanek A, Mazurkiewicz-Pisarek A, Rogalska M, Gryciuk A, Kuryk L, Abraham SN, Staniszewska M. Mast Cells as a Target-A Comprehensive Review of Recent Therapeutic Approaches. Cells 2023; 12:cells12081187. [PMID: 37190096 DOI: 10.3390/cells12081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Mast cells (MCs) are the immune cells distributed throughout nearly all tissues, mainly in the skin, near blood vessels and lymph vessels, nerves, lungs, and the intestines. Although MCs are essential to the healthy immune response, their overactivity and pathological states can lead to numerous health hazards. The side effect of mast cell activity is usually caused by degranulation. It can be triggered by immunological factors, such as immunoglobulins, lymphocytes, or antigen-antibody complexes, and non-immune factors, such as radiation and pathogens. An intensive reaction of mast cells can even lead to anaphylaxis, one of the most life-threatening allergic reactions. What is more, mast cells play a role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. The mechanisms of the mast cell actions are still poorly understood, making it difficult to develop therapies for their pathological condition. This review focuses on the possible therapies targeting mast cell degranulation, anaphylaxis, and MC-derived tumors.
Collapse
Affiliation(s)
- Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Marta Rogalska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-NRI, 00-791 Warsaw, Poland
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
15
|
Kolbinger A, Schäufele TJ, Steigerwald H, Friedel J, Pierre S, Geisslinger G, Scholich K. Eosinophil-derived IL-4 is necessary to establish the inflammatory structure in innate inflammation. EMBO Mol Med 2023; 15:e16796. [PMID: 36541656 PMCID: PMC9906331 DOI: 10.15252/emmm.202216796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pathogen-induced inflammation comprises pro- and anti-inflammatory processes, which ensure pathogen removal and containment of the proinflammatory activities. Here, we aimed to identify the development of inflammatory microenvironments and their maintenance throughout the course of a toll-like receptor 2-mediated paw inflammation. Within 24 h after pathogen-injection, the immune cells were organized in three zones, which comprised a pathogen-containing "core-region", a bordering proinflammatory (PI)-region and an outer anti-inflammatory (AI)-region. Eosinophils were present in all three inflammatory regions and adapted their cytokine profile according to their localization. Eosinophil depletion reduced IL-4 levels and increased edema formation as well as mechanical and thermal hypersensitivities during resolution of inflammation. Also, in the absence of eosinophils PI- and AI-regions could not be determined anymore, neutrophil numbers increased, and efferocytosis as well as M2-macrophage polarization were reduced. IL-4 administration restored in eosinophil-depleted mice PI- and AI-regions, normalized neutrophil numbers, efferocytosis, M2-macrophage polarization as well as resolution of zymosan-induced hypersensitivity. In conclusion, IL-4-expressing eosinophils support the resolution of inflammation by enabling the development of an anti-inflammatory framework, which encloses proinflammatory regions.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Hanna Steigerwald
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
16
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
17
|
Ding Y, Wang Z, Chen C, Wang C, Li D, Qin Y. The gene regulatory molecule GLIS3 in gastric cancer as a prognostic marker and be involved in the immune infiltration mechanism. Front Oncol 2023; 13:1091733. [PMID: 36923439 PMCID: PMC10009178 DOI: 10.3389/fonc.2023.1091733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Background Gastric cancer is the most prevalent solid tumor form. Even after standard treatment, recurrence and malignant progression are nearly unavoidable in some cases of stomach cancer. GLIS Family Zinc Finger 3 (GLIS3) has received scant attention in gastric cancer research. Therefore, we sought to examine the prognostic significance of GLIS3 and its association with immune infiltration in gastric cancer. Method Using public data from The Cancer Genome Atlas (TCGA), we investigated whether GLIS3 gene expression was linked with prognosis in patients with stomach cancer (STAD). The following analyses were performed: functional enrichment analysis (GSEA), quantitative real-time PCR, immune infiltration analysis, immunological checkpoint analysis, and clinicopathological analysis. We performed functional validation of GLIS3 in vitro by plate cloning and CCK8 assay. Using univariate and multivariate Cox regression analyses, independent prognostic variables were identified. Additionally, a nomogram model was built. The link between OS and subgroup with GLIS3 expression was estimated using Kaplan-Meier survival analysis. Gene set enrichment analysis utilized the TCGA dataset. Result GLIS3 was significantly upregulated in STAD. An examination of functional enrichment revealed that GLIS3 is related to immunological responses. The majority of immune cells and immunological checkpoints had a positive correlation with GLIS3 expression. According to a Kaplan-Meier analysis, greater GLIS3 expression was related to adverse outcomes in STAD. GLIS3 was an independent predictive factor in STAD patients, as determined by Cox regression (HR = 1.478, 95%CI = 1.478 (1.062-2.055), P=0.02). Conclusion GLIS3 is considered a novel STAD patient predictive biomarker. In addition, our research identifies possible genetic regulatory loci in the therapy of STAD.
Collapse
Affiliation(s)
- Yi Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenxu Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongyu Li
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Wong BT, Park S, Kovanda L, He Y, Kim K, Xu S, Lingga C, Hejna M, Wall E, Sripathy R, Li X, Liu Y. Dietary supplementation of botanical blends enhanced performance and disease resistance of weaned pigs experimentally infected with enterotoxigenic Escherichia coli F18. J Anim Sci 2022; 100:skac353. [PMID: 36271913 PMCID: PMC9746801 DOI: 10.1093/jas/skac353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals exhibit promising impacts on intestinal health, immune-regulation, and growth promotion in weaned pigs. However, these benefits may vary depending on major active components in the final feed additive products. Therefore, this study aimed to investigate two types of botanical blends (BB) that were comprised of 0.3% capsicum oleoresin and 12% garlic extracts from different sources on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. Sixty weanling pigs (7.17 ± 0.97 kg body weight (BW)) blocked by weight and gender were assigned to one of five dietary treatments: negative control (NC), positive control (PC), or dietary supplementation with 100 mg/kg of BB1, 50 mg/kg or 100 mg/kg of BB2. This study lasted 28 d with 7 d before and 21 d after the first E. coli inoculation (day 0). All pigs, except negative control, were orally inoculated with 1010 cfu E. coli F18/3-mL dose for 3 consecutive days. Blood samples were collected periodically to analyze systemic immunity. Intestinal tissues and mucosa were collected on days 5 and 21 PI for analyzing histology and gene expression. All data, except for frequency of diarrhea, were analyzed by ANOVA using the PROC MIXED of SAS. The Chi-square test was used for analyzing frequency of diarrhea. Escherichia coli infection reduced (P < 0.05) growth rate and feed intake and increased (P < 0.05) frequency of diarrhea of weaned pigs throughout the experiment. Supplementation of 100 mg/kg BB1 or BB2 alleviated (P < 0.05) frequency of diarrhea of E. coli challenged pigs during the entire experiment. Escherichia coli infection also enhanced (P < 0.05) serum TNF-α and haptoglobin concentrations on day 4 post-inoculation (PI) but reduced (P < 0.05) duodenal villi height and area on day 5 PI, while pigs supplemented with 100 mg/kg BB1 or BB2 had lower (P < 0.05) serum TNF-α than pigs in PC on day 4 PI. Pigs fed with 100 mg/kg BB2 had higher (P < 0.05) jejunal villi height than pigs in PC on day 5 PI. Pigs fed with 100 mg/kg BB2 had reduced (P < 0.05) gene expression of IL1B, PTGS2, and TNFA in ileal mucosa than pigs in PC on day 21 PI. In conclusion, dietary supplementation of botanical blends at 100 mg/kg could enhance disease resistance of weaned pigs infected with E. coli F18 by enhancing intestinal morphology and regulating local and systemic immunity of pigs.
