1
|
Zeng Q, Tang Y, Liu Y, Yang Y, Li P, Zhou Z, Qin Q. A recombinant sPLA2 protein promotes gut mucosal barrier against bacterial infection in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105288. [PMID: 39536808 DOI: 10.1016/j.dci.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Secreted phospholipase A2 family protein (sPLA2) is associated with immune response and plays a critical role in the regulation of gut homeostasis. However, whether sPLA2 is involved in innate immunity in teleost is essentially unknown. For this purpose, we reported the identification of a classical sPLA2 in grass carp (CisPLA2) and elucidated its role in the antibacterial immunity in this study. The result of bioinformatics analysis showed that mammalian sPLA2-IIA is the most similar homologue to CisPLA2. CisPLA2 is expressed in a variety of tissues, including liver and gut, and is significantly upregulated in response to Aeromonas hydrophila infection. Recombinant CisPLA2 protein (rCisPLA2) showed significant antibacterial activity against A. hydrophila by enhancing the phagocytosis of host phagocytes in vitro. Moreover, rCisPLA2 induces significant expression of the antimicrobial molecules and tight junctions in the gut during bacterial infection. Fish administered with rCisPLA2 significantly alleviates the gut permeability and apoptosis. In addition, rCisPLA2 preserves the morphology of the gut mucosa and limits the colonization of A. hydrophila in systemic immune organs. These results indicate that CisPLA2 plays a crucial role in the regulation of gut mucosal barrier, and thus has a potential application for antimicrobial immunity in fish.
Collapse
Affiliation(s)
- Qiongyao Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yujun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pingyuan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511466, China; Hunan Yuelu Mountain Science and Technology Co., Ltd., For Aquatic Breeding, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Wei TT, Blanc E, Peidli S, Bischoff P, Trinks A, Horst D, Sers C, Blüthgen N, Beule D, Morkel M, Obermayer B. High-confidence calling of normal epithelial cells allows identification of a novel stem-like cell state in the colorectal cancer microenvironment. Int J Cancer 2024; 155:1655-1669. [PMID: 39031967 DOI: 10.1002/ijc.35079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Single-cell analyses can be confounded by assigning unrelated groups of cells to common developmental trajectories. For instance, cancer cells and admixed normal epithelial cells could adopt similar cell states thus complicating analyses of their developmental potential. Here, we develop and benchmark CCISM (for Cancer Cell Identification using Somatic Mutations) to exploit genomic single nucleotide variants for the disambiguation of cancer cells from genomically normal non-cancer cells in single-cell data. We find that our method and others based on gene expression or allelic imbalances identify overlapping sets of colorectal cancer versus normal colon epithelial cells, depending on molecular characteristics of individual cancers. Further, we define consensus cell identities of normal and cancer epithelial cells with higher transcriptome cluster homogeneity than those derived using existing tools. Using the consensus identities, we identify significant shifts of cell state distributions in genomically normal epithelial cells developing in the cancer microenvironment, with immature states increased at the expense of terminal differentiation throughout the colon, and a novel stem-like cell state arising in the left colon. Trajectory analyses show that the new cell state extends the pseudo-time range of normal colon stem-like cells in a cancer context. We identify cancer-associated fibroblasts as sources of WNT and BMP ligands potentially contributing to increased plasticity of stem cells in the cancer microenvironment. Our analyses advocate careful interpretation of cell heterogeneity and plasticity in the cancer context and the consideration of genomic information in addition to gene expression data when possible.
Collapse
Affiliation(s)
- Tzu-Ting Wei
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Peidli
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Alexandra Trinks
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioportal Single Cells, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioportal Single Cells, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Murakami M. Extracellular vesicles as a hydrolytic platform of secreted phospholipase A 2. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159536. [PMID: 39032626 DOI: 10.1016/j.bbalip.2024.159536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40-150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100-1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5-10 μm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the "wall" that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
5
|
Verhagen MP, Joosten R, Schmitt M, Välimäki N, Sacchetti A, Rajamäki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, de Vries AC, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat Genet 2024; 56:1456-1467. [PMID: 38902475 PMCID: PMC11250264 DOI: 10.1038/s41588-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.
Collapse
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Paola Procopio
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Sara Silva
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Danielle Seinstra
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
7
|
Xiao Y, Han L, Wang H, Ke H, Xu S, Huang Z, Lyu G, Li S. Uric Acid Inhibits Mice Pancreatic Steatosis via the Glycerophospholipid Pathway. ACS OMEGA 2024; 9:21829-21837. [PMID: 38799326 PMCID: PMC11112710 DOI: 10.1021/acsomega.3c08874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Background: despite evidence for mutually reinforcing effects of serum uric acid (SUA) and lipids, the effects of uric levels on pancreatic steatosis are not well-established. In this study, the relationship between low concentrations of uric acid and pancreatic steatosis was evaluated. Methods: forty C57BL/6J mice were fed a diet of high uric acid (HU), high fat (HF), high uric acid and high fat (HUHF), and normal control (NC) (10 mice in each group). Weight was measured weekly. Ultrasonography was performed to observe the pancreatic echo intensity of all mice before the end of feeding. Subsequently, peripheral blood was taken for biochemical examination. Intact pancreatic tissues were taken, part of which was used for pathological examination, part of which was used for PCR experiments and Western Blot experiments to obtain glycerophospholipid-associated mRNA data and protein levels. Results: body weight was significantly higher in the HF group than in the other three groups. Higher uric acid matched lower total cholesterol and triglyceride, matched higher low-density lipoprotein, and matched equal high-density lipoprotein. Ultrasound images and HE staining of pancreatic tissues of mice showed that higher uric acid matched lower fat content. The mRNA levels of phospholipase A2 group IB were highest in high uric acid group, while relative protein expression levels were lowest in high uric acid and control groups. Phospholipase A2 group IIA showed the opposite patterns. Conclusions: elevated serum uric acid at low concentrations can inhibit pancreatic steatosis, which is modulated via the glycerophospholipid metabolic pathway.
