1
|
Nawab J, Ghani J, Ullah S, Ahmad I, Akbar Jadoon S, Ali S, Hamidova E, Muhammad A, Waqas M, Din ZU, Khan S, Khan A, Ur Rehman SA, Javed T, Luqman M, Ullah Z. Influence of agro-wastes derived biochar and their composite on reducing the mobility of toxic heavy metals and their bioavailability in industrial contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1824-1838. [PMID: 38832561 DOI: 10.1080/15226514.2024.2357640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.
Collapse
Affiliation(s)
- Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Junaid Ghani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sajid Ullah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Imran Ahmad
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sultan Akbar Jadoon
- Department of Plant Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shaukat Ali
- Department of Environmental Sciences, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Emiliya Hamidova
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Asim Muhammad
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Zia Ud Din
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tehseen Javed
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Muhammad Luqman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
2
|
Li H, Song X, Wu D, Wei D, Li Y, Ju X. Partial substitution of manure increases N 2O emissions in the alkaline soil but not acidic soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120993. [PMID: 38688131 DOI: 10.1016/j.jenvman.2024.120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
The fertilization regimes of combining manure with synthetic fertilizer are benefits for crop yields and soil fertility in cropping systems as compared to sole synthetic fertilization, but the responses of nitrous oxide (N2O) emissions to these practices are inconsistent in the literatures. We hypothesized that it is caused by different proportions of nitrogen (N) applied as manure and various soil properties. Here, we conducted a microcosm experiment, and measured the N2O emissions from control (no N) and five manure substitution treatments (supplied 100 mg N kg-1 using the combination of urea with manure) with a range of proportions of N applied as manure (0, 25%, 50%, 75%, and 100%) in three different soil types (fluvo-aquic soil, black soil, and latosol) under aerobic condition. The stimulated effect on N2O emissions was more pronounced after manure application in an alkaline soil with high nitrification rate, due to relatively rapid soil DOC depletion and N mineralization of manure. N2O emissions from partial substitution of urea with manure were significantly higher than manure-only addition under high soil pH due to abundant labile C from manure. However, there was no difference between manure substitution treatments under acid soils. Nitrification inhibitor substantially decreased N2O emissions with increasing soil pH, but it was less effective in mitigating N2O emissions with larger proportion of manure. This is likely due to the slow nitrification under low soil pH, and denitrification derived N2O increased with increasing manure application rate. Collectively, our study shows that the application of manure substitution to alkaline soils requires careful consideration, which might have rapid nitrification potential and hence trigger significant N2O emissions. The knowledge gained in this work will help the decision-makers in optimizing a sound N fertilization regime interacted with soil properties for sustainable crop production and N2O mitigation.
Collapse
Affiliation(s)
- Haoruo Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaotong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Di Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Jin Y, Yuan Y, Liu Z, Gai S, Cheng K, Yang F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119738. [PMID: 38061102 DOI: 10.1016/j.jenvman.2023.119738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Nitrogen (N) cycle is one of the most significant biogeochemical cycles driven by soil microorganisms on the earth. Exogenous humic substances (HS), which include composted-HS and artificial-HS, as a new soil additive, can improve the water retention capacity, cation exchange capacity and soil nutrient utilization, compensating for the decrease of soil HS content caused by soil overutilization. This paper systematically reviewed the contribution of three different sources of HS in the soil-plant system and explained the mechanisms of N transformation through physiological and biochemical pathways. HS convert the living space and living environment of microorganisms by changing the structure and condition of soil. Generally, HS can fix atmospheric and soil N through biotic and abiotic mechanisms, which improved the availability of N. Besides, HS transform the root structure of plants through physiological and biochemical pathways to promote the absorption of inorganic N by plants. The redox properties of HS participate in soil N transformation by altering the electron gain and loss of microorganisms. Moreover, to alleviate the energy crisis and environmental problems caused by N pollution, we also illustrated the mechanisms reducing soil N2O emissions by HS and the application prospects of artificial-HS. Eventually, a combination of indoor simulation and field test, molecular biology and stable isotope techniques are needed to systematically analyze the potential mechanisms of soil N transformation, representing an important step forward for understanding the relevance between remediation of environmental pollution and improvement of the N utilization in soil-plant system.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
4
|
Jin Y, Zhang X, Yuan Y, Lan Y, Cheng K, Yang F. Synthesis of artificial humic acid-urea complex improves nitrogen utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118377. [PMID: 37348301 DOI: 10.1016/j.jenvman.2023.118377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The inefficient use of conventional nitrogen (N) fertilizers leads to N enrichment in the soil, resulting in N loss via runoff, volatilization and leaching. While using artificial humic acid to prepare novel N fertilizer is a good choice to improve its efficiency, the high heterogeneity of artificial humic acid limits its structural analysis and utilization efficiency. To solve above problems, this work mainly carried out the fractionation experiments, melt penetration experiments and soil incubation experiments. The results revealed that four fractions with different aromatization degree and molecular weights were obtained by the newly proposed continuous dissolution method, particular in the extraction solution of pH = 3-4, which were extracted with the highest aromatization degree. Furthermore, artificial humic acid urea complex fertilizers prepared at pH = 3-4 significantly improved the release of NH4+-N by 38.32% on days 7 and NO3--N by 10.30% on days 14, compared to urea application. The highly aromatic complex fertilizer with loading of urea-N was able to supply more inorganic N to the soil on days 3-14 (low molecular weight N) and to maintain a higher N content on days 70 (highly aromatized N). This can partially offset the mineralization of readily available organic N, buffering the immobilization of inorganic N from the soil when unstable organic compounds (e.g. conventional urea) were incorporated. A-HAU3-4 addition on days 70, Proteobacteria and Actinobacteriota were found to be the dominant phylum in the soil and the relative abundance of Endophytic bacteria was increased, which was conducive to the improvement of soil N utilization efficiency and soil N sequestration. Therefore, the preparation of artificial humic urea fertilizer with high aromatization degree or low molecular weight were an effective way to improve N utilization efficiency in the initial stages of soil incubation and maintain N fixation in the later stages of soil incubation. The future application of the strategy presented by this study would have an important ecological significance for alleviating agricultural N pollution.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China.