Collapse
Affiliation(s)
- Braden T Wong
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Yijie He
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Shiyu Xu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Christopher Lingga
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Monika Hejna
- Department of Animal Science, University of California, Davis, CA 95616, USA
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | | | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Tao Y, Zhou E, Li F, Meng L, Li Q, Wu L. Allergenicity Alleviation of Bee Pollen by Enzymatic Hydrolysis: Regulation in Mice Allergic Mediators, Metabolism, and Gut Microbiota. Foods 2022; 11:foods11213454. [PMID: 36360070 PMCID: PMC9658975 DOI: 10.3390/foods11213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bee pollen as a nutrient-rich functional food has been considered for use as an adjuvant for chronic disease therapy. However, bee pollen can trigger food-borne allergies, causing a great concern to food safety. Our previous study demonstrated that the combined use of cellulase, pectinase and papain can hydrolyze allergens into peptides and amino acids, resulting in reduced allergenicity of bee pollen based on in vitro assays. Herein, we aimed to further explore the mechanisms behind allergenicity alleviation of enzyme-treated bee pollen through a BALB/c mouse model. Results showed that the enzyme-treated bee pollen could mitigate mice scratching frequency, ameliorate histopathological injury, decrease serum IgE level, and regulate bioamine production. Moreover, enzyme-treated bee pollen can modulate metabolic pathways and gut microbiota composition in mice, further supporting the alleviatory allergenicity of enzyme-treated bee pollen. The findings could provide a foundation for further development and utilization of hypoallergenic bee pollen products.
Collapse
Affiliation(s)
- Yuxiao Tao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Fukai Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
- Correspondence: ; Tel.: +86-132-6949-5300
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| |
Collapse
|
20
|
Na Z, Guo W, Song J, Feng D, Fang Y, Li D. Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome. J Ovarian Res 2022; 15:80. [PMID: 35794640 PMCID: PMC9258136 DOI: 10.1186/s13048-022-01013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/25/2022] [Indexed: 02/26/2023] Open
Abstract
Background In this study, we aimed to identify novel biomarkers for polycystic ovary syndrome (PCOS) and analyze their potential roles in immune infiltration during PCOS pathogenesis. Methods Five datasets, namely GSE137684, GSE80432, GSE114419, GSE138518, and GSE155489, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were selected from the train datasets. The least absolute shrinkage and selection operator logistic regression model and support vector machine-recursive feature elimination algorithm were combined to screen potential biomarkers. The test datasets validated the expression levels of these biomarkers, and the area under the curve (AUC) was calculated to analyze their diagnostic value. Quantitative real-time PCR was conducted to verify biomarkers’ expression in clinical samples. CIBERSORT was used to assess differential immune infiltration, and the correlations of biomarkers with infiltrating immune cells were evaluated. Results Herein, 1265 DEGs were identified between PCOS and control groups. The gene sets related to immune response and adaptive immune response were differentially activated in PCOS. The two diagnostic biomarkers of PCOS identified by us were HD domain containing 3 (HDDC3) and syndecan 2 (SDC2; AUC, 0.918 and 0.816, respectively). The validation of hub biomarkers in clinical samples using RT-qPCR was consistent with bioinformatics results. Immune infiltration analysis indicated that decreased activated mast cells (P = 0.033) and increased eosinophils (P = 0.040) may be a part of the pathogenesis of PCOS. HDDC3 was positively correlated with T regulatory cells (P = 0.0064), activated mast cells (P = 0.014), and monocytes (P = 0.024) but negatively correlated with activated memory CD4 T cells (P = 0.016) in PCOS. In addition, SDC2 was positively correlated with activated mast cells (P = 0.0021), plasma cells (P = 0.0051), and M2 macrophages (P = 0.038) but negatively correlated with eosinophils (P = 0.01) and neutrophils (P = 0.031) in PCOS. Conclusion HDDC3 and SDC2 can serve as candidate biomarkers of PCOS and provide new insights into the molecular mechanisms of immune regulation in PCOS. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01013-0.