Collapse
Affiliation(s)
- Yang Xiao
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Lina Han
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Han Wang
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Helin Ke
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Shaodan Xu
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Zhibin Huang
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| | - Guorong Lyu
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
- Department
of Medicine, Quanzhou Medical College, Quanzhou 362002, China
| | - Shilin Li
- Department
of Ultrasonography, Second Affiliated Hospital
of Fujian Medical University, Quanzhou 362002, China
| |
Collapse
|
8
|
González R, Ceacero-Heras D, Tena-Garitaonaindia M, Álvarez-Mercado A, Gámez-Belmonte R, Chazin WJ, Sánchez de Medina F, Martínez-Augustin O. Intestinal inflammation marker calprotectin regulates epithelial intestinal zinc metabolism and proliferation in mouse jejunal organoids. Biomed Pharmacother 2024; 174:116555. [PMID: 38593708 DOI: 10.1016/j.biopha.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Calprotectin (CP), a heterodimer of S100A8 and S100A9, is expressed by neutrophils and a number of innate immune cells and is used widely as a marker of inflammation, particularly intestinal inflammation. CP is a ligand for toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE). In addition, CP can act as a microbial modulatory agent via a mechanism termed nutritional immunity, depending on metal binding, most notably Zn2+. The effects on the intestinal epithelium are largely unknown. In this study we aimed to characterize the effect of calprotectin on mouse jejunal organoids as a model epithelium, focusing on Zn2+ metabolism and cell proliferation. CP addition upregulated the expression of the Zn2+ absorptive transporter Slc39a4 and of methallothionein Mt1 in a Zn2+-sensitive manner, while downregulating the expression of the Zn2+ exporter Slc30a2 and of methallothionein 2 (Mt2). These effects were greatly attenuated with a CP variant lacking the metal binding capacity. Globally, these observations indicate adaptation to low Zn2+ levels. CP had antiproliferative effects and reduced the expression of proliferative and stemness genes in jejunal organoids, effects that were largely independent of Zn2+ chelation. In addition, CP induced apoptosis modestly and modulated antimicrobial gene expression. CP had no effect on epithelial differentiation. Overall, CP exerts modulatory effects in murine jejunal organoids that are in part related to Zn2+ sequestration and partially reproduced in vivo, supporting the validity of mouse jejunal organoids as a model for mouse epithelium.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - D Ceacero-Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - M Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - A Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - R Gámez-Belmonte
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - W J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - F Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain.
| | - O Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| |
Collapse
|
9
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
10
|
Zhai Z, Mu T, Zhao L, Zhu D, Zhong X, Li Y, Liang C, Li W, Zhou Q. Stachydrine represses the proliferation and enhances cell cycle arrest and apoptosis of breast cancer cells via PLA2G2A/DCN axis. Chem Biol Drug Des 2024; 103:e14429. [PMID: 38230769 DOI: 10.1111/cbdd.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Considering the therapeutic efficacy of Stachydrine on breast cancer (BC), this study aims to decipher the relevant mechanism. The effects of Stachydrine on BC cell viability, proliferation and apoptosis were firstly investigated. Then, Bioinformatics was applied to sort out the candidate interacting with Stachydrine as well as its expression and downstream target in BC. Relative expressions of genes of interest as well as proliferation- and apoptosis-related factors in BC cells were quantified through quantitative reverse-transcription PCR and western blot as appropriate. As a result, Stachydrine inhibited the proliferation, down-regulated the expressions of proliferating cell nuclear antigen and CyclinD1, enhanced cell cycle arrest and apoptosis, and up-regulated the levels of Cleaved caspase-3 and Cleaved caspase-9 in BC cells. Phospholipase A2 Group IIA (PLA2G2A) was predicted as the candidate interacting with Stachydrine and to be lowly expressed in BC. PLA2G2A silencing reversed while PLA2G2A overexpression reinforced the effects of Stachydrine. Decorin (DCN) was the downstream target of PLA2G2A and also lowly expressed in BC. PLA2G2A silencing counteracted yet overexpressed PLA2G2A strengthened the promoting effects of Stachydrine on DCN level. Collectively, Stachydrine inhibits the growth of BC cells to promote cell cycle arrest and apoptosis via PLA2G2A/DCN axis.
Collapse
Affiliation(s)
- Zhen Zhai
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Tianlong Mu
- Pathology Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Lina Zhao
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Dongsheng Zhu
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhong
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yiliang Li
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Chen Liang
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Wei Li
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qingyuan Zhou
- Mammary Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Haller AM, Wolfkiel PR, Jaeschke A, Hui DY. Inactivation of Group 1B Phospholipase A 2 Enhances Disease Recovery and Reduces Experimental Colitis in Mice. Int J Mol Sci 2023; 24:16155. [PMID: 38003345 PMCID: PMC10671771 DOI: 10.3390/ijms242216155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Phospholipase A2 (PLA2) enzymes influence inflammatory bowel disease in both positive and negative manners depending on the type of PLA2 that is expressed. This study explored the influence of the abundantly expressed Group 1B PLA2 (PLA2G1B) on ulcerative colitis. Wild-type C57BL/6J mice and Pla2g1b-/- mice were treated with dextran sulfate sodium (DSS) for 5 days to induce epithelial injury, followed by another 5 days without DSS for recovery. The Pla2g1b-/- mice displayed significantly less body weight loss, colitis pathology, and disease activity indexes compared to the wild-type mice. The differences in colitis were not due to differences in the colonic lysophospholipid levels, but higher numbers of stem and progenitor cells were found in the intestines of Pla2g1b-/- mice compared to the wild-type mice. The DSS-treated Pla2g1b-/- mice also showed higher expressions of genes that are responsible for epithelial repair and lower expressions of proinflammatory cytokine genes in the colon, as well as reduced inflammatory cytokine levels in the plasma. In vitro experiments revealed the PLA2G1B stimulation of inflammatory cytokine expression by myeloid cells. PLA2G1B inactivation protects against DSS-induced colitis in mice by increasing the intestinal stem cell reservoir for epithelial repair and reducing myeloid cell inflammation in the diseased colon. Thus, PLA2G1B may be a target for colitis management.
Collapse
Affiliation(s)
- April M. Haller
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| | - Patrick R. Wolfkiel
- Molecular Genetics, Biochemistry and Microbiology Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Anja Jaeschke
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| | - David Y. Hui
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| |
Collapse
|
13
|
Verhagen MP, Joosten R, Schmitt M, Valimaki N, Sacchetti A, Rajamaki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. The origin of intestinal cancer in the context of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560432. [PMID: 37873142 PMCID: PMC10592905 DOI: 10.1101/2023.10.02.560432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation. Upon inflammation, PC-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in inflammatory bowel disease (IBD) patients but also of a larger fraction of sporadic colon cancers. The latter is likely due to the inflammatory consequences of Western-style dietary habits, the major colon cancer risk factor. Computational methods designed to predict the cell-of-origin of cancer confirmed that, in a substantial fraction of sporadic colon cancers the cells-of-origin are secretory lineages and not stem cells.
Collapse
|
14
|
Jovičić EJ, Janež AP, Eichmann TO, Koren Š, Brglez V, Jordan PM, Gerstmeier J, Lainšček D, Golob-Urbanc A, Jerala R, Lambeau G, Werz O, Zimmermann R, Petan T. Lipid droplets control mitogenic lipid mediator production in human cancer cells. Mol Metab 2023; 76:101791. [PMID: 37586657 PMCID: PMC10470291 DOI: 10.1016/j.molmet.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.