| |
Collapse
|
5
|
Klick SA, Pitula JS, Bryant RB, Collick AS, May EB, Pisani O. Natural sources and controlling factors of urea-nitrogen concentrations in agricultural drainage ditches. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:984-998. [PMID: 37296522 DOI: 10.1002/jeq2.20498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Agricultural drainage ditches accumulate high urea-nitrogen (N) concentrations even in the absence of urea fertilizer applications to adjacent crop fields. The accumulated urea, and other bioavailable forms of dissolved organic nitrogen (DON), can be flushed downstream during substantial rainfall events altering downstream water quality and phytoplankton communities. Sources of urea-N supporting its accumulation in agricultural drainage ditches are poorly understood. A ditch flooding event was simulated using mesocosms with N treatment solutions and monitored for changes in N concentrations, physicochemical properties, dissolved organic matter (DOM) composition, and N cycling enzymes. N concentrations were also monitored in field ditches after two rainfall events. Urea-N concentrations were higher with DON enrichment, but the treatment effects were temporary. The DOM released from the mesocosm sediments was dominated by terrestrial-derived, high molecular weight material. The lack of microbial-derived DOM and evidence from the bacterial gene abundances in the mesocosms suggests that urea-N accumulation after rainfall may not be associated with fresh biological inputs. The urea-N concentrations after spring rainfall and flooding with DON substrates indicated the urea from fertilizers may only temporarily affect urea-N concentrations in drainage ditches. Because urea-N concentrations increased with a high degree of DOM humification, sources of urea may derive from the slow decomposition of complex DOM structures. This study provides further insights of sources contributing to high urea-N concentrations and the types of DOM released from drainage ditches to nearby surface waters after hydrological events.
Collapse
Affiliation(s)
- Sabrina A Klick
- USDA-ARS, Southeast Watershed Research Laboratory, Tifton, Georgia, USA
| | - Joseph S Pitula
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Ray B Bryant
- USDA-ARS, Pasture Systems and Watershed Management Research Unit, University Park, Pennsylvania, USA
| | - Amy S Collick
- Department of Agricultural Sciences, Morehead State University, Morehead, Kentucky, USA
| | - Eric B May
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Oliva Pisani
- USDA-ARS, Southeast Watershed Research Laboratory, Tifton, Georgia, USA
| |
Collapse
|
6
|
Saha BK, Rose MT, Van Zwieten L, Wong VNL, Rose TJ, Patti AF. Fate and recovery of nitrogen applied as slow release brown coal-urea in field microcosms: 15N tracer study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:648-658. [PMID: 36807379 DOI: 10.1039/d2em00482h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The over-use of synthetic nitrogen (N) fertilisers for crop production can cause environmental pollution through leaching and gaseous losses, resulting in low N use efficiency (NUE). Previous work has shown that brown coal (BC) combined with urea can slow down the fertiliser-N release to better synchronise soil N supply with crop N demand. The study aimed to evaluate the impact of granulated BC-urea (BCU) applied to sweet corn on NUE, fate and recovery of fertiliser-N using an 15N tracer technique. In this in-field microcosm study, 10 atom percent enriched 15N-labelled urea (46% N) and BCU (20% N) were applied as N fertilisers at rates of 90 or 180 kg N ha-1. On average, BCU fertiliser reduced the urea-derived 15N losses as nitrous oxide (N2O) by 64%, ammonia (NH3) by 73% and downward movement of total N by 59% compared to urea. Reduced losses of applied BCU fertiliser-15N were associated with significantly increased microbial immobilisation, soil retention and availability of fertiliser-15N to plants for longer periods of time, compared with urea. As a result, BCU enhanced cob yield by an average of 23%, 15N uptake by 21% and fertiliser NUE by 21% over urea. The plant recovery of fertiliser-15N was significantly higher from BCU (59%) than the recovery from urea (38%). Moreover, mining of native soil-N was lower when the N-fertiliser source was BCU cf. urea, suggesting that BCU could be used as a more N-efficient alternative to urea in cropping systems.
Collapse
Affiliation(s)
- Biplob K Saha
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Michael T Rose
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, 2477, Australia
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, 2477, Australia
| | - Vanessa N L Wong
- School of Earth, Atmosphere & Environment, Monash University, Clayton, 3800, Victoria, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Antonio F Patti
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
7
|
Lumactud RA, Gorim LY, Thilakarathna MS. Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.977121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humic-based products (HPs) are carbon-rich organic amendments in the forms of extracted humic substances from manure, compost, and raw and extracted forms of lignites, coals and peats. HPs are widely used in agriculture and have beneficial effects on plants. While the agronomic benefits of HPs have been widely reported, information on their impact on the soil microbial community composition and functions is lacking, despite claims made by companies of humic substances as biostimulants. In this review, we explored published research on microbial responses with HPs application in an agronomic context. Although research data are sparse, current results suggest indirect impacts of HPs on microbial community composition and activities. HPs application changes the physico-chemical properties of the soil and influence root exudation, which in turn impact the microbial structure and function of the soil and rhizosphere. Application of HPs to the soil as biostimulants seemed to favor plant/soil beneficial bacterial community composition. HPs impacts on microbial activities that influence soil biogeochemical functioning remain unclear; existing data are also inconsistent and contradictory. The structural properties of HPs caused inconsistencies in their reported impacts on soil properties and plants. The sources of HPs and forms (whether extracted or raw), soil type, geographic location, crop species, and management strategies, among others, affect microbial communities affecting HPs efficacy as biostimulants. A more holistic approach to research encompassing multiple influential factors and leveraging the next-generation sequencing technology is needed to unravel the impacts of HPs on the soil microbiome. Addressing these knowledge gaps facilitates sustainable and efficient use of HPs as organic agricultural amendments reducing the use of chemical fertilizers.