Collapse
|
21
|
Hu X, Zhu H, Chen B, He X, Shen Y, Zhang X, Xu Y, Xu X. The oncogenic role of tubulin alpha-1c chain in human tumours. BMC Cancer 2022; 22:498. [PMID: 35513790 PMCID: PMC9074327 DOI: 10.1186/s12885-022-09595-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Tubulin alpha-1c chain (TUBA1C), a subtype of α-tubulin, has been shown to be involved in cell proliferation and cell cycle progression in several cancers and to influence cancer development and prognosis. However, a pancancer analysis of TUBA1C to reveal its immunological and prognostic roles has not been performed. In this study, we first downloaded raw data on TUBA1C expression in cancers from The Cancer Genome Atlas (TCGA) database and multiple other databases and analysed these data with R software to investigate the prognostic and immunological value of TUBA1C in cancers. Immunohistochemical analysis was performed in gliomas to further validate our findings. Overall, TUBA1C was overexpressed in most cancers, and overexpression of TUBA1C was linked to poor prognosis and higher tumour grade in patients. In addition, TUBA1C expression was associated with tumour mutation burden (TMB), microsatellite instability (MSI), the tumour microenvironment (TME) and the infiltration of immune cells. TUBA1C was also coexpressed with most immune-related genes and influenced immune-related pathways. Immunohistochemical analysis showed that TUBA1C expression was highest in glioblastoma (GBM) tissues, second highest in low-grade glioma (LGG) tissues and lowest in normal tissues. Our study indicated that TUBA1C might be a biomarker for predicting the immune status and prognosis of cancers, offering new ideas for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Biao Chen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
22
|
Yu L, Wang A, Li T, Jin W, Tian G, Yun C, Gao F, Fan X, Wang H, Zhang H, Sun D. A Retrospective and Multicenter Study on COVID-19 in Inner Mongolia: Evaluating the Influence of Sampling Locations on Nucleic Acid Test and the Dynamics of Clinical and Prognostic Indexes. Front Med (Lausanne) 2022; 9:830484. [PMID: 35433742 PMCID: PMC9007405 DOI: 10.3389/fmed.2022.830484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is spreading widely, and the pandemic is seriously threatening public health throughout the world. A comprehensive study on the optimal sampling types and timing for an efficient SARS-CoV-2 test has not been reported. We collected clinical information and the values of 55 biochemical indices for 237 COVID-19 patients, with 37 matched non-COVID-19 pneumonia patients and 131 healthy people in Inner Mongolia as control. In addition, the results of dynamic detection of SARS-CoV-2 using oropharynx swab, pharynx swab, and feces were collected from 197 COVID-19 patients. SARS-CoV-2 RNA positive in feces specimen was present in approximately one-third of COVID-19 patients. The positive detection rate of SARS-CoV-2 RNA in feces was significantly higher than both in the oropharynx and nasopharynx swab (P < 0.05) in the late period of the disease, which is not the case in the early period of the disease. There were statistically significant differences in the levels of blood LDH, CRP, platelet count, neutrophilic granulocyte count, white blood cell number, and lymphocyte count between COVID-19 and non-COVID-19 pneumonia patients. Finally, we developed and compared five machine-learning models to predict the prognosis of COVID-19 patients based on biochemical indices at disease onset and demographic characteristics. The best model achieved an area under the curve of 0.853 in the 10-fold cross-validation.
Collapse
Affiliation(s)
- Lan Yu
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, China.,Endocrinology Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Ailan Wang
- Geneis (Beijing) Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Tianbao Li
- Geneis (Beijing) Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Wen Jin
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Chunmei Yun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Department of Pulmonary and Critical Care Medicine, Inner Mongolia People's Hospital, Hohhot, China
| | - Fei Gao
- Department of Pulmonary and Critical Care Medicine, The Fourth Hospital of Inner Mongolia, Hohhot, China
| | - Xiuzhen Fan
- Department of Pulmonary and Critical Care Medicine, Xilin Gol League Central Hospital, Xilinhot, China
| | - Huimin Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Huajun Zhang
- Department of Mathematics, Shaoxing University, Shaoxing, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Department of Pulmonary and Critical Care Medicine, Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
23
|
Kalavska K, Sestakova Z, Mlcakova A, Gronesova P, Miskovska V, Rejlekova K, Svetlovska D, Sycova-Mila Z, Obertova J, Palacka P, Mardiak J, Chovanec M, Chovanec M, Mego M. Comprehensive Assessment of Selected Immune Cell Subpopulations Changes in Chemotherapy-Naïve Germ Cell Tumor Patients. Front Oncol 2022; 12:858797. [PMID: 35359385 PMCID: PMC8963339 DOI: 10.3389/fonc.2022.858797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
The pattern of immune cell distribution in testicular germ cell tumors (GCT) significantly differs from the immune environment in normal testicular tissues. The present study aimed to evaluate the role of different leukocyte subpopulation in GCTs. A cohort of 84 chemotherapy-naïve GCT patients was analyzed. Immunophenotyping of peripheral blood leukocyte subpopulations was carried out by flow cytometry. In addition, the data assessing the immunophenotypes and the baseline clinicopathological characteristics of the included subjects were statistically evaluated. Their prognostic value for the assessment of progression-free survival (PFS) and overall survival (OS) was estimated. The percentage of different innate/adaptive immune cell subpopulations was significantly associated with poor risk-related clinical features, including the number of metastatic sites, presence of retroperitoneal, mediastinal, lung, brain and non-pulmonary visceral metastases as well as with the S-stage and International Germ Cell Consensus Classification Group (IGCCCG) risk groups. In univariate analysis, the percentages of neutrophils, eosinophils, dendritic cells type 2, lymphocytes and T cytotoxic cells were significantly associated with PFS, while the neutrophil, non-classical monocyte and lymphocyte percentage were associated with OS. However, all these outcome correlations were not independent of IGCCCG in multivariate analysis. The data indicated a link among different innate/adaptive peripheral immune cell subpopulations in GCT patients. In addition, the association between these subpopulations and tumor characteristics was also investigated. The findings of the present study may contribute to a deeper understanding of the interactions between cancer and innate/adaptive immune response in GCT patients.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Sestakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Laboratory Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Andrea Mlcakova
- Department of Hematology, National Cancer Institute, Bratislava, Slovakia
| | - Paulina Gronesova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Miskovska
- 1Department of Oncology, Faculty of Medicine, St. Elisabeth Cancer Institute, Comenius University, Bratislava, Slovakia
| | - Katarina Rejlekova
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
| | | | - Jana Obertova
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Patrik Palacka
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Jozef Mardiak
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Chovanec
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- 2Department of Oncology, Faculty of Medicine, National Cancer Institute, Comenius University, Bratislava, Slovakia
- Department of Oncology, National Cancer Institute, Bratislava, Slovakia
- *Correspondence: Michal Mego,
| |
Collapse
|
24
|
Clinical and Translational Significance of Basophils in Patients with Cancer. Cells 2022; 11:cells11030438. [PMID: 35159247 PMCID: PMC8833920 DOI: 10.3390/cells11030438] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcɛRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).
Collapse
|
25
|
Osawa H, Shiozawa T, Okauchi S, Sasatani Y, Ohara G, Sato S, Miyazaki K, Kodama T, Kagohashi K, Satoh H, Hizawa N. Absolute Increase in the Number and Proportion of Peripheral Eosinophils Associated With Immune Checkpoint Inhibitor Treatment in Non-small Cell Lung Cancer Patients. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:485-490. [PMID: 35403161 PMCID: PMC8962858 DOI: 10.21873/cdp.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM To clarify the clinical significance of the absolute increase in the number and proportion of peripheral eosinophils associated with immune checkpoint inhibitor (ICPI) treatment in non-small cell lung cancer (NSCLC) patients. PATIENTS AND METHODS We performed a retrospective study, by reviewing the medical charts of 191 patients who were treated with ICPI monotherapy and 80 patients treated with the combination of ICPI and chemotherapy during the period from February 2016 and April 2021. RESULTS In patients treated with ICPI monotherapy, there was a significant difference in time to treatment failure (TTF) between the two groups divided by eosinophils ≥ or <10%. Similarly, a significant difference was found in TTF between the two groups divided by eosinophils ≥ or <1,500/μl. Factors related to both an increase in the number and percentage of peripheral eosinophils were "immune-related adverse effects (irAE) that did not lead to discontinuation of administration". CONCLUSION Some patients with irAE might have a 'favorable' absolute increase in peripheral eosinophils.