Collapse
Affiliation(s)
- Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Špela Koren
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Vesna Brglez
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, University of Graz, Graz, Austria
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Ahmad Sophien AN, Jusop AS, Tye GJ, Tan YF, Wan Kamarul Zaman WS, Nordin F. Intestinal stem cells and gut microbiota therapeutics: hype or hope? Front Med (Lausanne) 2023; 10:1195374. [PMID: 37547615 PMCID: PMC10400779 DOI: 10.3389/fmed.2023.1195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.
Collapse
Affiliation(s)
- Ahmad Naqiuddin Ahmad Sophien
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Parisi E, Hidalgo I, Montal R, Pallisé O, Tarragona J, Sorolla A, Novell A, Campbell K, Sorolla MA, Casali A, Salud A. PLA2G12A as a Novel Biomarker for Colorectal Cancer with Prognostic Relevance. Int J Mol Sci 2023; 24:10889. [PMID: 37446068 DOI: 10.3390/ijms241310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Andreu Casali
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
18
|
Deng C, Zhong ME, Chen Y, Pan M, Xu L, Xiao Y, Gao Y, Wu B. Proteomic profiling and functional characterization of serum-derived extracellular vesicles in the mucinous and non-mucinous colon adenocarcinoma. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04851-7. [PMID: 37204515 DOI: 10.1007/s00432-023-04851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Mucinous adenocarcinoma (MC) is a distinct pathological subtype of colon adenocarcinoma, which is associated with a worse prognosis compared with non-mucinous adenocarcinoma (AC). However, clear distinctions between MC and AC remain unknown. Extracellular vesicles (EVs) are a class of enclosed vesicles containing proteins, lipids, and nucleic acids that are secreted by cells into surrounding tissues or into serum. The EVs could facilitate tumorigenesis by regulating tumor cell proliferation, invasiveness, metastasis, angiogenesis, and evasion of immune surveillance. METHODS Quantitative proteomics analysis was performed to determine the characterization and biological differences of serum-derived EVs in two subtypes of colon adenocarcinoma (MC and AC). Serum-derived EVs from patients with MC, AC, and healthy volunteers were included in this study. The role of PLA2G2A in cell migration and invasion were evaluate with transwell assay, and its prognostic predictive value was further assessed based on TCGA database. RESULTS Quantitative proteomics analysis revealed 846 differentially expressed proteins (DEPs) in EVs from MC patients compared with those from AC patients. Bioinformatics analysis revealed that the most prominent protein cluster included those involved in cell migration and the tumor microenvironment. Overexpression of PLA2G2A, one of the key EV proteins upregulated in patients with MC, in colon cancer cell line SW480 promoted the cell invasion and migration ability. In addition, the high level of PLA2G2A is associated with poor prognosis of colon cancer patients harboring BRAF mutations. Further, after EV stimulation, proteomic analysis of recipient SW480 cells showed that MC-derived EVs activated multiple cancer-related pathways, including the Wnt/β-Catenin signaling pathway, and might promote the malignancy of mucinous adenocarcinoma through these pathways. CONCLUSIONS The identification of differential protein profiles between MC and AC helps to elucidate the underlying molecular mechanisms of MC pathogenesis. The PLA2G2A in EVs is a potential prognostic predictive marker for those patients harboring with BRAF mutations.
Collapse
Affiliation(s)
- Chaolin Deng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min-Er Zhong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Du H, Yang C, Nana AL, Seeley WW, Smolka M, Hu F. Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535844. [PMID: 37066328 PMCID: PMC10104136 DOI: 10.1101/2023.04.06.535844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mutations in the granulin (GRN) gene, resulting in haploinsufficiency of the progranulin (PGRN) protein, are a leading cause of frontotemporal lobar degeneration (FTLD) and PGRN polymorphisms are associated with Alzheimer's disease (AD) and Parkinson's disease (PD). PGRN is a key regulator of microglia-mediated inflammation but the mechanism is still unknown. Here we report that PGRN interacts with sPLA2-IIA, a secreted phospholipase involved in inflammatory responses, to downregulate sPLA2-IIA activities and levels. sPLA2-IIA expression modifies PGRN deficiency phenotypes in mice and sPLA2-IIA inhibition rescues inflammation and lysosomal abnormalities in PGRN deficient mice. Furthermore, FTLD patients with GRN mutations show increased levels of sPLA2-IIA in astrocytes. Our data support sPLA2-IIA as a critical target for PGRN and a novel therapeutic target for FTLD-GRN.
Collapse
Affiliation(s)
- Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alissa L. Nana
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - William W. Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Marcus Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
21
|
Shim J, Park J, Jung YJ, Jang KT, Kwon EJ, Lee JH, Lee D. Molecular characterization of onychomatricoma: Spatial profiling reveals the role of onychofibroblasts in its pathogenesis. Exp Dermatol 2022; 32:491-501. [PMID: 36579368 DOI: 10.1111/exd.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Onychomatricoma (OM) is a rare nail unit tumour with a characteristic presentation of finger-like projections arising from the nail matrix. Due to the lack of transcriptome information, the mechanisms underlying its development are largely unknown. To characterize molecular features involved in the disease pathogenesis, we used digital spatial profiling (DSP) in 2 cases of OM and normal control nail units. Based on the histological evaluation, we selectively profiled 69 regions of interest covering epithelial and stromal compartments of each tissue section. Dermoscopic and histopathologic findings were reviewed in 6 cases. Single-cell RNA sequencing of nail units and DSP were combined to define cell type contributions of OM. We identified 173 genes upregulated in stromal compartments of OM compared to onychodermis, specialized nail mesenchyme. Gene ontology analysis of the upregulated genes suggested the role of Wnt pathway activation in OM pathogenesis. We also found PLA2G2A, a known modulator of Wnt signalling, is strongly and specifically expressed in the OM stroma. The potential role of Wnt pathway was further supported by strong nuclear localization of β-catenin in OM. Compared to the nail matrix epithelium, only a few genes were increased in OM epithelium. Deconvolution of nail unit cell types showed that onychofibroblasts are the dominant cell type in OM stroma. Altogether, integrated spatial and single-cell multi-omics concluded that OM is a tumour that derives a significant proportion of its origin from onychofibroblasts and is associated with upregulation of Wnt signals, which play a key role in the disease pathogenesis.