Collapse
|
8
|
Du B, Xuan H, Geng L, Li W, Zhang J, Xiang W, Liu R, Shu C. Microflora for improving the Auricularia auricula spent mushroom substrate for Protaetia brevitarsis production. iScience 2022; 25:105307. [PMID: 36300006 PMCID: PMC9589201 DOI: 10.1016/j.isci.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Mushroom cultivation is a sustainable agricultural waste utilization method, but the lack of high-value utilization of the produced spent mushroom substrate (SMS) has hindered the development of mushroom cultivation-based circular agricultural systems. Conversion and utilization of SMS via Protaetia brevitarsis larvae (PBL) have proven to be a high-value AASMS utilization strategy. However, Auricularia auricula SMS (AASMS), which contains woodchips, is less palatable and digestible for PBL. To solve this problem, in this investigation, we screened out microflora (MF) for AASMS fermentation by comparing the fermentation performance as well as the effect on PBL feed intake, weight gain, and AASMS phytotoxic compound removal efficiency. In addition, by bacterial community analysis, the genera Luteimonas, Moheibacter, and Pseudoxanthomonas were predicted to be functional bacteria for AASMS fermentation and contribute to palatability and digestibility improvement. Larvae frass microflora can ferment Auricularia auricula spent mushroom substrate The fermentation can improve feed intake, weight gain, and phytotoxic removal efficiency The genera Luteimonas, Moheibacter, and Pseudoxanthomonas were functional bacteria
Collapse
Affiliation(s)
- Baohai Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,Northeast Agricultural University, HarBin 150030, P. R. China
| | - Huina Xuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Weihang Li
- Northeast Agricultural University, HarBin 150030, P. R. China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wensheng Xiang
- Northeast Agricultural University, HarBin 150030, P. R. China
| | - Rongmei Liu
- Northeast Agricultural University, HarBin 150030, P. R. China,Corresponding author
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,Corresponding author
| |
Collapse
|
9
|
Wang F, Liang X, Ding F, Ren L, Liang M, An T, Li S, Wang J, Liu L. The active functional microbes contribute differently to soil nitrification and denitrification potential under long-term fertilizer regimes in North-East China. Front Microbiol 2022; 13:1021080. [PMID: 36262325 PMCID: PMC9576102 DOI: 10.3389/fmicb.2022.1021080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen (N) cycling microorganisms mediate soil nitrogen transformation processes, thereby affecting agricultural production and environment quality. However, it is not fully understood how active N-cycling microbial community in soil respond to long-term fertilization, as well as which microorganisms regulate soil nitrogen cycling in agricultural ecosystem. Here, we collected the soils from different depths and seasons at a 29-year fertilization experimental field (organic/chemical fertilizer), and investigated the transcriptions of N-cycling functional genes and their contribution to potential nitrification and denitrification. We found that long-term fertilization exerted significant impacts on the transcript abundances of nitrifiers (AOA amoA, AOB amoA and hao) and denitrifiers (narG and nosZ), which was also notably influenced by season variation. The transcriptions of AOA amoA, hao, and narG genes were lowest in autumn, and AOB amoA and nosZ transcript abundances were highest in autumn. Compared to no fertilization, soil potential nitrification rate (PNR) was reduced in fertilization treatments, while soil potential denitrification rate (PDR) was significantly enhanced in organic combined chemical fertilizer treatment. Both PNR and PDR were highest in 0–20 cm among the tested soil depths. Path model indicated active nitrifiers and denitrifiers had significant impact on soil PNR and PDR, respectively. The transcriptions of AOA amoA and nxr genes were significantly correlated with soil PNR (Pearson correlation, r > 0.174, p < 0.05). Significant correlation of napA and nosZ transcriptions with soil PDR (Pearson correlation, r > 0.234, p < 0.05) was also revealed. Random forest analysis showed that SOC content and soil pH were the important factors explaining the total variance of active nitrifers and denitrifiers, respectively. Taken together, long-term fertilization regimes reduced soil PNR and enhanced PDR, which could be attributed to the different responses of active N-cycling microorganisms to soil environment variations. This work provides new insight into the nitrogen cycle, particularly microbial indicators in nitrification and denitrification of long-term fertilized agricultural ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fan Ding
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lingling Ren
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Minjie Liang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Tingting An
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Shuangyi Li
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Jingkuan Wang
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lingzhi Liu
- Key Laboratory of Arable Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Lingzhi Liu,
| |
Collapse
|
10
|
Akimbekov NS, Digel I, Tastambek KT, Marat AK, Turaliyeva MA, Kaiyrmanova GK. Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. BIOLOGY 2022; 11:biology11091306. [PMID: 36138784 PMCID: PMC9495453 DOI: 10.3390/biology11091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Despite the wide perception that coal environments are extreme habitats, they harbor resident microbial communities. Coal-associated habitats, such as coal mine areas/drainages, spoil heaps, and coalbeds, are defined as complex ecosystems with indigenous microbial groups and native microecological networks. Resident microorganisms possess rich functional potentials and profoundly shape a range of biotechnological processes in the coal industry, from production to remediation. Abstract It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence:
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Kuanysh T. Tastambek
- Department of Fundamental Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Applied Biology, M. Kh. Dulaty Taraz Regional University, Taraz 080012, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Adel K. Marat
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir A. Turaliyeva
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan
| | - Gulzhan K. Kaiyrmanova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
11
|
Jing J, Zhang S, Yuan L, Li Y, Zhang Y, Wen Y, Zhao B. Humic acid complex formation with urea alters its structure and enhances biomass production in hydroponic maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3636-3643. [PMID: 34888881 DOI: 10.1002/jsfa.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humic acid (HA)-enhanced urea (HAU) is the top-selling efficiency-enhanced urea in China. Comprehensive investigation into the structure and efficacy of HA complex formation with urea (HACU) - the main reaction product during HAU's production - is required to clarify the reaction mechanism between HA and urea, and to provide guidance for the development of high-efficiency HAU. RESULTS HACU showed discrepant structural and compositional features from raw HA. Nitrogen (N) content in HACU was 7.3 times greater than that of HA. Several high-resolution analytical methods showed a sharp increase of ammonia in the gaseous product during HACU pyrolysis, suggesting that urea contributed N to HACU. HACU was characterized with significantly fewer carboxyl groups than in raw HA, implying that the carboxyl group was the main group in HA to participate in the reaction between HA and urea. The presence of amide-N in HACU verified the structure of the reaction product. Furthermore, both HACU and HA could enhance the biomass in hydroponically grown maize seedlings, but the highest stimulation for HACU came about when its carbon concentrations were 50-100 mg L-1 , higher than the optimal carbon concentration for HA (25 mg L-1 ), attributed to the lower carboxyl group content for HACU to some extent. CONCLUSION During HAU's production, reaction with N derived from urea to form amide-N decreased the carboxyl groups in HA, leading to higher concentrations for HACU required to achieve the similar bioefficacy of HA. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingqiang Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchen Wen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize. SUSTAINABILITY 2022. [DOI: 10.3390/su14020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasing nitrogen fertilizer use efficiency has become an environmental and economic demand in order to minimize losses of nitrogen and maximize the output from nitrogen added. The application of organic amendments with N fertilizers could be proposed as an important economic and environmental practice for improving N fertilizer use. A two-year field experiment was carried out using the 15N tracer technique to study the impact of corn straw and woody peat application on uptake and utilization of N fertilizer by maize plant. Three treatments were set up: CK (15N labeled urea alone), CS (15N labeled urea + crushed corn straw) and WP (15N labeled urea+ crushed woody peat). The results showed that, as compared to CK, both straw and peat treatments led to (i) an increase in yield of maize, 15N urea utilization rate, and residual 15N urea remained in soil by 11.20% and 19.47%, 18.62% and 58.99%, 41.77% and 59.45%, respectively, but (ii) a decrease in the total loss rate by 6.21% and 16.83% (p < 0.05), respectively over the two seasons. Moreover, the significantly highest effect was recorded with woody peat application rather than that with corn straw. Our study suggests that corn straw and woody peat can be used as organic fertilizers to increase maize yields, promote nitrogen fertilizer balance sheet, reduce the leaching of N fertilizer into the subsurface soil layer, and facilitate the further absorption and utilization of soil residual nitrogen. Therefore, the application of humified organic material play a crucial role in N utilization efficiency enhancement.
Collapse
|
13
|
Xu J, Mohamed E, Li Q, Lu T, Yu H, Jiang W. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. FRONTIERS IN PLANT SCIENCE 2021; 12:644229. [PMID: 34381468 PMCID: PMC8350343 DOI: 10.3389/fpls.2021.644229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 05/29/2023]
Abstract
Excessive application of fertilizers has become a major issue in croplands of intensive agricultural systems in China, resulting in severe non-point source pollution; thus, reduction in the use of chemical fertilizers has received significant attention. Improving the nutrient storage capacity of soils or substrates is an effective approach for solving this problem. Humic acids (HA) are excellent soil conditioners. Thus, in the present study, their ability to improve the physico-chemical properties of three substrates with different textures was evaluated. HA treatments included 1% HA root application in three different types of substrates, including pure sand, pure cocopeat, and a mixture of sand:cocopeat (1:1, v/v) and their relative controls. We examined the morphological parameters of cucumber seedlings as well as pH buffering capacity (pHBC), total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), and nutrient storage capacity of the three substrates. The results show that HA application improved the morphological parameters of cucumber seedlings (plant height, stem diameter, and biomass) in pure cocopeat and cocopeat-sand mixture treatments. On the contrary, HA addition had harmful effects on the cucumber seedlings cultivated in sand due to the low pHBC of sand. The seedlings cultivated in pure cocopeat showed the best morphological parameter performances among the seedlings grown in the three substrates. Furthermore, pHBC, TOC, OM, and CEC were enhanced by HA application. Incorporation of HA improved ammonium (NH4 +) and potassium (K+) storage capacity while decreasing phosphorus (P) storage. Pure cocopeat had the highest pHBC, TOC, OM, CEC, and nutrient storage capacity among the three substrates. In conclusion, mixing 1% HA into substrates promoted cucumber growth, improved substrate properties, and enhanced fertilizer use efficiency. Pure cocopeat is a suitable substrate for cucumber cultivation, and mixing cocopeat with sand amends the substrate properties and consequently improves plant growth.
Collapse
Affiliation(s)
- Jingcheng Xu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Esraa Mohamed
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Lu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Holatko J, Hammerschmiedt T, Kintl A, Danish S, Skarpa P, Latal O, Baltazar T, Fahad S, Akça H, Taban S, Kobzova E, Datta R, Malicek O, Hussain GS, Brtnicky M. Effect of carbon-enriched digestate on the microbial soil activity. PLoS One 2021; 16:e0252262. [PMID: 34214110 PMCID: PMC8253426 DOI: 10.1371/journal.pone.0252262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES As a liquid organic fertilizer used in agriculture, digestate is rich in many nutrients (i.e. nitrogen, phosphorus, sulfur, calcium, potassium); their utilization may be however less efficient in soils poor in organic carbon (due to low carbon:nitrogen ratio). In order to solve the disadvantages, digestate enrichment with carbon-rich amendments biochar or humic acids (Humac) was tested. METHODS Soil variants amended with enriched digestate: digestate + biochar, digestate + Humac, and digestate + combined biochar and humic acids-were compared to control with untreated digestate in their effect on total soil carbon and nitrogen, microbial biomass carbon, soil respiration and soil enzymatic activities in a pot experiment. Yield of the test crop lettuce was also determined for all variants. RESULTS Soil respiration was the most significantly increased property, positively affected by digestate + Humac. Both digestate + biochar and digestate + Humac significantly increased microbial biomass carbon. Significant negative effect of digestate + biochar (compared to the control digestate) on particular enzyme activities was alleviated by the addition of humic acids. No significant differences among the tested variants were found in the above-ground and root plant biomass. CONCLUSIONS The tested organic supplements improved the digestate effect on some determined soil properties. We deduced from the results (carbon:nitrogen ratio, microbial biomass and activity) that the assimilation of nutrients by plants increased; however, the most desired positive effect on the yield of crop biomass was not demonstrated. We assume that the digestate enrichment with organic amendments may be more beneficial in a long time-scaled trial.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Agricultural Research, Ltd., Troubsko, Czech Republic
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Oldrich Latal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, the University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Hanife Akça
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Suleyman Taban
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Eliska Kobzova
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Ghulam Sabir Hussain
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Punjab, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
15
|
Lu M, Shi X, Feng Q, Li X, Lian S, Zhang M, Guo R. Effects of humic acid modified oyster shell addition on lignocellulose degradation and nitrogen transformation during digestate composting. BIORESOURCE TECHNOLOGY 2021; 329:124834. [PMID: 33639384 DOI: 10.1016/j.biortech.2021.124834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to investigate the performance of a novel humic acid modified oyster shell (MOS) bulking agent on the digestate composting. MOS was prepared by immobilizing humic acid onto oyster shell using solid phase grafting method, and then applied to the composting process. Results showed more obvious degradation of lignocellulose was observed in the MOS treatment, which was probably due to the high relative abundance of Actinobacteria. Moreover, the addition of MOS could significantly preserve NH4+ and reduce the NO3- generation with the decreasing abundance of ammonia-oxidizing bacteria and archaea. Besides, adding MOS reduced the N2O emission by 59.63% compared with the control. After composting, excitation-emission matrix fluorescence spectra demonstrated that the humification degree as well as compost maturity was enhanced with MOS added.
