1
|
de Andrade-da-Costa J, de-Souza-Ferreira M, Dos Santos Touça NC, Sousa-Squiavinato ACM, Soares-Lima SC, Morgado-Díaz JA, de-Freitas-Junior JCM. Enrichment of cancer stem cell subpopulation alters the glycogene expression profile of colorectal cancer cells. Discov Oncol 2024; 15:647. [PMID: 39532788 PMCID: PMC11557779 DOI: 10.1007/s12672-024-01536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) has a high mortality rate, resulting from the processes of metastasis and disease recurrence. Cancer stem cells (CSCs) are believed to be crucial for both processes, as they ensure the maintenance of the tumor bulk, in addition to being intrinsically resistant to conventional therapies. Thus, the present study aimed to investigate glycobiomarkers in colorectal cancer stem cell subpopulations. For this purpose, a sphere formation assay was standardized for CACO-2 and HT-29 cell lines, which were monitored through gene expression analysis of five known CSC markers (CD24, CD44, ALDH1, LGR5, and PROM1). Compared to the parental condition (2D), a reduction in CD24 expression was seen in CACO-2, while in HT-29 an increase in the expression levels of ALDH1, LGR5, and PROM1 was observed. Regarding glycogenes, eight of them (ST3GAL1, OGT, OGA, MGAT5, GFAT1, GFAT2, B4GALT1 e B3GNT2) have had their expression monitored. An increase in B3GNT2, OGT, and OGA was observed in the HT-29 sphere condition. On the other hand, no change in the glycogenes expression was observed in CACO-2. In silico correlation analyses (CSCs markers versus glycogenes) using TCGA data from colon and rectum carcinoma samples showed a weak positive correlation between LGR5 vs OGA expression regardless of the sample location. In addition, an increase in the expression of LGR5, OGA, and OGT as well as a decrease in the expression of ALDH1 were observed in colon carcinoma samples when compared to the adjacent normal tissue. Interestingly, greater OGA expression resulted in both lower overall survival of colon carcinoma patients and lower disease-free survival of rectum carcinoma patients. Therefore, our data indicates that OGA expression correlates with CSC markers and directly impacts the survival of colorectal carcinoma patients.
Collapse
Affiliation(s)
- Jéssica de Andrade-da-Costa
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Nathália Campos Dos Santos Touça
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Lv D, Dixit D, Cruz AF, Kim LJY, Duan L, Xu X, Wu Q, Zhong C, Lu C, Gersey ZC, Gimple RC, Xie Q, Yang K, Liu X, Fang X, Wu X, Kidwell RL, Wang X, Bao S, He HH, Locasale JW, Agnihotri S, Rich JN. Metabolic regulation of the glioblastoma stem cell epitranscriptome by malate dehydrogenase 2. Cell Metab 2024; 36:2419-2436.e8. [PMID: 39454581 DOI: 10.1016/j.cmet.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Tumors reprogram their metabolism to generate complex neoplastic ecosystems. Here, we demonstrate that glioblastoma (GBM) stem cells (GSCs) display elevated activity of the malate-aspartate shuttle (MAS) and expression of malate dehydrogenase 2 (MDH2). Genetic and pharmacologic targeting of MDH2 attenuated GSC proliferation, self-renewal, and in vivo tumor growth, partially rescued by aspartate. Targeting MDH2 induced accumulation of alpha-ketoglutarate (αKG), a critical co-factor for dioxygenases, including the N6-methyladenosine (m6A) RNA demethylase AlkB homolog 5, RNA demethylase (ALKBH5). Forced expression of MDH2 increased m6A levels and inhibited ALKBH5 activity, both rescued by αKG supplementation. Reciprocally, targeting MDH2 reduced global m6A levels with platelet-derived growth factor receptor-β (PDGFRβ) as a regulated transcript. Pharmacological inhibition of MDH2 in GSCs augmented efficacy of dasatinib, an orally bioavailable multi-kinase inhibitor, including PDGFRβ. Collectively, stem-like tumor cells reprogram their metabolism to induce changes in their epitranscriptomes and reveal possible therapeutic paradigms.