Collapse
Affiliation(s)
- Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Joo Jung
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ji Kwon
- Department of Dermatology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medical Device Management & Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Fujishita T, Kojima Y, Kajino-Sakamoto R, Mishiro-Sato E, Shimizu Y, Hosoda W, Yamaguchi R, Taketo MM, Aoki M. The cAMP/PKA/CREB and TGFβ/SMAD4 Pathways Regulate Stemness and Metastatic Potential in Colorectal Cancer Cells. Cancer Res 2022; 82:4179-4190. [PMID: 36066360 DOI: 10.1158/0008-5472.can-22-1369] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE This study identifies signaling pathways essential for maintaining the stemness and metastatic potential of colorectal cancer cells and proposes CREB as a therapeutic target in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Cancer Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Wang X, Liu C, Chen J, Chen L, Ren X, Hou M, Cui X, Jiang Y, Liu E, Zong Y, Duan A, Fu X, Yu W, Zhao X, Yang Z, Zhang Y, Fu J, Wang H. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma. Cell Discov 2022; 8:101. [PMID: 36198671 PMCID: PMC9534837 DOI: 10.1038/s41421-022-00445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/09/2022] [Indexed: 11/09/2022] Open
Abstract
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with the lowest survival rate, primarily arising from chronic inflammation. To better characterize the progression from inflammation to cancer to metastasis, we performed single-cell RNA sequencing across samples of 6 chronic cholecystitis, 12 treatment-naive GBCs, and 6 matched metastases. Benign epithelial cells from inflamed gallbladders displayed resting, immune-regulating, and gastrointestinal metaplastic phenotypes. A small amount of PLA2G2A+ epithelial cells with copy number variation were identified from a histologically benign sample. We validated significant overexpression of PLA2G2A across in situ GBCs, together with increased proliferation and cancer stemness in PLA2G2A-overexpressing GBC cells, indicating an important role for PLA2G2A during early carcinogenesis. Malignant epithelial cells displayed pervasive cancer hallmarks and cellular plasticity, differentiating into metaplastic, inflammatory, and mesenchymal subtypes with distinct transcriptomic, genomic, and prognostic patterns. Chronic cholecystitis led to an adapted microenvironment characterized by MDSC-like macrophages, CD8+ TRM cells, and CCL2+ immunity-regulating fibroblasts. By contrast, GBC instigated an aggressive and immunosuppressive microenvironment, featured by tumor-associated macrophages, Treg cells, CD8+ TEX cells, and STMN1+ tumor-promoting fibroblasts. Single-cell and bulk RNA-seq profiles consistently showed a more suppressive immune milieu for GBCs with inflammatory epithelial signatures, coupled with strengthened epithelial-immune crosstalk. We further pinpointed a subset of senescence-like fibroblasts (FN1+TGM2+) preferentially enriched in metastatic lesions, which promoted GBC migration and invasion via their secretory phenotype. Collectively, this study provides comprehensive insights into epithelial and microenvironmental reprogramming throughout cholecystitis-propelled carcinogenesis and metastasis, laying a new foundation for the precision therapy of GBC.
Collapse
Affiliation(s)
- Xiang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianwen Ren
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Minghui Hou
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Erdong Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yali Zong
- School of Life Sciences, Fudan University, Shanghai, China
| | - Anqi Duan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohui Fu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenlong Yu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofang Zhao
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Yang
- Second Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
24
|
Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022; 12:14899. [PMID: 36050343 PMCID: PMC9437038 DOI: 10.1038/s41598-022-18876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7– developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive μκ transgenic (ATAμκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAμκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.
Collapse
Affiliation(s)
- Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | | | - Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| |
Collapse
|
25
|
Rathan-Kumar S, Roland JT, Momoh M, Goldstein A, Lapierre LA, Manning E, Mitchell L, Norman J, Kaji I, Goldenring JR. Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. Am J Physiol Gastrointest Liver Physiol 2022; 323:G239-G254. [PMID: 35819177 PMCID: PMC9423785 DOI: 10.1152/ajpgi.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.
Collapse
Affiliation(s)
- Sudiksha Rathan-Kumar
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Momoh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Manning
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Deng F, Wu Z, Zou F, Wang S, Wang X. The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front Cell Dev Biol 2022; 10:894737. [PMID: 35927987 PMCID: PMC9343807 DOI: 10.3389/fcell.2022.894737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The Hippo pathway and its downstream effectors, the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), control stem cell fate and cell proliferation and differentiation and are essential for tissue self-renewal and regeneration. YAP/TAZ are the core components of the Hippo pathway and they coregulate transcription when localized in the nucleus. The intestinal epithelium undergoes well-regulated self-renewal and regeneration programs to maintain the structural and functional integrity of the epithelial barrier. This prevents luminal pathogen attack, and facilitates daily nutrient absorption and immune balance. Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the entire digestive tract. Impaired mucosal healing is a prominent biological feature of IBD. Intestinal self-renewal is primarily dependent on functional intestinal stem cells (ISCs), especially Lgr5+ crypt base columnar (CBC) cells and transient-amplifying (TA) cells in the crypt base. However, intestinal wound healing is a complicated process that is often associated with epithelial cells, and mesenchymal and immune cells in the mucosal microenvironment. Upon intestinal injury, nonproliferative cells rapidly migrate towards the wound bed to reseal the damaged epithelium, which is followed by cell proliferation and differentiation. YAP is generally localized in the nucleus of Lgr5+ CBC cells, where it transcriptionally regulates the expression of the ISC marker Lgr5 and plays an important role in intestinal self-renewal. YAP/TAZ are the primary mechanical sensors of the cellular microenvironment. Their functions include expanding progenitor and stem cell populations, reprogramming differentiated cells into a primitive state, and mediating the regenerative function of reserve stem cells. Thus, YAP/TAZ play extremely crucial roles in epithelial repair after damage. This review provides an overview of the Hippo–YAP/TAZ signaling pathway and the processes of intestinal self-renewal and regeneration. In particular, we summarize the roles of YAP/TAZ in the phases of intestinal self-renewal and regeneration to suggest a potential strategy for IBD treatment.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| |
Collapse
|
27
|
Taketomi Y, Murakami M. Regulatory Roles of Phospholipase A2 Enzymes and Bioactive Lipids in Mast Cell Biology. Front Immunol 2022; 13:923265. [PMID: 35833146 PMCID: PMC9271868 DOI: 10.3389/fimmu.2022.923265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.
Collapse
|
28
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Epithelial dysfunction is prevented by IL-22 treatment in a Citrobacter rodentium-induced colitis model that shares similarities with inflammatory bowel disease. Mucosal Immunol 2022; 15:1338-1349. [PMID: 36372810 DOI: 10.1038/s41385-022-00577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells. Prophylactic treatment with IL-22.Fc in C. rodentium-infected FVB mice reduced disease severity and rescued the mice from lethality. Multi-omics and solute analyses revealed that IL-22.Fc treatment prevented disease-associated changes including disruption of the solute transporter machinery and restored proper physiological functions of the intestine, respectively. Taken together, we established the disease relevance of the C. rodentium-induced colitis model to IBD, demonstrated the protective role of IL-22 in amelioration of epithelial dysfunction and elucidated the molecular mechanisms with IL-22's effect on intestinal epithelial cells.