Collapse
Affiliation(s)
- Hajime Osawa
- Division of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshihiro Shiozawa
- Division of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinichiro Okauchi
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba-Mito Kyodo General Hospital, Mito, Japan
| | - Yuika Sasatani
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba-Mito Kyodo General Hospital, Mito, Japan
| | - Gen Ohara
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba-Mito Kyodo General Hospital, Mito, Japan
| | - Shinya Sato
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Japan
| | - Kunihiko Miyazaki
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Japan
| | - Takahide Kodama
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Japan
| | - Katsunori Kagohashi
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba-Mito Kyodo General Hospital, Mito, Japan
| | - Hiroaki Satoh
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba-Mito Kyodo General Hospital, Mito, Japan
| | - Nobuyuki Hizawa
- Division of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
26
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Carneiro BGMC, Petroianu A, Machado JAN, Dos Anjos PMF, da Silva FR, Alberti LR, Resende V, Barrientos SC. Clinical and immunological allergy assessment in cancer patients. Sci Rep 2021; 11:18110. [PMID: 34518597 PMCID: PMC8437967 DOI: 10.1038/s41598-021-97200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer is associated with immunodeficiency, while allergies result from immune system hyperactivity mediated by cytokines and immunoglobulins. The purpose of this study was to determine the relationship between immune environment of specific cancers and allergies, emphasizing cytokines related to Th1 and Th2 responses associated with IgE. 80 adults were distributed into two groups: control (n = 20) and cancer (n = 60), distributed in three subgroups (n = 20), head and neck, stomach, and prostate cancers. This study compared Th1 (IL-2) and Th2 (IL-4) parameters, anti-inflammatory, pro-inflammatory, or regulatory profile regarding both IgE levels and reported allergies, by means of clinical manifestations and IgE, IL-1β, IL-2, IL-4, IL-17, and TGF-β serum concentration. Clinically allergies were observed in 50% of the control group and in 20% of the cancer group (p = 0.009). IL-2 cytokine and TGF-β concentrations were higher in the patients with cancer as compared to the control (p < 0.005). However, there were IL-4, IL-17, and IL-1β decreases in the patients with cancer (p < 0.05). No correlation was observed between the cytokines studied and IgE and clinically proven allergies in both investigated groups. There was an inverse association between cancer and clinical allergy manifestations. In head and neck, stomach, and prostate cancers, an immunosuppressive serum tumor environment was predominant. There was no difference in cytokines related to Th1 and Th2 parameters in relation to IgE. No correlation was found between clinically proved allergies and immunity markers related to the same allergens.
Collapse
Affiliation(s)
- Bruno Gustavo Muzzi Carvalho Carneiro
- Service of Oncology of the Alberto Cavalcanti Hospital of the Hospital Foundation of the State of Minas Gerais, Rua Rio Claro 235, ap 401, Belo Horizonte, MG, 30411-235, Brazil.
| | - Andy Petroianu
- Surgery Department of the School of Medicine of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Luiz Ronaldo Alberti
- Surgery Department of the School of Medicine of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Resende
- Surgery Department of the School of Medicine of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sofia Candia Barrientos
- Surgery Department of the School of Medicine of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
29
|
Magrone T, Magrone M, Jirillo E. Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders. Endocr Metab Immune Disord Drug Targets 2021; 20:1166-1181. [PMID: 32148205 DOI: 10.2174/1871530320666200309094726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Eosinophils are primitive myeloid cells derived from bonemarrow precursors and require the intervention of interleukin (IL)-5 for their survival and persistence in blood and tissues. Under steady-state conditions, they contribute to immune regulation and homeostasis. Under pathological circumstances, eosinophils are involved in host protection against parasites and participate in allergy and inflammation. DISCUSSION Mostly, in asthma, eosinophils provoke airway damage via the release of granule contents and IL-13 with mucus hypersecretion and differentiation of goblet cells. Then, tissue remodeling follows with the secretion of transforming growth factor-β. Eosinophils are able to kill helminth larvae acting as antigen-presenting cells with the involvement of T helper (h)-2 cells and subsequent antibody response. However, they also exert pro-worm activity with the production of suppressive cytokine (IL- 10 and IL-4) and inhibition of nitric oxide. Eosinophils may play a pathogenic role in the course of chronic and autoimmune disease, e.g., inflammatory bowel disease and eosinophilic gastroenteritis, regulating Th2 responses and promoting a profibrotic effect. In atopic dermatitis, eosinophils are commonly detected and may be associated with disease severity. In cutaneous spontaneous urticaria, eosinophils participate in the formation of wheals, tissue remodeling and modifications of vascular permeability. With regard to tumor growth, it seems that IgE can exert anti-neoplastic surveillance via mast cell and eosinophil-mediated cytotoxicity, the so-called allergo-oncology. From a therapeutic point of view, monoclonal antibodies directed against IL-5 or the IL-5 receptors have been shown to be very effective in patients with severe asthma. Finally, as an alternative treatment, polyphenols for their anti-inflammatory and anti-allergic activities seem to be effective in reducing serum IgE and eosinophil count in bronchoalveolar lavage in murine asthma. CONCLUSION Eosinophils are cells endowed with multiple functions and their modulation with monoclonal antibodies and nutraceuticals may be effective in the treatment of chronic disease.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
30
|