Collapse
Affiliation(s)
- Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian 116023, PR China.
| |
Collapse
|
16
|
Lignite Improved the Quality of Composted Manure and Mitigated Emissions of Ammonia and Greenhouse Gases during Forced Aeration Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su122410528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignite amendment of livestock manure is considered a viable ammonia (NH3) emission mitigation technique. However, its impact on the subsequent composting of the manure has not been well studied. This work compared changes in biochemical parameters (e.g., organic matter loss and nitrogen (N) transformation) and also the emissions of NH3 and greenhouse gases (GHGs) between lignite-amended and unamended cattle manure during forced aeration composting. Amending manure with lignite did not alter the time to compost stability despite delaying the onset of the thermophilic temperatures. Lignite treatments retained N in the manure by suppressing NH3 loss by 35–54%, resulting in lignite-amended manure composts having 10–19% more total N than the unamended compost. Relative to manure only, lignites reduced GHG emissions over the composting period: nitrous oxide (N2O) (58–72%), carbon dioxide (CO2) (12–23%) and methane (CH4) (52–59%). Low levels of CH4 and N2O emissions were observed and this was attributed to the continuous forced aeration system used in the composting. Lignite addition also improved the germination index of the final compost: 90–113% compared to 71% for manure only. These findings suggest that lignite amendment of manure has the potential to improve the quality of the final compost whilst mitigating the environmental release of NH3 and GHGs.
Collapse
|
17
|
Zuo W, Jincheng W, Shiqiang S, Pinhua R, Runkai W, Shihui L. Microencapsulated soil conditioner with a water-soluble core: improving soil nutrition of crop root. J Microencapsul 2020; 38:22-35. [PMID: 33047995 DOI: 10.1080/02652048.2020.1836056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Traditional level of fertilisers was used by most farmers in China with the risks about resources wasting, environmental pollution together with soil structure deterioration. It is practicable to tackle the challenges about over-fertilisation and low efficiency with microencapsulated soil conditioner (MSC), which clads the water soluble core with natural polymer. Fulvic acid (FA) can be used as core material, because it possesses the characteristics of water-soluble, fertiliser maintenance and expedient monitoring. The morphology, structure, and properties of MSC were studied and compared. The particle size of MSC was ranged from 1.58 to 2.14 mm with a similar shape which was obtained by conventional measuring method due to their soft features. This was mainly attributed to the concentration of liquid paraffin and the interaction between shell materials and calcium chloride. FTIR spectra showed that a peak appeared at 1372 cm-1, and this was ascribed to the microcapsules crosslinked and solidified by calcium ions. Sustained release experiment revealed that the microcapsules owned better fertiliser-retaining and water-retaining performances, and FA may be released as long as 750 h. Biodegradation experiments revealed that an obvious pore structure was found on the surface of microspheres after 30 d of degradation, and this was consistent with the sustained release experiment. Pot experiment illustrated that the plants cured with the microcapsules showed significant growth trend and grew up to 9.2 cm with a maximum rate, and this revealed that MSC owned better performance of promoting the growth of crop root.
Collapse
Affiliation(s)
- Wang Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Wang Jincheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Song Shiqiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Rao Pinhua
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Wang Runkai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Liu Shihui
- Key Laboratory of Quality and Safety Regulating of Horticultural Crop Products, Ministry of Agriculture, Shanghai, P. R. China.,Shanghai Sunqiao Agricultural Science and Technology Co., Ltd, Shanghai, P. R. China.,School of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, P. R. China
| |
Collapse
|
18
|
Cao Y, Hu HW, Guo HG, Butterly C, Bai M, Zhang YS, Chen D, He JZ. Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. BIORESOURCE TECHNOLOGY 2020; 315:123841. [PMID: 32688250 DOI: 10.1016/j.biortech.2020.123841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) in animal manure are a great threat to human health. This study investigated the effects of lignite addition at three levels (5%, 10%, 15% w/w) on the profiles of ARGs and the bacterial communities during poultry litter composting. Lignite addition effectively promoted the removal of manure-borne ARGs. After 65 days of composting, the relative abundances of ARGs decreased by 8.9% in control (no lignite), and by 15.8%, 27.7% and 41.5% in 5%, 10% and 15% lignite treatments, respectively. Although the total mobile genetic elements were enriched after composting, the enrichment of the intI-1 gene was significantly lower in the 10% and 15% lignite treatments compared with control. Network analysis indicated that Actinobacteria and Firmicutes were potential bacterial hosts for ARGs. Redundancy analysis showed that bacterial community succession played a key role in the shifts of ARGs. Taken together, this study provides evidence that lignite as additives promoted the removal efficacy of ARGs during composting of poultry litter.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; JAAS Engineering Laboratory of Agricultural Waste Treatment and Recycling, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Hai-Gang Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Clayton Butterly
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mei Bai
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yu-Shu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Deli Chen
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
19
|
Saha BK, Rose MT, Wong VNL, Cavagnaro TR, Patti AF. A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:793-800. [PMID: 30176489 DOI: 10.1016/j.scitotenv.2018.08.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Increasing crop yield and fertiliser nitrogen (N)-use efficiency is important for productive agricultural systems with a reduced environmental footprint. The aim of this study was to assess the effect of slow release brown coal-urea (BCU) fertiliser on the gaseous N losses, biomass yield and N uptake by silver beet (Beta vulgaris L.) compared to commercial urea. Two soils were amended with urea, BCU 1 (22% N) or BCU 2 (17% N) as N-fertiliser at the rate of 50 or 100 kg N ha-1. Five gas sampling periods were undertaken to measure the loss of N as N2O and NH3. After 10 weeks, biomass, N concentration, and N uptake of silver beet, and mineral and mineralisable N of post-harvest soil were measured. BCU substantially increased fertiliser N availability and uptake by silver beet, reduced N2O emission by 29% and NH3 emission by 36% compared to urea alone, irrespective of soil type. Compared to urea, BCU blends increased biomass yield by 27% and 23% in a Tenosol and Dermosol soil, respectively. In addition, application of BCU fertiliser substantially enhanced the potentially mineralisable N and organic carbon content of soil. These results provide evidence that granulation of urea with brown coal (BC) can increase silver beet N-use efficiency and yield in different soil types, and more work is now required to validate this technology for other crops.