Collapse
|
30
|
Old but New: Group IIA Phospholipase A 2 as a Modulator of Gut Microbiota. Metabolites 2022; 12:metabo12040352. [PMID: 35448539 PMCID: PMC9029192 DOI: 10.3390/metabo12040352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Among the phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family contains 11 mammalian isoforms that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using sPLA2-deficient or -overexpressed mouse strains, along with mass spectrometric lipidomics to determine sPLA2-driven lipid pathways, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. In general, individual sPLA2s exert their specific functions within tissue microenvironments, where they are intrinsically expressed through hydrolysis of extracellular phospholipids. Recent studies have uncovered a new aspect of group IIA sPLA2 (sPLA2-IIA), a prototypic sPLA2 with the oldest research history among the mammalian PLA2s, as a modulator of the gut microbiota. In the intestine, Paneth cell-derived sPLA2-IIA acts as an antimicrobial protein to shape the gut microbiota, thereby secondarily affecting inflammation, allergy, and cancer in proximal and distal tissues. Knockout of intestinal sPLA2-IIA in BALB/c mice leads to alterations in skin cancer, psoriasis, and anaphylaxis, while overexpression of sPLA2-IIA in Pla2g2a-null C57BL/6 mice induces systemic inflammation and exacerbates arthritis. These phenotypes are associated with notable changes in gut microbiota and fecal metabolites, are variable in different animal facilities, and are abrogated after antibiotic treatment, co-housing, or fecal transfer. These studies open a new mechanistic action of this old sPLA2 and add the sPLA2 family to the growing list of endogenous factors capable of affecting the microbe–host interaction and thereby systemic homeostasis and diseases.
Collapse
|
31
|
Huang J, Liu D, Wang Y, Liu L, Li J, Yuan J, Jiang Z, Jiang Z, Hsiao WLW, Liu H, Khan I, Xie Y, Wu J, Xie Y, Zhang Y, Fu Y, Liao J, Wang W, Lai H, Shi A, Cai J, Luo L, Li R, Yao X, Fan X, Wu Q, Liu Z, Yan P, Lu J, Yang M, Wang L, Cao Y, Wei H, Leung ELH. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 2022; 71:734-745. [PMID: 34006584 PMCID: PMC8921579 DOI: 10.1136/gutjnl-2020-321031] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jumin Huang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuwei Wang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Liang Liu
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian Li
- Precision Medicine Institute, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Chaoyang District, Beijing, China
| | - Zhihong Jiang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zebo Jiang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - WL Wendy Hsiao
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Imran Khan
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Xie
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jianlin Wu
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yajia Xie
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhong Zhang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yu Fu
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Junyi Liao
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wenjun Wang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanling Lai
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Axi Shi
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jun Cai
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Runze Li
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiaojun Yao
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Xingxing Fan
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qibiao Wu
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peiyu Yan
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jingguang Lu
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Mingrong Yang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin Wang
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yabing Cao
- Department of Oncology, Kiang Wu Hospital, Macau, Macau, China
| | - Hong Wei
- Precision Medicine Institute, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Elaine Lai-Han Leung
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
32
|
Kanke M, Kennedy Ng MM, Connelly S, Singh M, Schaner M, Shanahan MT, Wolber EA, Beasley C, Lian G, Jain A, Long MD, Barnes EL, Herfarth HH, Isaacs KL, Hansen JJ, Kapadia M, Guillem JG, Feschotte C, Furey TS, Sheikh SZ, Sethupathy P. Single-Cell Analysis Reveals Unexpected Cellular Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-Naïve Adult Crohn's Disease Patients. Cell Mol Gastroenterol Hepatol 2022; 13:1717-1740. [PMID: 35158099 PMCID: PMC9046244 DOI: 10.1016/j.jcmgh.2022.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The intestinal barrier comprises a monolayer of specialized intestinal epithelial cells (IECs) that are critical in maintaining mucosal homeostasis. Dysfunction within various IEC fractions can alter intestinal permeability in a genetically susceptible host, resulting in a chronic and debilitating condition known as Crohn's disease (CD). Defining the molecular changes in each IEC type in CD will contribute to an improved understanding of the pathogenic processes and the identification of cell type-specific therapeutic targets. We performed, at single-cell resolution, a direct comparison of the colonic epithelial cellular and molecular landscape between treatment-naïve adult CD and non-inflammatory bowel disease control patients. METHODS Colonic epithelial-enriched, single-cell sequencing from treatment-naïve adult CD and non-inflammatory bowel disease patients was investigated to identify disease-induced differences in IEC types. RESULTS Our analysis showed that in CD patients there is a significant skew in the colonic epithelial cellular distribution away from canonical LGR5+ stem cells, located at the crypt bottom, and toward one specific subtype of mature colonocytes, located at the crypt top. Further analysis showed unique changes to gene expression programs in every major cell type, including a previously undescribed suppression in CD of most enteroendocrine driver genes as well as L-cell markers including GCG. We also dissect an incompletely understood SPIB+ cell cluster, revealing at least 4 subclusters that likely represent different stages of a maturational trajectory. One of these SPIB+ subclusters expresses crypt-top colonocyte markers and is up-regulated significantly in CD, whereas another subcluster strongly expresses and stains positive for lysozyme (albeit no other canonical Paneth cell marker), which surprisingly is greatly reduced in expression in CD. In addition, we also discovered transposable element markers of colonic epithelial cell types as well as transposable element families that are altered significantly in CD in a cell type-specific manner. Finally, through integration with data from genome-wide association studies, we show that genes implicated in CD risk show heretofore unknown cell type-specific patterns of aberrant expression in CD, providing unprecedented insight into the potential biological functions of these genes. CONCLUSIONS Single-cell analysis shows a number of unexpected cellular and molecular features, including transposable element expression signatures, in the colonic epithelium of treatment-naïve adult CD.