Thiruvengadam M, Subramanian U, Venkidasamy B, Thirupathi P, Samynathan R, Shariati MA, Rebezov M, Chung IM, Rengasamy KRR. Emerging role of nutritional short-chain fatty acids (SCFAs) against cancer via modulation of hematopoiesis. Crit Rev Food Sci Nutr 2021; 63:827-844. [PMID: 34319824 DOI: 10.1080/10408398.2021.1954874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The understanding of gut microbiota has emerged as a significant frontier in development of strategies to maintain normal human body's homeostasis and preventing the disease development over the last decade. The composition of the gut microbiota influences the clinical benefit of immune checkpoints in patients with advanced cancer, but the mechanisms underlying this relationship are unclear. Cancer is among the leading causes of mortality worldwide. So far, there is no universal treatment for cancer and despite significant advances, a lot of improvement on cancer therapy is required. Owing to its role in preserving the host's health and maintaining cellular integrity, the human gut microbiome has recently drawn a lot of interest as a target for cancer treatment. Dietary fiber is fermented by the gut microbiota to generate short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, which are physiologically active metabolites. SCFAs can modulate the pathophysiology of the tumor environment through various critical signaling pathways. In addition, SCFAs can bind to carcinogens and other toxic chemicals, thus facilitating their biotransformation and elimination through different excretory mechanisms. This review discusses the mechanisms of action of short-chain fatty acids in modulating hematopoiesis of various immune system cells and the resultant beneficial anti-cancer effects. It also provides future perspectives on cancer therapy.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Prabhu Thirupathi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation.,Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| |
Collapse
|
31
|
Yuan S, Vithayathil M, Kar S, Carter P, Mason AM, Xie S, Burgess S, Larsson SC. Assessing the protective role of allergic disease in gastrointestinal tract cancers using Mendelian randomization analysis. Allergy 2021; 76:1559-1562. [PMID: 33031565 PMCID: PMC8411419 DOI: 10.1111/all.14616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | | | - Siddhartha Kar
- MRC Integrative Epidemiology UnitBristol Medical SchoolUniversity of BristolBristolUK
| | - Paul Carter
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology UnitDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Cambridge Biomedical Research CentreUniversity of Cambridge and Cambridge University HospitalsCambridgeUK
| | - Shao‐Hua Xie
- Upper Gastrointestinal SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Stephen Burgess
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
32
|
Wang S, Wang C, Liu O, Hu Y, Li X, Lin B. Prognostic value of immune-related cells and genes in the tumor microenvironment of ovarian cancer, especially CST4. Life Sci 2021; 277:119461. [PMID: 33811900 DOI: 10.1016/j.lfs.2021.119461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 01/03/2023]
Abstract
Ovarian cancer (OC) is the most common gynecological malignant tumor with the highest mortality rate. However, identification of effective immune therapeutic targets and biomarkers are beset by many challenges. CIBERSORT was used to calculate the abundance of 22 immune cell types in 379 OC samples, and indicated that three immune cell types were associated with poor prognoses. Further analysis revealed that 17 hub genes were associated with these three cell types. We screened differentially expressed immune-related prognostic gene associated with clinicopathological factors, which was CST4. We used clinical specimens to detect the expression of CST4, and determined that CST4 was both highly expressed in OC patients and associated with poor prognoses. Our findings indicated that infiltration of immune cells affected the survival of patients with OC, provided therapeutic targets represented by CST4, deepened our understanding of the immune microenvironment of OC, and enhanced the theoretical basis of immunotherapy.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
33
|
Zheng L, Yu M, Zhang S. Prognostic value of pretreatment circulating basophils in patients with glioblastoma. Neurosurg Rev 2021; 44:3471-3478. [PMID: 33765226 DOI: 10.1007/s10143-021-01524-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence demonstrated that atopic diseases were inversely related to glioma susceptibility and associated with improved prognosis of patients with glioma. This study aimed to elucidate the impacts of basophils, one of the important effector cells in the pathobiology of atopic disease, on prognosis of patients with glioblastoma (GBM). A total of 268 patients were newly diagnosed with GBM and treated with operation at our institution from January 2010 to December 2017. The association between pre-operation circulating eosinophil, basophil, neutrophil, lymphocyte, monocyte count and GBM progression free survival (PFS) was investigated. Moreover, based on the results of multivariate analysis, a prognostic nomogram was established and evaluated. Kaplan-Meier method showed that basophils ≥0.015 × 109/L (p = 0.015) and lymphocytes ≥1.555 × 109/L (p = 0.005) were correlated with better PFS. Cox regression model showed that basophils ≥0.015 × 109/L were an independent prognostic factor for PFS. Prognostic nomogram was established and the concordance index (C-index) for PFS prediction was 0.629. The calibration plots for the probability of 0.5-, 1- and 3-year PFS showed optimal consistency between the prediction by nomogram and actual observation. Increased pre-operation circulating basophils portend better PFS, which might be a useful and novel marker for the prognosis of GBM patients.
Collapse
Affiliation(s)
- Lingnan Zheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China
| | - Min Yu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
35
|
Jiang X, Jiang Z, Xiang L, Chen X, Wu J, Jiang Z. Identification of a two-gene prognostic model associated with cytolytic activity for colon cancer. Cancer Cell Int 2021; 21:95. [PMID: 33557848 PMCID: PMC7869500 DOI: 10.1186/s12935-021-01782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
Background Increasing evidence has shown that cytolytic activity (CYT) is a new immunotherapy biomarker that characterises the antitumour immune activity of cytotoxic T cells and macrophages. In this study, we established a prognostic model associated with CYT. Methods A prognostic model based on CYT-related genes was developed. Furthermore, aberrant expression of genes of the model in colon cancer (CC) was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays. Next, the correlation between the model and T-cell infiltration in the CC microenvironment was analysed. The Tumour Immune Dysfunction and Exclusion (TIDE) algorithm and subclass mapping were used to predict clinical responses to immune checkpoint inhibitors. Results In total, 280 of the 1418 genes were differentially expressed based on CYT. A prognostic model (including HOXC8 and MS4A2) was developed based on CYT-related genes. The model was validated using the testing set, the whole set and a Gene Expression Omnibus (GEO) cohort (GSE41258). Gene set enrichment analysis (GSEA) and other analyses showed that the levels of immune infiltration and antitumour immune activation in low-risk-score tumours were greater than those in high-risk-score tumours. CC patients with a low-risk-score showed more promise in the response to anti-immune checkpoint therapy. Conclusions Overall, our model may precisely predict the overall survival of CC and reflect the strength of antitumour immune activity in the CC microenvironment. Furthermore, the model may be a predictive factor for the response to immunotherapy.