Collapse
Affiliation(s)
- Deguan Lv
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deobrat Dixit
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea F Cruz
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Likun Duan
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xin Xu
- Princess Margaret Cancer Centre/University Health Network, Toronto, ON, Canada
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cuiqing Zhong
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Chenfei Lu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zachary C Gersey
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qi Xie
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoguang Fang
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shideng Bao
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Housheng H He
- Princess Margaret Cancer Centre/University Health Network, Toronto, ON, Canada
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sameer Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Jeremy N Rich
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Division of Regenerative Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Man KH, Wu Y, Gao Z, Spreng AS, Keding J, Mangei J, Boskovic P, Mallm JP, Liu HK, Imbusch CD, Lichter P, Radlwimmer B. SOX10 mediates glioblastoma cell-state plasticity. EMBO Rep 2024; 25:5113-5140. [PMID: 39285246 PMCID: PMC11549307 DOI: 10.1038/s44319-024-00258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 11/10/2024] Open
Abstract
Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis.
Collapse
Affiliation(s)
- Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
| | - Zhenjiang Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Anna-Sophie Spreng
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanna Keding
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Mangei
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hai-Kun Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024; 10:1052-1071. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
5
|
El Meouche I, Jain P, Jolly MK, Capp JP. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl Oncol 2024; 49:102069. [PMID: 39121829 PMCID: PMC11364053 DOI: 10.1016/j.tranon.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A common feature of bacterial, fungal and cancer cell populations upon treatment is the presence of tolerant and persistent cells able to survive, and sometimes grow, even in the presence of usually inhibitory or lethal drug concentrations, driven by non-genetic differences among individual cells in a population. Here we review and compare data obtained on drug survival in bacteria, fungi and cancer cells to unravel common characteristics and cellular pathways, and to point their singularities. This comparative work also allows to cross-fertilize ideas across fields. We particularly focus on the role of gene expression variability in the emergence of cell-cell non-genetic heterogeneity because it represents a possible common basic molecular process at the origin of most persistence phenomena and could be monitored and tuned to help improve therapeutic interventions.
Collapse
Affiliation(s)
- Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM, IAME, F-75018 Paris, France.
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France.
| |
Collapse
|
6
|
Sahoo L, Paikray SK, Tripathy NS, Fernandes D, Dilnawaz F. Advancements in nanotheranostics for glioma therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03559-w. [PMID: 39480526 DOI: 10.1007/s00210-024-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Gliomas are brain tumors mainly derived from glial cells that are difficult to treat and cause high mortality. Radiation, chemotherapy, and surgical excision are the conventional treatments for gliomas. Patients who have surgery or have undergone chemotherapy for glioma treatment have poor prognosis with tumor recurrence. In particular, for glioblastoma, the 5-year average survival rate is 4-7%, and the median survival is 12-18 months. A number of issues hinder effective treatment such as, poor surgical resection, tumor heterogeneity, insufficient drug penetration across the blood-brain barrier, multidrug resistance, and difficulties with drug specificity. Nanotheranostic-mediated drug delivery is becoming a well-researched consideration, and an efficient non-invasive method for delivering chemotherapeutic drugs to the target area. Theranostic nanomedicines, which incorporate therapeutic drugs and imaging agents for personalized therapies, can be used for preventing overdose of non-responders. Through the identification of massive and complicated information from next-generation sequencing, machine learning enables for precise prediction of therapeutic outcomes and post-treatment management for patients with cancer. This article gives a thorough overview of nanocarrier-mediated drug delivery with a brief introduction to drug delivery challenges. In addition, this assessment offers a current summary of preclinical and clinical research on nanomedicines for gliomas. In the future, nanotheranostics will provide personalized treatment for gliomas and other treatable cancers.