Collapse
Affiliation(s)
- Matt Kanke
- Biomedical Sciences, Cornell University, Ithaca, New York
| | - Meaghan M Kennedy Ng
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sean Connelly
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Manvendra Singh
- Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Matthew Schaner
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Elizabeth A Wolber
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline Beasley
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Grace Lian
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Animesh Jain
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Millie D Long
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Edward L Barnes
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hans H Herfarth
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L Isaacs
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathon J Hansen
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Muneera Kapadia
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose Gaston Guillem
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cedric Feschotte
- Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Terrence S Furey
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Shehzad Z Sheikh
- Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | | |
Collapse
|
33
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
34
|
Markandey M, Bajaj A, Ilott NE, Kedia S, Travis S, Powrie F, Ahuja V. Gut microbiota: sculptors of the intestinal stem cell niche in health and inflammatory bowel disease. Gut Microbes 2022; 13:1990827. [PMID: 34747326 PMCID: PMC8583176 DOI: 10.1080/19490976.2021.1990827] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal epithelium represents a dynamic and diverse cellular system that continuously interacts with gut commensals and external cues. Intestinal stem cells, which lie at the heart of epithelial renewal and turnover, proliferate to maintain a steady stem cell population and differentiate to form functional epithelial cell types. This rather sophisticated assembly-line is maintained by an elaborate micro-environment, sculpted by a myriad of host and gut microbiota-derived signals, forming an intestinal stem cell niche. This complex, yet crucial signaling niche undergoes dynamic changes during homeostasis and chronic intestinal inflammation. Inflammatory bowel disease refers to a chronic inflammatory response toward pathogenic or commensal microbiota, in a genetically susceptible host. Compositional and functional alterations in gut microbiota are pathognomonic of IBD.The present review highlights the modulatory role of gut microbiota on the intestinal stem cell niche during homeostasis and inflammatory bowel disease. We discuss the mechanisms of direct action of gut commensals (through microbiota-derived or microbiota-influenced metabolites) on ISCs, followed by their effects via other epithelial and immune cell types.
Collapse
Affiliation(s)
- Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Simon Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India,CONTACT Vineet Ahuja Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India, 110029
| |
Collapse
|
35
|
Miki Y, Taketomi Y, Kidoguchi Y, Yamamoto K, Muramatsu K, Nishito Y, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Soga T, Boilard E, B. Gowda SG, Ikeda K, Arita M, Murakami M. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight 2022; 7:152611. [PMID: 35076024 PMCID: PMC8855835 DOI: 10.1172/jci.insight.152611] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Besides promoting inflammation by mobilizing lipid mediators, group IIA secreted phospholipase A2 (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here, we show that, despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after treatment with antibiotics or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome, and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism, as well as in the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a–/– mice are lost (a) when they are cohoused with littermate WT mice, resulting in the mixing of the microbiota between the genotypes, or (b) when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in WT mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a potentially new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.
Collapse
Affiliation(s)
- Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| | - Yuh Kidoguchi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
- Division of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Kazuaki Muramatsu
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | | | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research and
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research and
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Centre de Recherche Arthrite de l’Université Laval, Department of Microbiology and Immunology, Québec, Canada
| | | | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| |
Collapse
|
36
|
Shi D, Feng C, Xie J, Zhang X, Dai H, Yan L. Recent Progress of Nanomedicine on Secreted Phospholipase A2 as a Potential Therapeutic Target. J Mater Chem B 2022; 10:7349-7360. [DOI: 10.1039/d2tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overexpressed secretory phospholipase A2 (sPLA2) is found in many inflammatory diseases and various types of cancer. sPLA2 can catalyze the hydrolysis of phospholipid sn-2 ester bond to lysophosphatidylcholine and free...
Collapse
|
37
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
38
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV Ludwig-Maximilian-University (LMU) Munich Germany
| | - Jiahui Li
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Chao Wu
- Department of General Surgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| |
Collapse
|
39
|
Pungerčar J, Bihl F, Lambeau G, Križaj I. What do secreted phospholipases A 2 have to offer in combat against different viruses up to SARS-CoV-2? Biochimie 2021; 189:40-50. [PMID: 34097986 PMCID: PMC8449419 DOI: 10.1016/j.biochi.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Du L, Deng W, Zeng S, Xu P, Huang L, Liang Y, Wang Y, Xu H, Tang J, Bi S, Zhang L, Li Y, Ren L, Lin L, Deng W, Liu M, Chen J, Wang H, Chen D. Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif 2021; 54:e13125. [PMID: 34546587 PMCID: PMC8560595 DOI: 10.1111/cpr.13125] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Successful pregnancy involves the homeostasis between maternal decidua and fetoplacental units, whose disruption contributes to compromised pregnancy outcomes, including recurrent spontaneous abortion (RSA). The role of cell heterogeneity of maternal decidua in RSA is yet to be illustrated. Materials and methods A total of 66,078 single cells from decidua samples isolated from patients with RSA and healthy controls were analysed by unbiased single‐cell RNA sequencing (scRNA‐seq). Results Our scRNA‐seq results revealed that stromal cells are the most abundant cell type in decidua during early pregnancy. RSA samples are accompanied by aberrant decidualization and obviously obstructed communication between stromal cells and other cell types, such as abnormal activation of macrophages and NK cells. In addition, the over‐activated TNF superfamily member 12 (TNFSF12, TWEAK) and FASLG in RSA are closely related to stromal cell demise and pregnancy failure. Conclusions Our research reveals that the cell composition and communications in normal and RSA decidua at early pregnancy and provides insightful information for the pathology of RSA and will pave the way for pregnancy loss prevention.
Collapse
Affiliation(s)
- Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Wenbo Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, China
| | - Shanshan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Xu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingman Tang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luwen Ren
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
41
|
Inflammation- and Gut-Homing Macrophages, Engineered to De Novo Overexpress Active Vitamin D, Promoted the Regenerative Function of Intestinal Stem Cells. Int J Mol Sci 2021; 22:ijms22179516. [PMID: 34502422 PMCID: PMC8430522 DOI: 10.3390/ijms22179516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Available drugs aim to suppress gut inflammation. These drugs have significantly delayed disease progression and improved patients’ quality of life. However, the disease continues to progress, underscoring the need to develop novel therapies. Aside from chronic gut inflammation, IBD patients also experience a leaky gut problem due to damage to the intestinal epithelial layer. In this regard, epithelial regeneration and repair are mediated by intestinal stem cells. However, no therapies are available to directly enhance the intestinal stem cells’ regenerative and repair function. Recently, it was shown that active vitamin D, i.e., 1,25-dihydroxyvitamin D or 1,25(OH)2D, was necessary to maintain Lgr5+ intestinal stem cells, actively cycling under physiological conditions. In this study, we used two strategies to investigate the role of 1,25(OH)2D in intestinal stem cells’ regenerative function. First, to avoid the side effects of systemic high 1,25(OH)2D conditions, we used our recently developed novel strategy to deliver locally high 1,25(OH)2D concentrations specifically to inflamed intestines. Second, because of the Lgr5+ intestinal stem cells’ active cycling status, we used a pulse-and-chase strategy via 5-bromo-2′-deoxyuridine (BrdU) labeling to trace the Lgr5+ stem cells through the whole epithelial regeneration process. Our data showed that locally high 1,25(OH)2D concentrations enhanced intestinal stem cell migration. Additionally, the migrated cells differentiated into mature epithelial cells. Our data, therefore, suggest that local delivery of high 1,25(OH)2D concentrations is a promising strategy to augment intestinal epithelial repair in IBD patients.