Collapse
Affiliation(s)
- Xiaoye Jiang
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China
| | - Zhongxiang Jiang
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China
| | - Lichun Xiang
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China
| | - Xuenuo Chen
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China
| | - Jiao Wu
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China
| | - Zheng Jiang
- Departments of Gastroenterology, Chongqing Medical University First Affiliated Hospital, Chongqing, 400016, China.
| |
Collapse
|
36
|
Shelton SE, Nguyen HT, Barbie DA, Kamm RD. Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 2021; 24:101985. [PMID: 33490895 PMCID: PMC7808917 DOI: 10.1016/j.isci.2020.101985] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review describes recent research that has advanced our understanding of the role of immune cells in the tumor microenvironment (TME) using advanced 3D in vitro models and engineering approaches. The TME can hinder effective eradication of tumor cells by the immune system, but immunotherapy has been able to reverse this effect in some cases. However, patient-to-patient variability in response suggests that we require deeper understanding of the mechanistic interactions between immune and tumor cells to improve response and develop novel therapeutics. Reconstruction of the TME using engineered 3D models allows high-resolution observation of cell interactions while allowing control of conditions such as hypoxia, matrix stiffness, and flow. Moreover, patient-derived organotypic models are an emerging tool for prediction of drug efficacy. This review highlights the importance of modeling and understanding the immune TME and describes new tools for identifying new biological targets, drug testing, and strategies for personalized medicine.
Collapse
Affiliation(s)
- Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Huu Tuan Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
37
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
38
|
Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020; 133:133/24/jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tissue microenvironment supports normal tissue function and regulates the behaviour of parenchymal cells. Tumour cell behaviour, on the other hand, diverges significantly from that of their normal counterparts, rendering the microenvironment hostile to tumour cells. To overcome this problem, tumours can co-opt and remodel the microenvironment to facilitate their growth and spread. This involves modifying both the biochemistry and the biophysics of the normal microenvironment to produce a tumour microenvironment. In this Cell Science at a Glance article and accompanying poster, we outline the key processes by which epithelial tumours influence the establishment of the tumour microenvironment. As the microenvironment is populated by genetically normal cells, we discuss how controlling the microenvironment is both a significant challenge and a key vulnerability for tumours. Finally, we review how new insights into tumour-microenvironment interactions has led to the current consensus on how these processes may be targeted as novel anti-cancer therapies.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
39
|
Bax HJ, Chauhan J, Stavraka C, Khiabany A, Nakamura M, Pellizzari G, Ilieva KM, Lombardi S, Gould HJ, Corrigan CJ, Till SJ, Katugampola S, Jones PS, Barton C, Winship A, Ghosh S, Montes A, Josephs DH, Spicer JF, Karagiannis SN. Basophils from Cancer Patients Respond to Immune Stimuli and Predict Clinical Outcome. Cells 2020; 9:E1631. [PMID: 32645919 PMCID: PMC7408103 DOI: 10.3390/cells9071631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Basophils are involved in manifestations of hypersensitivity, however, the current understanding of their propensity for activation and their prognostic value in cancer patients remains unclear. As in healthy and atopic individuals, basophil populations were identified in blood from ovarian cancer patients (n = 53) with diverse tumor histologies and treatment histories. Ex vivo basophil activation was measured by CD63 expression using the basophil activation test (BAT). Irrespective of prior treatment, basophils could be activated by stimulation with IgE- (anti-FcεRI and anti-IgE) and non-IgE (fMLP) mediated triggers. Basophil activation was detected by ex vivo exposure to paclitaxel, but not to other anti-cancer therapies, in agreement with a clinical history of systemic hypersensitivity reactions to paclitaxel. Protein and gene expression analyses support the presence of basophils (CCR3, CD123, FcεRI) and activated basophils (CD63, CD203c, tryptase) in ovarian tumors. Greater numbers of circulating basophils, cells with greater capacity for ex vivo stimulation (n = 35), and gene signatures indicating the presence of activated basophils in tumors (n = 439) were each associated with improved survival in ovarian cancer. Circulating basophils in cancer patients respond to IgE- and non-IgE-mediated signals and could help identify hypersensitivity to therapeutic agents. Activated circulating and tumor-infiltrating basophils may be potential biomarkers in oncology.
Collapse
Affiliation(s)
- Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Chara Stavraka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Atousa Khiabany
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Mano Nakamura
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
| | - Giulia Pellizzari
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
| | - Kristina M. Ilieva
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Sara Lombardi
- Guy’s and St Thomas’ Oncology & Haematology Clinical Trials (OHCT), Guy’s Cancer Centre, London SE1 9RT, UK;
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK;
- Asthma UK Centre, Allergic Mechanisms in Asthma, King’s College London, London SE1 9RT, UK; (C.J.C.); (S.J.T.)
| | - Christopher J. Corrigan
- Asthma UK Centre, Allergic Mechanisms in Asthma, King’s College London, London SE1 9RT, UK; (C.J.C.); (S.J.T.)
- Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Stephen J. Till
- Asthma UK Centre, Allergic Mechanisms in Asthma, King’s College London, London SE1 9RT, UK; (C.J.C.); (S.J.T.)
- Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Sidath Katugampola
- Centre for Drug Development, Cancer Research UK, 2 Redman Place, London E20 1JQ, UK; (S.K.); (P.S.J.); (C.B.)
| | - Paul S. Jones
- Centre for Drug Development, Cancer Research UK, 2 Redman Place, London E20 1JQ, UK; (S.K.); (P.S.J.); (C.B.)
| | - Claire Barton
- Centre for Drug Development, Cancer Research UK, 2 Redman Place, London E20 1JQ, UK; (S.K.); (P.S.J.); (C.B.)
- Barton Oncology Ltd., 8 Elm Avenue, Eastcote, Middlesex HA4 8PD, UK
| | - Anna Winship
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Sharmistha Ghosh
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Ana Montes
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Debra H. Josephs
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Departments of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK; (H.J.B.); (J.C.); (C.S.); (A.K.); (M.N.); (G.P.); (K.M.I.); (D.H.J.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
40
|
Renke J, Wasilewska E, Kędzierska-Mieszkowska S, Zorena K, Barańska S, Wenta T, Liberek A, Siluk D, Żurawa-Janicka D, Szczepankiewicz A, Renke M, Lipińska B. Tumor Suppressors-HTRA Proteases and Interleukin-12-in Pediatric Asthma and Allergic Rhinitis Patients. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E298. [PMID: 32560402 PMCID: PMC7353852 DOI: 10.3390/medicina56060298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
Background and objective: Allergy belongs to a group of mast cell-related disorders and is one of the most common diseases of childhood. It was shown that asthma and allergic rhinitis diminish the risk of various cancers, including colon cancer and acute lymphoblastic leukemia. On the other hand, asthma augments the risk of lung cancer and an increased risk of breast cancer in patients with allergy has been observed. Thus, the relation between allergy and cancer is not straightforward and furthermore, its biological mechanism is unknown. The HTRA (high temperature requirement A) proteases promote apoptosis, may function as tumor suppressors and HTRA1 is known to be released by mast cells. Interleukin-12 (Il-12) is an important cytokine that induces antitumor immune responses and is produced mainly by dendritic cells that co-localize with mast cells in superficial organs. Material and methods: In the present study we have assessed with ELISA plasma levels of the HTRA proteins, Il-12, and of the anti-HTRA autoantibodies in children with allergy (40) and in age matched controls (39). Children are a special population, since they usually do not have comorbidities and take not many drugs the processes we want to observe are not influenced by many other factors. Results: We have found a significant increase of HTRA1, 2 and 3, and of the Il-12 levels in the children with atopy (asthma and allergic rhinitis) compared to controls. Conclusion: Our results suggest that the HTRA1-3 and Il-12 levels might be useful in analyzing the pro- and antioncogenic potential in young atopic patients.