Collapse
Affiliation(s)
- Biplob K Saha
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Michael T Rose
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia
| | - Vanessa N L Wong
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMBI, Glen Osmond, South Australia 5064, Australia
| | - Antonio F Patti
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
20
|
Li Y, Fu T, Geng L, Shi Y, Chu H, Liu F, Liu C, Song F, Zhang J, Shu C. Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 83:79-82. [PMID: 30514474 DOI: 10.1016/j.wasman.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Utilization of the organic residues produced after crop harvesting is currently an important issue across the world. The edible insect Protaetia brevitarsis larvae can feed various organic matters. In this paper, we investigated the potential to utilize the insect to convert herbaceous and ligneous plant residues. We feed the insect larvae with maize straw and sawdust and analyzed the produced insect manure. P. brevitarsis larval was found to be able to digest both herbaceous and ligneous straw and insect manure extract shown no phytotoxicity. The mass fractions of humic acids (HAs) in the insect manure derived from maize straw and sawdust digestion were 24.37% and 14.46%, respectively. The 13C cross-polarization magic-angle spinning nuclear magnetic resonance (CP-MAS NMR) spectra data indicated that the HAs in the insect manure were similar to those found in the soil. These data suggested that P. brevitarsis larvae can be used to convert agricultural residues and produce organic fertilizers.
Collapse
Affiliation(s)
- Yimei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tong Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Fushun Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, PR China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, PR China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
21
|
Saha BK, Rose MT, Wong VNL, Cavagnaro TR, Patti AF. Nitrogen Dynamics in Soil Fertilized with Slow Release Brown Coal-Urea Fertilizers. Sci Rep 2018; 8:14577. [PMID: 30275451 PMCID: PMC6167360 DOI: 10.1038/s41598-018-32787-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Reducing the release rate of urea can increase its use efficiency and minimize negative effects on the environment. A novel fertilizer material that was formed by blending brown coal (BC) with urea, delayed fertilizer N release in controlled climatic conditions in a glasshouse, through strong retention facilitated by the extensive surface area, porous structure and chemical functional groups in the BC. However, the role of BC as a carrier of synthetic urea and the effect of their interaction with various soil types on the dynamics and mineralization of N remains largely unclear. Therefore, a soil column incubation study was conducted to assess the release, transformation and transportation of N from several different brown coal-urea (BCU) granules, compared to commercial urea. Blending and subsequent granulation of urea with BC substantially increased fertilizer N retention in soil by decreasing gaseous emissions and leaching of N compared to urea alone, irrespective of soil type. The BCU granule containing the highest proportion of BC had lower leaching and gaseous emissions and maintained considerably higher mineral and mineralizable N in topsoil. Possible modes of action of the BCU granules have been proposed, emphasizing the role of BC in enhancing N retention over a longer period of time. The results support the notion that BCU granules can be used as a slow release and enhanced efficiency fertilizer for increasing availability and use efficiency of N by crops.
Collapse
Affiliation(s)
- Biplob K Saha
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Michael T Rose
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, 2477, Australia
| | - Vanessa N L Wong
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMBI Glen Osmond, South Australia, 5064, Australia
| | - Antonio F Patti
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
22
|
Terry SA, Ribeiro GDO, Gruninger RJ, Hunerberg M, Ping S, Chaves AV, Burlet J, Beauchemin KA, McAllister TA. Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers1. J Anim Sci 2018; 96:3863-3877. [PMID: 30169754 PMCID: PMC6127782 DOI: 10.1093/jas/sky265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/05/2018] [Indexed: 11/13/2022] Open
Abstract
Ruminants play an important role in food security, but there is a growing concern about the impact of cattle on the environment, particularly regarding greenhouse gas emissions. The objective of this study was to examine the effect of humic substances (HS) on rumen fermentation, nutrient digestibility, methane (CH4) emissions, and the rumen microbiome of beef heifers fed a barley silage-based diet. The experiment was designed as a replicated 4 × 4 Latin square using 8 ruminally cannulated Angus × Hereford heifers (758 ± 40.7 kg initial BW). Heifers were offered a basal diet consisting of 60% barley silage and 40% concentrate (DM basis) with either 0- (control), 100-, 200- or 300-mg granulated HS/kg BW. Each period was 28 d with 14 d of adaptation. Rumen samples were taken on day 15 at 0, 3, 6, and 12 h postfeeding. Total urine and feces were collected from days 18 to 22. Blood samples were taken on day 22 at 0 and 6 h postfeeding. Between days 26 and 28, heifers were placed in open-circuit respiratory chambers to measure CH4. Ruminal pH was recorded continuously during the periods of CH4 measurement using indwelling pH loggers. Intake was similar (P = 0.47) across treatments. Concentration of ammonia-N and counts of rumen protozoa responded quadratically (P = 0.03), where both increased at H100 and then decreased for the H300 treatments. Apparent total tract digestibility of CP (P = 0.04) was linearly increased by HS and total N retention (g/d, % N intake, g/kg BW0.75) was improved (P = 0.04) for HS when compared with the control. There was no effect of HS on CH4 production (g/d; P = 0.83); however, HS decreased the relative abundance of Proteobacteria (P = 0.04) and increased the relative abundance of Synergistetes (P = 0.01) and Euryarchaeota (P = 0.04). Results suggest that HS included at up to 300 mg/kg BW may improve N retention and CP digestibility, but there was no impact on CH4 production.