Collapse
|
42
|
Protective and Anti-Inflammatory Effects of Protegrin-1 on Citrobacter rodentium Intestinal Infection in Mice. Int J Mol Sci 2021; 22:ijms22179494. [PMID: 34502403 PMCID: PMC8431371 DOI: 10.3390/ijms22179494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Infectious intestinal colitis, manifesting as intestinal inflammation, diarrhea, and epithelial barrier disruption, affects millions of humans worldwide and, without effective treatment, can result in death. In addition to this, the significant rise in antibiotic-resistant bacteria poses an urgent need for alternative anti-infection therapies for the treatment of intestinal disorders. Antimicrobial peptides (AMPs) are potential therapies that have broad-spectrum antimicrobial activity due to their (1) unique mode of action, (2) broad-spectrum antimicrobial activity, and (3) protective role in GI tract maintenance. Protegrin-1 (PG-1) is an AMP of pig origin that was previously shown to reduce the pathological effects of chemically induced digestive tract inflammation (colitis) and to modulate immune responses and tissue repair. This study aimed to extend these findings by investigating the protective effects of PG-1 on pathogen-induced colitis in an infection study over a 10-day experimental period. The oral administration of PG-1 reduced Citrobacter rodentium intestinal infection in mice as evidenced by reduced histopathologic change in the colon, prevention of body weight loss, milder clinical signs of disease, and more effective clearance of bacterial infection relative to challenged phosphate-buffered saline (PBS)-treated mice. Additionally, PG-1 treatment altered the expression of various inflammatory mediators during infection, which may act to resolve inflammation and re-establish intestinal homeostasis. PG-1 administered in its mature form was more effective relative to the pro-form (ProPG-1). To our knowledge, this is the first study demonstrating the protective effects of PG-1 on infectious colitis.
Collapse
|
43
|
Wang G, Hiramoto K, Ma N, Yoshikawa N, Ohnishi S, Murata M, Kawanishi S. Glycyrrhizin Attenuates Carcinogenesis by Inhibiting the Inflammatory Response in a Murine Model of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052609. [PMID: 33807620 PMCID: PMC7961658 DOI: 10.3390/ijms22052609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Sakuranomori Shiroko Home, Social Service Elderly Facilities, Suzuka University of Medical Science, Suzuka, Mie 513-0816, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan;
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| | - Shosuke Kawanishi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| |
Collapse
|
44
|
Stenson WF, Ciorba MA. Nonmicrobial Activation of TLRs Controls Intestinal Growth, Wound Repair, and Radioprotection. Front Immunol 2021; 11:617510. [PMID: 33552081 PMCID: PMC7859088 DOI: 10.3389/fimmu.2020.617510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
TLRs, key components of the innate immune system, recognize microbial molecules. However, TLRs also recognize some nonmicrobial molecules. In particular, TLR2 and TLR4 recognize hyaluronic acid, a glycosaminoglycan in the extracellular matrix. In neonatal mice endogenous hyaluronic acid binding to TLR4 drives normal intestinal growth. Hyaluronic acid binding to TLR4 in pericryptal macrophages results in cyclooxygenase2- dependent PGE2 production, which transactivates EGFR in LGR5+ crypt epithelial stem cells leading to increased proliferation. The expanded population of LGR5+ stem cells leads to crypt fission and lengthening of the intestine and colon. Blocking this pathway at any point (TLR4 activation, PGE2 production, EGFR transactivation) results in diminished intestinal and colonic growth. A similar pathway leads to epithelial proliferation in wound repair. The repair phase of dextran sodium sulfate colitis is marked by increased epithelial proliferation. In this model, TLR2 and TLR4 in pericryptal macrophages are activated by microbial products or by host hyaluronic acid, resulting in production of CXCL12, a chemokine. CXCL12 induces the migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the upper colonic crypts to a site adjacent to LGR5+ epithelial stem cells. PGE2 released by these mesenchymal stem cells transactivates EGFR in LGR5+ epithelial stem cells leading to increased proliferation. Several TLR2 and TLR4 agonists, including hyaluronic acid, are radioprotective in the intestine through the inhibition of radiation-induced apoptosis in LGR5+ epithelial stem cells. Administration of exogenous TLR2 or TLR4 agonists activates TLR2/TLR4 on pericryptal macrophages inducing CXCL12 production with migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the villi to a site adjacent to LGR5+ epithelial stem cells. PGE2 produced by these mesenchymal stem cells, blocks radiation-induced apoptosis in LGR5+ epithelial stem cells by an EGFR mediated pathway.
Collapse
Affiliation(s)
- William F. Stenson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, United States
| | | |
Collapse
|
45
|
Farrall AL, Lienhard M, Grimm C, Kuhl H, Sluka SHM, Caparros M, Forejt J, Timmermann B, Herwig R, Herrmann BG, Morkel M. PWD/Ph-Encoded Genetic Variants Modulate the Cellular Wnt/β-Catenin Response to Suppress Apc Min-Triggered Intestinal Tumor Formation. Cancer Res 2020; 81:38-49. [PMID: 33154092 DOI: 10.1158/0008-5472.can-20-1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Genetic predisposition affects the penetrance of tumor-initiating mutations, such as APC mutations that stabilize β-catenin and cause intestinal tumors in mice and humans. However, the mechanisms involved in genetically predisposed penetrance are not well understood. Here, we analyzed tumor multiplicity and gene expression in tumor-prone Apc Min/+ mice on highly variant C57BL/6J (B6) and PWD/Ph (PWD) genetic backgrounds. (B6 × PWD) F1 APC Min offspring mice were largely free of intestinal adenoma, and several chromosome substitution (consomic) strains carrying single PWD chromosomes on the B6 genetic background displayed reduced adenoma numbers. Multiple dosage-dependent modifier loci on PWD chromosome 5 each contributed to tumor suppression. Activation of β-catenin-driven and stem cell-specific gene expression in the presence of Apc Min or following APC loss remained moderate in intestines carrying PWD chromosome 5, suggesting that PWD variants restrict adenoma initiation by controlling stem cell homeostasis. Gene expression of modifier candidates and DNA methylation on chromosome 5 were predominantly cis controlled and largely reflected parental patterns, providing a genetic basis for inheritance of tumor susceptibility. Human SNP variants of several modifier candidates were depleted in colorectal cancer genomes, suggesting that similar mechanisms may also affect the penetrance of cancer driver mutations in humans. Overall, our analysis highlights the strong impact that multiple genetic variants acting in networks can exert on tumor development. SIGNIFICANCE: These findings in mice show that, in addition to accidental mutations, cancer risk is determined by networks of individual gene variants.