Collapse
Affiliation(s)
- Joanna Renke
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Eliza Wasilewska
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland;
| | - Sabina Kędzierska-Mieszkowska
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland;
| | - Sylwia Barańska
- Department of Bacterial Molecular Genetics University of Gdańsk Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Anna Liberek
- Faculty of Health Sciences with Subfaculty of Nursing, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland;
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Dorota Żurawa-Janicka
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-512 Poznan, Poland;
| | - Marcin Renke
- Department of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland;
| | - Barbara Lipińska
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| |
Collapse
|
41
|
Majorini MT, Cancila V, Rigoni A, Botti L, Dugo M, Triulzi T, De Cecco L, Fontanella E, Jachetti E, Tagliabue E, Chiodoni C, Tripodo C, Colombo MP, Lecis D. Infiltrating Mast Cell-Mediated Stimulation of Estrogen Receptor Activity in Breast Cancer Cells Promotes the Luminal Phenotype. Cancer Res 2020; 80:2311-2324. [PMID: 32179512 DOI: 10.1158/0008-5472.can-19-3596] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Tumor growth and development is determined by both cancer cell-autonomous and microenvironmental mechanisms, including the contribution of infiltrating immune cells. Because the role of mast cells (MC) in this process is poorly characterized and even controversial, we investigated their part in breast cancer. Crossing C57BL/6 MMTV-PyMT mice, which spontaneously develop mammary carcinomas, with MC-deficient C57BL/6-KitW-sh/W-sh (Wsh) mice, showed that MCs promote tumor growth and prevent the development of basal CK5-positive areas in favor of a luminal gene program. When cocultured with breast cancer cells in vitro, MCs hindered activation of cMET, a master regulator of the basal program, and simultaneously promoted expression and activation of estrogen receptor (ESR1/ER) and its target genes (PGR, KRT8/CK8, BCL2), which are all luminal markers. Moreover, MCs reduced ERBB2/HER2 levels, whose inhibition further increased ESR1 expression. In vivo and in silico analysis of patients with breast cancer revealed a direct correlation between MC density and ESR1 expression. In mice engrafted with HER2-positive breast cancer tumors, coinjection of MCs increased tumor engraftment and outgrowth, supporting the link between MCs and increased risk of relapse in patients with breast cancer. Together, our findings support the notion that MCs influence the phenotype of breast cancer cells by stimulating a luminal phenotype and ultimately modifying the outcome of the disease. SIGNIFICANCE: Mast cells impact breast cancer outcome by directly affecting the phenotype of tumor cells through stimulation of the estrogen receptor pathway.
Collapse
Affiliation(s)
- Maria Teresa Majorini
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
42
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
43
|
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020; 77:1859-1878. [PMID: 31720742 PMCID: PMC11104961 DOI: 10.1007/s00018-019-03353-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
45
|
Coden ME, Berdnikovs S. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? J Leukoc Biol 2020; 108:93-103. [DOI: 10.1002/jlb.3mr0120-390r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023] Open
Affiliation(s)
- Mackenzie E. Coden
- Division of Allergy and Immunology Department of Medicine Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology Department of Medicine Northwestern University Feinberg School of Medicine Chicago Illinois USA
| |
Collapse
|
46
|
Blood Eosinophilia is an on-Treatment Biomarker in Patients with Solid Tumors Undergoing Dendritic Cell Vaccination with Autologous Tumor-RNA. Pharmaceutics 2020; 12:pharmaceutics12030210. [PMID: 32121531 PMCID: PMC7150785 DOI: 10.3390/pharmaceutics12030210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The approvals of immune checkpoint inhibitors for several cancer types and the rapidly growing recognition that T cell-based immunotherapy significantly improves outcomes for cancer patients led to a re-emergence of cancer vaccines, including dendritic cell (DC)-based immunotherapy. Blood and tissue biomarkers to identify responders and long-term survivors and to optimize cost and cost-effectiveness of treatment are greatly needed. We wanted to investigate whether blood eosinophilia is a predictive biomarker for patients with solid tumors receiving vaccinations with DCs loaded with autologous tumor-RNA. Methods: In total, 67 patients with metastatic solid tumors, who we treated with autologous monocyte-derived DCs transfected with total tumor mRNA, were serially analyzed for eosinophil counts and survival over the course of up to 14 years. Eosinophilic counts were performed on peripheral blood smears. Results: Up to 87% of the patients treated with DC-based immunotherapy experienced at least once an eosinophilia of ≥ 5% after initiation of therapy; 61 % reached levels of ≥ 10% eosinophils, and 13% of patients showed eosinophil counts of 20% or above. While prevaccination eosinophil levels were not associated with survival, patients with blood eosinophilia at any point after initiation of DC-based immunotherapy showed a trend towards longer survival. There was a statistically significant difference for the patients with eosinophil counts of 20% or more (p = 0.03). In those patients, survival was prolonged to a median of 58 months (range 2–111 months), compared to a median of 20 months (range 0–119 months) in patients with lower eosinophil counts. In 12% of the patients, an immediate increase in eosinophil count of at least 10 percentage points could be detected after the first vaccine, which also appeared to correlate with survival (65 vs. 24 months; p = 0.06). Conclusion: Blood eosinophilia appears to be an early, on-therapy biomarker in patients with solid tumors undergoing vaccination with RNA-transfected DC, specifically autologous tumor mRNA-transfected DC vaccines, and it correlates with long-term patient outcome. Eosinophilia should be systematically investigated in future trials.