Collapse
Affiliation(s)
- Stephanie A Terry
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Gabriel de Oliveira Ribeiro
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- University of Calgary, Department of Production Animal Health, Calgary, Alberta, Canada
| | - Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Martin Hunerberg
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- University of Goettingen, Department of Animal Sciences, Goettingen, Germany
| | - Sheng Ping
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Alex V Chaves
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| | - Jake Burlet
- Venture West Veterinary Services Ltd, Edmonton, Alberta, Canada
| | - Karen Ann Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim Angus McAllister
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Maguey-Gonzalez JA, Michel MA, Baxter MF, Tellez G, Moore PA, Solis-Cruz B, Hernández-Patlan D, Merino-Guzman R, Hernandez-Velasco X, Latorre JD, Hargis BM, Gomez-Rosales S, Tellez-Isaias G. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction model to induce intestinal permeability in broiler chickens. Anim Sci J 2018; 89:1002-1010. [DOI: 10.1111/asj.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/16/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jesús A. Maguey-Gonzalez
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
- National Center of Disciplinary Research in Animal Physiology; National Institute of Research in Forestry, Agriculture and Livestock; Ajuchitlan Queretaro Mexico
| | - Matias A. Michel
- Facultad de Ciencias Veterinarias; Universidad Nacional del Nordeste; Corrientes Argentina
| | | | - Guillermo Tellez
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Philip A. Moore
- USDA-ARS; Poultry Production and Product Safety Research Unit; Plant Science 115; University of Arkansas; Fayetteville AR USA
| | - Bruno Solis-Cruz
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
| | - Daniel Hernández-Patlan
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
| | - Rubén Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves; Facultad de Medicina Veterinaria y Zootecnia; UNAM; Mexico City Mexico
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves; Facultad de Medicina Veterinaria y Zootecnia; UNAM; Mexico City Mexico
| | - Juan D. Latorre
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Billy M. Hargis
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Sergio Gomez-Rosales
- National Center of Disciplinary Research in Animal Physiology; National Institute of Research in Forestry, Agriculture and Livestock; Ajuchitlan Queretaro Mexico
| | | |
Collapse
|
24
|
Shah ZH, Rehman HM, Akhtar T, Alsamadany H, Hamooh BT, Mujtaba T, Daur I, Al Zahrani Y, Alzahrani HAS, Ali S, Yang SH, Chung G. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:263. [PMID: 29593751 PMCID: PMC5861677 DOI: 10.3389/fpls.2018.00263] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Humic substances (HSs) have considerable effects on soil fertility and crop productivity owing to their unique physiochemical and biochemical properties, and play a vital role in establishing biotic and abiotic interactions within the plant rhizosphere. A comprehensive understanding of the mode of action and tissue distribution of HS is, however, required, as this knowledge could be useful for devising advanced rhizospheric management practices. These substances trigger various molecular processes in plant cells, and can strengthen the plant's tolerance to various kinds of abiotic stresses. HS manifest their effects in cells through genetic, post-transcriptional, and post-translational modifications of signaling entities that trigger different molecular, biochemical, and physiological processes. Understanding of such fundamental mechanisms will provide a better perspective for defining the cues and signaling crosstalk of HS that mediate various metabolic and hormonal networks operating in plant systems. Various regulatory activities and distribution strategies of HS have been discussed in this review.
Collapse
Affiliation(s)
- Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Tasneem Akhtar
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bahget T. Hamooh
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahir Mujtaba
- Plant and Forest Biotechnology Umeå, Plant Science Centre, Swedish University of Agriculture Sciences, Umeå, Sweden
| | - Ihsanullah Daur
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya Al Zahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Seung H. Yang
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Gyuhwa Chung
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
- *Correspondence: Gyuhwa Chung,
| |
Collapse
|
25
|
Saha BK, Rose MT, Wong V, Cavagnaro TR, Patti AF. Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1496-1504. [PMID: 28605867 DOI: 10.1016/j.scitotenv.2017.05.270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Synthetic nitrogen (N) fertilisers, such as urea, are susceptible to rapid dissipation from soil. More gradual release of mineral N from fertiliser may reduce the off-site movement of mineral N, thereby enhancing N supply to crops and minimising negative off-site impacts. We hypothesised that granulation of urea with humified brown coal (BC) delays mineral N release and maintains higher concentrations of N in soil than conventional urea granules. Four different brown coal-urea granules, with C:N ratios of 1-10, were prepared by pan granulation. Advanced spectroscopic and X-ray powder diffraction (XRD) techniques confirmed loading of urea-N into the BC structure. Nitrogen-release from BCU granules was slower than from urea, resulting in higher N retention over a longer period for increasing growth and N uptake by crop plants. This trend increased with higher loading of BC, emphasising the significant role of BC in N retention. These findings support the hypothesis that BC is suitable for developing slow release N fertilisers.