Collapse
Affiliation(s)
- Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | | | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
7
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
9
|
Laisné M, Lupien M, Vallot C. Epigenomic heterogeneity as a source of tumour evolution. Nat Rev Cancer 2024:10.1038/s41568-024-00757-9. [PMID: 39414948 DOI: 10.1038/s41568-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
In the past decade, remarkable progress in cancer medicine has been achieved by the development of treatments that target DNA sequence variants. However, a purely genetic approach to treatment selection is hampered by the fact that diverse cell states can emerge from the same genotype. In multicellular organisms, cell-state heterogeneity is driven by epigenetic processes that regulate DNA-based functions such as transcription; disruption of these processes is a hallmark of cancer that enables the emergence of defective cell states. Advances in single-cell technologies have unlocked our ability to quantify the epigenomic heterogeneity of tumours and understand its mechanisms, thereby transforming our appreciation of how epigenomic changes drive cancer evolution. This Review explores the idea that epigenomic heterogeneity and plasticity act as a reservoir of cell states and therefore as a source of tumour evolution. Best practices to quantify epigenomic heterogeneity and explore its various causes and consequences are discussed, including epigenomic reprogramming, stochastic changes and lasting memory. The design of new therapeutic approaches to restrict epigenomic heterogeneity, with the long-term objective of limiting cancer development and progression, is also addressed.
Collapse
Affiliation(s)
- Marthe Laisné
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontorio, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontorio, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontorio, Canada.
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
10
|
Skouras P, Markouli M, Papadatou I, Piperi C. Targeting epigenetic mechanisms of resistance to chemotherapy in gliomas. Crit Rev Oncol Hematol 2024; 204:104532. [PMID: 39406277 DOI: 10.1016/j.critrevonc.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma, an aggressive type of brain tumors of glial origin is highly heterogeneous, posing significant treatment challenges due to its intrinsic resistance to conventional therapeutic schemes. It is characterized by an interplay between epigenetic and genetic alterations in key signaling pathways which further endorse their resistance potential. Aberrant DNA methylation patterns, histone modifications and non-coding RNAs may alter the expression of genes associated with drug response and cell survival, induce gene silencing or deregulate key pathways contributing to glioma resistance. There is evidence that epigenetic plasticity enables glioma cells to adapt dynamically to therapeutic schemes and allow the formation of drug-resistant subpopulations. Furthermore, the tumor microenvironment adds an extra input on epigenetic regulation, increasing the complexity of resistance mechanisms. Herein, we discuss epigenetic changes conferring to drug resistance mechanisms in gliomas in order to delineate novel therapeutic targets and potential approaches that will enable personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ioanna Papadatou
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
11
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
12
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Sperring CP, Cuervo Grajal H, Liu Z, Higgins DM, Amini M, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TT, Teasley D, Wu PB, Hai L, Karan C, Dowdy T, Razavilar A, Siegelin MD, Kitajewski J, Larion M, Bruce JN, Stockwell BR, Sims PA, Canoll P. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J 2024; 43:4492-4521. [PMID: 39192032 PMCID: PMC11480389 DOI: 10.1038/s44318-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
Collapse
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhouzerui Liu
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique Mo Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Misha Amini
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Damian Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | | | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Sacco JL, Gomez EW. Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer. Cancers (Basel) 2024; 16:3289. [PMID: 39409910 PMCID: PMC11475326 DOI: 10.3390/cancers16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment comprises various cell types and experiences dynamic alterations in physical and mechanical properties as cancer progresses. Intratumoral heterogeneity is associated with poor prognosis and poses therapeutic challenges, and recent studies have begun to identify the cellular mechanisms that contribute to phenotypic diversity within tumors. This review will describe epithelial-mesenchymal (E/M) plasticity and its contribution to phenotypic heterogeneity in tumors as well as how epigenetic factors, such as histone modifications, histone modifying enzymes, DNA methylation, and chromatin remodeling, regulate and maintain E/M phenotypes. This review will also report how mechanical properties vary across tumors and regulate epigenetic modifications and E/M plasticity. Finally, it highlights how intratumoral heterogeneity impacts therapeutic efficacy and provides potential therapeutic targets to improve cancer treatments.