Collapse
|
47
|
Liu Q, Luo D, Cai S, Li Q, Li X. Circulating basophil count as a prognostic marker of tumor aggressiveness and survival outcomes in colorectal cancer. Clin Transl Med 2020; 9:6. [PMID: 32037496 PMCID: PMC7008108 DOI: 10.1186/s40169-019-0255-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence demonstrated immune/inflammation-related implications of basophils in affecting tissue microenvironment that surrounded a tumor, and this study aimed to elucidate the clinical value of serum basophil count level. Methods Between December 2007 and September 2013, 1029 patients diagnosed with stage I–III CRC in Fudan University Shanghai Cancer Center meeting the essential criteria were identified. The Kaplan–Meier method was used to construct the survival curves. Several Cox proportional hazard models were constructed to assess the prognostic factors. A simple predictor (CB classifier) was generated by combining serum basophil count and serum carcinoembryonic antigen (CEA) level which had long been accepted as the most important and reliable prognostic factor in CRC. Results The preoperative basophils count < 0.025*109/L was strongly associated with higher T stage, higher N stage, venous invasion, perineural invasion, elevated serum CEA level, and thus poor survival (P < 0.05). Moreover, multivariate Cox analysis showed that patients with low level of preoperative basophils count had an evidently poorer DFS [Hazard ratio (HR) = 2.197, 95% CI 1.868–2.585]. Conclusions As a common immune/inflammation-related biomarker available from the blood routine examination, low level of preoperative serum basophil count was associated with aggressive biology and indicated evidently poor survival. Preoperative serum basophil count would be a useful and simple marker for the management of CRC patients.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, #270 Dongan Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, #270 Dongan Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, #270 Dongan Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, #270 Dongan Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, #270 Dongan Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Zheng X, Zhang N, Qian L, Wang X, Fan P, Kuai J, Lin S, Liu C, Jiang W, Qin S, Chen H, Huang Y. CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils. Int J Cancer 2019; 146:1730-1740. [PMID: 31840816 DOI: 10.1002/ijc.32829] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Immune checkpoint blockade (ICB) has shown long-term survival benefits, but only in a small fraction of cancer patients. Recent studies suggest that improved vessel perfusion by ICB positively correlates with its therapeutic outcomes. However, the underlying mechanism of such a process remains unclear. Here, we show that anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) treatment-induced tumor vessel normalization was accompanied by an increased infiltration of eosinophils into breast tumors. Eosinophil accumulation was positively correlated with the responsiveness of a breast tumor to anti-CTLA4 therapy. Depletion of eosinophils subsequently negated vessel normalization, reduced antitumor immunity and attenuated tumor growth inhibition by anti-CTLA4 therapy. Moreover, intratumoral accumulation of eosinophils relied on T lymphocytes and interferon γ production. Together, these results suggest that eosinophils partially mediate the antitumor effects of CTLA4 blockade through vascular remodeling. Our findings uncover an unidentified role of eosinophils in anti-CTLA4 therapy, providing a potential new target to improve ICB therapy and to predict its efficacy.
Collapse
Affiliation(s)
- Xichen Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Naidong Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Long Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Xuexiang Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Peng Fan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Jiajie Kuai
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Siyang Lin
- Department of Cardiology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Changpeng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| | - Wen Jiang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haifeng Chen
- Department of Cardiology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Wang J, Bo X, Wang C, Xin Y, Nan L, Luo R, Chen L, Shi X, Suo T, Ni X, Liu H, Shen S, Li M, Lu P, Wang Y, Liu H. Low immune index correlates with favorable prognosis but with reduced benefit from chemotherapy in gallbladder cancer. Cancer Sci 2019; 111:219-228. [PMID: 31729088 PMCID: PMC6942443 DOI: 10.1111/cas.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Use of immune index is a new potential approach for cancer classification and prediction. To investigate the status and clinical effect of immune index in gallbladder cancer (GBC), 238 GBC patients from Zhongshan Hospital affiliated to Fudan University were involved in the present study, including 113 patients in a training set and 125 patients in a validation set. Five immune cells (macrophages, neutrophils, regulatory T cells, cytotoxic T cells and mast cells) were selected based on a literature review and the immune index for each patient was calculated using the LASSO regression. A low immune index (<1) was defined as immunotype A and a high immune index (≥1) was defined as immunotype B. The 5-year overall survival rate for immunotype A was higher than that for immunotype B in the training set and the validation set (70.0% vs 37.0%, P < 0.001; 68.9% vs 47.5%, P = 0.002; respectively). Moreover, the immune index showed higher prediction efficiency compared with all the single immune cells which we selected. When combined with the immune index, the areas under the curve (AUC) of the TNM staging system in both sets were elevated from 0.677 to 0.787 and from 0.631 to 0.694, respectively. Interestingly, gemcitabine-based chemotherapy only benefits stage II patients of immunotype B and stage III patients of both immunotype A and immunotype B (P = 0.015, P = 0.030, P = 0.011, respectively) but does not work in stage II patients of immunotype A (P = .307). Taken together, the immune index could effectively predict prognosis and the benefits of gemcitabine-based chemotherapy and might improve on the TNM staging system.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Xiaobo Bo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Changcheng Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Lingxi Nan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Pinxiang Lu
- Department of General Surgery, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| | - Yueqi Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Diseases Institute, Fudan University, Shanghai, China.,Department of General Surgery, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
50
|
Gorzalczany Y, Merimsky O, Sagi-Eisenberg R. Mast Cells Are Directly Activated by Cancer Cell-Derived Extracellular Vesicles by a CD73- and Adenosine-Dependent Mechanism. Transl Oncol 2019; 12:1549-1556. [PMID: 31493676 PMCID: PMC6732751 DOI: 10.1016/j.tranon.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that mast cells (MCs), which constitute an important part of the tumor microenvironment (TME), can be directly activated by cancer cells under conditions that recapitulate cell to cell contact. However, MCs are often detected in the tumor periphery rather than intratumorally. Therefore, we investigated the possibility of MC activation by cancer cell–derived extracellular vesicles (EVs). Here we show that exposure of MCs to EVs derived from pancreatic cancer cells or non–small cell lung carcinoma results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases. Further, we show that, similarly to activation by cancer cell contact, activation by EVs is dependent on the ecto enzyme CD73 that mediates extracellular formation of adenosine and on signaling by the A3 adenosine receptor. Finally, we show that activation by either cell contact or EVs upregulates expression of angiogenic and tissue remodeling genes, including IL8, IL6, VEGF, and amphiregulin. Collectively, our findings indicate that both intratumorally localized MCs and peripheral MCs are activated and reprogrammed in the TME either by contact with the cancer cells or by their released EVs.
Collapse
Affiliation(s)
- Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ofer Merimsky
- Unit of Soft Tissue and Bone Oncology, Division of Oncology, The Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|