Collapse
Affiliation(s)
- Alexandra L Farrall
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Christina Grimm
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Heiner Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecophysiology and Aquaculture, Berlin, Germany
| | | | - Marta Caparros
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jiri Forejt
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Prague, Czech Republic
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Genetics, Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.
| |
Collapse
|
46
|
Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julià M, Nguyen NTB, Brombacher EC, Liv N, Maurice MM, Paik JH, Burgering BMT, Rodriguez Colman MJ. Mitochondria Define Intestinal Stem Cell Differentiation Downstream of a FOXO/Notch Axis. Cell Metab 2020; 32:889-900.e7. [PMID: 33147486 DOI: 10.1016/j.cmet.2020.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.
Collapse
Affiliation(s)
- Marlies C Ludikhuize
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Maaike Meerlo
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Marc Pages Gallego
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Despina Xanthakis
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Mar Burgaya Julià
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Nguyen T B Nguyen
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Eline C Brombacher
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Leids Universitair Medisch Centrum, Department of Parasitology, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Maria J Rodriguez Colman
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
47
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
48
|
Takashima S, Martin ML, Jansen SA, Fu Y, Bos J, Chandra D, O'Connor MH, Mertelsmann AM, Vinci P, Kuttiyara J, Devlin SM, Middendorp S, Calafiore M, Egorova A, Kleppe M, Lo Y, Shroyer NF, Cheng EH, Levine RL, Liu C, Kolesnick R, Lindemans CA, Hanash AM. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci Immunol 2020; 4:4/42/eaay8556. [PMID: 31811055 DOI: 10.1126/sciimmunol.aay8556] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Despite the importance of intestinal stem cells (ISCs) for epithelial maintenance, there is limited understanding of how immune-mediated damage affects ISCs and their niche. We found that stem cell compartment injury is a shared feature of both alloreactive and autoreactive intestinal immunopathology, reducing ISCs and impairing their recovery in T cell-mediated injury models. Although imaging revealed few T cells near the stem cell compartment in healthy mice, donor T cells infiltrating the intestinal mucosa after allogeneic bone marrow transplantation (BMT) primarily localized to the crypt region lamina propria. Further modeling with ex vivo epithelial cultures indicated ISC depletion and impaired human as well as murine organoid survival upon coculture with activated T cells, and screening of effector pathways identified interferon-γ (IFNγ) as a principal mediator of ISC compartment damage. IFNγ induced JAK1- and STAT1-dependent toxicity, initiating a proapoptotic gene expression program and stem cell death. BMT with IFNγ-deficient donor T cells, with recipients lacking the IFNγ receptor (IFNγR) specifically in the intestinal epithelium, and with pharmacologic inhibition of JAK signaling all resulted in protection of the stem cell compartment. In addition, epithelial cultures with Paneth cell-deficient organoids, IFNγR-deficient Paneth cells, IFNγR-deficient ISCs, and purified stem cell colonies all indicated direct targeting of the ISCs that was not dependent on injury to the Paneth cell niche. Dysregulated T cell activation and IFNγ production are thus potent mediators of ISC injury, and blockade of JAK/STAT signaling within target tissue stem cells can prevent this T cell-mediated pathology.
Collapse
Affiliation(s)
- S Takashima
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M L Martin
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S A Jansen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - Y Fu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J Bos
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - D Chandra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M H O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A M Mertelsmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - P Vinci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J Kuttiyara
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S M Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S Middendorp
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - M Calafiore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A Egorova
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Kleppe
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Lo
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - N F Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - E H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - R L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - C Liu
- Department of Pathology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - R Kolesnick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands.,Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, Netherlands
| | - A M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
49
|
Wang T, Yang Y, Wang Z, Zhang X, Li D, Wei J. A SNP of miR-146a is involved in bladder cancer relapse by affecting the function of bladder cancer stem cells via the miR-146a signallings. J Cell Mol Med 2020; 24:8545-8556. [PMID: 32596945 PMCID: PMC7412697 DOI: 10.1111/jcmm.15480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022] Open
Abstract
MiR‐146a‐5p in urine samples was recently reported to be possibly used as a prognostic marker for bladder cancer (BC). Interestingly, YAP1 and COX2 were both demonstrated to function as stem cell regulators in BC. Therefore, in this study, we aimed to establish the molecular mechanism underlying the role of miR‐146a, YAP1 and COX2 in BC relapse. We also studied the possibility of using the C > G genotype of miR‐146a rs2910164 SNP as an indicator of BC relapse. A total of 170 BC patients were assigned into different groups based on their genotypes of rs2910164 SNP. Kaplan‐Meier survival curves were plotted to compare the recurrence‐free rate among these groups. Real‐time PCR, Western Blot, bioinformatic analysis, luciferase assay and IHC assay were conducted to study the role of rs2910164 SNP in the progression of BC. Accordingly, GC/CC‐genotyped patients presented a higher risk of recurrence when compared with GG‐genotyped patients, while the expression of BC regulators was influenced by the presence of rs2910164. COX2 mRNA and YAP1 mRNA were, respectively, validated as direct target genes of miR‐146a, and the expression of YAP1 and COX2 mRNA/protein was both suppressed by miR‐146a precursors. The expression of ALDH1A1 mRNA/protein was inhibited upon the down‐regulation of YAP1, while the expression of let7 and SOX2 mRNA/protein was inhibited upon the down‐regulation of COX2. In conclusion, two signalling pathways, miR‐146a/YAP1/ALDH1A1 and miR‐146a/COX2/PGE2/let7/SOX2, were modulated by miR‐146a. As an SNP regulating the expression of miR‐146a, the rs2910164 G > C SNP could be utilized as a biomarker for BC relapse.
Collapse
Affiliation(s)
- Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfeng Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuechong Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxing Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Sênos Demarco R, Clémot M, Jones DL. The impact of ageing on lipid-mediated regulation of adult stem cell behavior and tissue homeostasis. Mech Ageing Dev 2020; 189:111278. [PMID: 32522455 DOI: 10.1016/j.mad.2020.111278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Adult stem cells sustain tissue homeostasis throughout life and provide an important reservoir of cells capable of tissue repair in response to stress and tissue damage. Age-related changes to stem cells and/or the specialized niches that house them have been shown to negatively impact stem cell maintenance and activity. In addition, metabolic inputs have surfaced as another crucial layer in the control of stem cell behavior (Chandel et al., 2016; Folmes and Terzic, 2016; Ito and Suda, 2014; Mana et al., 2017; Shyh-Chang and Ng, 2017). Here, we will present a brief review of how lipid metabolism influences adult stem cell behavior under homeostatic conditions and speculate on how changes in lipid metabolism may impact stem cell ageing. This review considers the future of lipid metabolism research in stem cells, with the long-term goal of identifying mechanisms that could be targeted to counter or slow the age-related decline in stem cell function.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA
| | - Marie Clémot
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Molecular Biology Institute, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|