Collapse
Affiliation(s)
- Jessica L. Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Tirosh I, Suva ML. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 2024; 42:1497-1506. [PMID: 39214095 DOI: 10.1016/j.ccell.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Human tumors are intricate ecosystems composed of diverse genetic clones and malignant cell states that evolve in a complex tumor micro-environment. Single-cell RNA-sequencing (scRNA-seq) provides a compelling strategy to dissect this intricate biology and has enabled a revolution in our ability to understand tumor biology over the last ten years. Here we reflect on this first decade of scRNA-seq in human tumors and highlight some of the powerful insights gleaned from these studies. We first focus on computational approaches for robustly defining cancer cell states and their diversity and highlight some of the most common patterns of gene expression intra-tumor heterogeneity (eITH) observed across cancer types. We then discuss ambiguities in the field in defining and naming such eITH programs. Finally, we highlight critical developments that will facilitate future research and the broader implementation of these technologies in clinical settings.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.
| | - Mario L Suva
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
15
|
D'Antonio C, Liguori GL. Dormancy and awakening of cancer cells: the extracellular vesicle-mediated cross-talk between Dr. Jekill and Mr. Hyde. Front Immunol 2024; 15:1441914. [PMID: 39301024 PMCID: PMC11410588 DOI: 10.3389/fimmu.2024.1441914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer cell dormancy is a reversible process whereby cancer cells enter a quiescent state characterized by cell cycle arrest, inhibition of cell migration and invasion, and increased chemoresistance. Because of its reversibility and resistance to treatment, dormancy is a key process to study, monitor, and interfere with, in order to prevent tumor recurrence and metastasis and improve the prognosis of cancer patients. However, to achieve this goal, further studies are needed to elucidate the mechanisms underlying this complex and dynamic dual process. Here, we review the contribution of extracellular vesicles (EVs) to the regulation of cancer cell dormancy/awakening, focusing on the cross-talk between tumor and non-tumor cells in both the primary tumor and the (pre-)metastatic niche. Although EVs are recognized as key players in tumor progression and metastasis, as well as in tumor diagnostics and therapeutics, their role specifically in dormancy induction/escape is still largely elusive. We report on the most recent and promising results on this topic, focusing on the EV-associated nucleic acids involved. We highlight how EV studies could greatly contribute to the identification of dormancy signaling pathways and a dormancy/early awakening signature for the development of successful diagnostic/prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Concetta D'Antonio
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| |
Collapse
|
16
|
Kim J, Ng RH, Liang J, Johnson D, Shin YS, Chatziioannou AF, Phelps ME, Wei W, Levine RD, Heath JR. Kinetic Trajectories of Glucose Uptake in Single Cancer Cells Reveal a Drug-Induced Cell-State Change Within Hours of Drug Treatment. J Phys Chem B 2024; 128:7978-7986. [PMID: 39115241 DOI: 10.1021/acs.jpcb.4c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of drug resistance is a nearly universal phenomenon in patients with glioblastoma multiforme (GBM) brain tumors. Upon treatment, GBM cancer cells may initially undergo a drug-induced cell-state change to a drug-tolerant, slow-cycling state. The kinetics of that process are not well understood, in part due to the heterogeneity of GBM tumors and tumor models, which can confound the interpretation of kinetic data. Here, we resolve drug-adaptation kinetics in a patient-derived in vitro GBM tumor model characterized by the epithelial growth factor receptor (EGFR) variant(v)III oncogene treated with an EGFR inhibitor. We use radiolabeled 18F-fluorodeoxyglucose (FDG) to monitor the glucose uptake trajectories of single GBM cancer cells over a 12 h period of drug treatment. Autocorrelation analysis of the single-cell glucose uptake trajectories reveals evidence of a drug-induced cell-state change from a high- to low-glycolytic phenotype after 5-7 h of drug treatment. Information theoretic analysis of a bulk transcriptome kinetic series of the GBM tumor model delineated the underlying molecular mechanisms driving the cellular state change, including a shift from a stem-like mesenchymal state to a more differentiated, slow-cycling astrocyte-like state. Our results demonstrate that complex drug-induced cancer cell-state changes of cancer cells can be captured via measurements of single cell metabolic trajectories and reveal the extremely facile nature of drug adaptation.