Collapse
Affiliation(s)
- Biplob K Saha
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Michael T Rose
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia
| | - Vanessa Wong
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMBI, Glen Osmonds, South Australia 5064, Australia
| | - Antonio F Patti
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
26
|
Soil anammox community structure in different land use soils treatment with 13C urea as determined by analysis of phospholipid fatty acids. Appl Microbiol Biotechnol 2017; 101:6659-6669. [DOI: 10.1007/s00253-017-8404-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/24/2023]
|
27
|
Zhang S, Yuan L, Li W, Lin Z, Li Y, Hu S, Zhao B. Characterization of pH-fractionated humic acids derived from Chinese weathered coal. CHEMOSPHERE 2017; 166:334-342. [PMID: 27700997 DOI: 10.1016/j.chemosphere.2016.09.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
To reduce the compositional and structural heterogeneity of humic acids (HAs) and achieve better use of HA resources, in this study, we report a new sequential dissolution method for HAs derived from Chinese weathered coal. This method was used to separate HAs into seven fractions by adjusting the pH (3-10) of the extraction solution. The results showed that the HA fractions derived from Chinese weathered coal were concentrated up to 90.31% in the lower pH solutions (3-7). The compositional and structural characteristics of the HA fractions were determined by elemental analysis; ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13C-nuclear magnetic resonance (NMR) spectroscopies; and other techniques. The results showed significant differences among the HA fractions. The concentrations of the total acidic groups and the carboxyl groups decreased with the increasing pH of the extraction solution. However, the HA fractions derived from extraction solutions with pH 3-4 had relatively lower aromaticity but a higher protonated carbon content. The HA fractions derived from extraction solutions with pH 6-7 had the highest aromaticity and the greatest abundance of COO/N-C=O. This study demonstrated that adjusting the pH of the extraction solution is one way to fractionate HAs from Chinese weathered coal and to obtain HA fractions with compositions and structures that could serve as useful material for study and utilization.
Collapse
Affiliation(s)
- Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhian Lin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuwen Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Bench C, Oryschak M, Korver D. Oxidized subbituminous coal water additive has no adverse effect on growth performance or water consumption of growing broilers. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidized bituminous coal as a water supplement was studied to evaluate its effects on ammonia, litter, footpad lesions, and carcass attributes in broiler chickens. Bituminous coal water supplementation resulted in more severe footpad lesions; however, no significant effect was found for ammonia, litter, or carcass attributes under conditions in the present study.
Collapse
Affiliation(s)
- C.J. Bench
- Department of Agricultural, Food, Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M.A. Oryschak
- Alberta Agriculture and Forestry, Livestock Research Branch, Edmonton, AB T6H 5T6, Canada
| | - D.R. Korver
- Department of Agricultural, Food, Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
29
|
Chen M, Tong H, Liu C, Chen D, Li F, Qiao J. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil. CHEMOSPHERE 2016; 160:141-148. [PMID: 27372263 DOI: 10.1016/j.chemosphere.2016.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants.
Collapse
Affiliation(s)
- Manjia Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Hui Tong
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009, China.
| | - Dandan Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China.
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| |
Collapse
|
30
|
Chen D, Sun J, Bai M, Dassanayake KB, Denmead OT, Hill J. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite. Sci Rep 2015; 5:16689. [PMID: 26584639 PMCID: PMC4653648 DOI: 10.1038/srep16689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m−2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head−1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head−1 yr−1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.
Collapse
Affiliation(s)
- Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jianlei Sun
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Mei Bai
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Kithsiri B Dassanayake
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Owen T Denmead
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Julian Hill
- Ternes Agricultural Consulting Pty Ltd, Upwey, Victoria 3158, Australia
| |
Collapse
|
31
|
Guo Gao T, Yuan Xu Y, Jiang F, Zhen Li B, Shui Yang J, Tao Wang E, Li Yuan H. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials. Sci Rep 2015; 5:10836. [PMID: 26054030 PMCID: PMC4650689 DOI: 10.1038/srep10836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525.
Collapse
Affiliation(s)
- Tong Guo Gao
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- College of Life Science, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Yuan Yuan Xu
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Feng Jiang
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Bao Zhen Li
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jin Shui Yang
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F. 11340, Mexico
| | - Hong Li Yuan
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
32
|
Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One 2014; 9:e99949. [PMID: 24923965 PMCID: PMC4055693 DOI: 10.1371/journal.pone.0099949] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022] Open
Abstract
Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may promote copiotrophy more than no-tillage systems by decreasing soil organic matter stability and therefore increasing nutrient availability.
Collapse
Affiliation(s)
- Belén Carbonetto
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
- * E-mail: (MPV); (BC)
| | - Nicolás Rascovan
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
| | - Roberto Álvarez
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Mentaberry
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin P. Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
- * E-mail: (MPV); (BC)
| |
Collapse
|
33
|
Dong L, Meng Y, Wang J, Liu Y. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers. Anal Bioanal Chem 2014; 406:1701-12. [PMID: 24493332 PMCID: PMC3936116 DOI: 10.1007/s00216-013-7546-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/04/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
DNA reference materials of certified value have a critical function in many analytical processes of DNA measurement. Quantification of amoA genes in ammonia oxidizing bacteria (AOB) and archaea (AOA), and of nirS and nosZ genes in the denitrifiers is very important for determining their distribution and abundance in the natural environment. A plasmid reference material containing nirS, nosZ, amoA-AOB, and amoA-AOA is developed to provide a DNA standard with copy number concentration for ensuring comparability and reliability of quantification of these genes. Droplet digital PCR (ddPCR) was evaluated for characterization of the plasmid reference material. The result revealed that restriction endonuclease digestion of plasmids can improve amplification efficiency and minimize the measurement bias of ddPCR. Compared with the conformation of the plasmid, the size of the DNA fragment containing the target sequence and the location of the restriction site relative to the target sequence are not significant factors affecting plasmid quantification by ddPCR. Liquid chromatography–isotope dilution mass spectrometry (LC–IDMS) was used to provide independent data for quantifying the plasmid reference material. The copy number concentration of the digested plasmid determined by ddPCR agreed well with that determined by LC–IDMS, improving both the accuracy and reliability of the plasmid reference material. The reference value, with its expanded uncertainty (k = 2), of the plasmid reference material was determined to be (5.19 ± 0.41) × 109 copies μL−1 by averaging the results of two independent measurements. Consideration of the factors revealed in this study can improve the reliability and accuracy of ddPCR; thus, this method has the potential to accurately quantify DNA reference materials.
Collapse
Affiliation(s)
- Lianhua Dong
- National Institute of Metrology, Beijing, 100013, China,
| | | | | | | |
Collapse
|
34
|
Chassapis K, Roulia M, Vrettou E, Parassiris A. Preparation of bioinorganic fertilizing media by adsorption of humates on glassy aluminosilicates. Colloids Surf B Biointerfaces 2010; 81:115-22. [DOI: 10.1016/j.colsurfb.2010.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|