Collapse
Affiliation(s)
- Jungwoo Kim
- Innovation Center for R&D Regulation and Management, Korea Institute of Science & Technology Evaluation and Planning, Eumseong-gun, Chungcheongbuk-do 27740, Korea
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - JingXin Liang
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Young Shik Shin
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Research & Technology Center North America, Robert Bosch LLC, Sunnyvale, California 94085, United States
| | - Arion F Chatziioannou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Wei Wei
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
| | - Raphael D Levine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - James R Heath
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation in S. pombe during heterochromatin misregulation. Dev Cell 2024; 59:2222-2238.e4. [PMID: 39094565 PMCID: PMC11338711 DOI: 10.1016/j.devcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Colin Kunze
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Justin Curran
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Sophia Lemieux
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | |
Collapse
|
18
|
Romero-Reyes J, Vázquez-Martínez ER, Silva CC, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Navigating glioblastoma complexity: the interplay of neurotransmitters and chromatin. Mol Biol Rep 2024; 51:912. [PMID: 39153092 PMCID: PMC11330389 DOI: 10.1007/s11033-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma is the most aggressive brain cancer with an unfavorable prognosis for patient survival. Glioma stem cells, a subpopulation of cancer cells, drive tumor initiation, self-renewal, and resistance to therapy and, together with the microenvironment, play a crucial role in glioblastoma maintenance and progression. Neurotransmitters such as noradrenaline, dopamine, and serotonin have contrasting effects on glioblastoma development, stimulating or inhibiting its progression depending on the cellular context and through their action on glioma stem cells, perhaps changing the epigenetic landscape. Recent studies have revealed that serotonin and dopamine induce chromatin modifications related to transcriptional plasticity in the mammalian brain and possibly in glioblastoma; however, this topic still needs to be explored because of its potential implications for glioblastoma treatment. Also, it is essential to consider that neurotransmitters' effects depend on the tumor's microenvironment since it can significantly influence the response and behavior of cancer cells. This review examines the possible role of neurotransmitters as regulators of glioblastoma development, focusing on their impact on the chromatin of glioma stem cells.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab. Biology of Reproduction Research Unit, Carrera de Biología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, México
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
19
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
20
|
Meng H, Miao H, Zhang Y, Chen T, Yuan L, Wan Y, Jiang Y, Zhang L, Cheng W. YBX1 promotes homologous recombination and resistance to platinum-induced stress in ovarian cancer by recognizing m5C modification. Cancer Lett 2024; 597:217064. [PMID: 38880223 DOI: 10.1016/j.canlet.2024.217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Platinum-based chemotherapy causes genetic damage and induces apoptosis in ovarian cancer cells. Enhancing the ability to resist platinum drug-induced DNA damage and apoptotic stress is critical for tumor cells to acquire drug resistance. Here, we found that Y-box binding protein 1 (YBX1) was highly expressed in cisplatin-resistant patient-derived organoids (PDOs) and was a crucial gene for alleviating platinum-induced stress and maintaining drug resistance characteristics in ovarian cancer cells. Mechanistically, YBX1 recognized m5C modifications in CHD3 mRNA and maintained mRNA stability by recruiting PABPC1 protein. This regulatory process enhanced chromatin accessibility and improved the efficiency of homologous recombination (HR) repair, facilitating tumor cells to withstand platinum-induced apoptotic stress. In addition, SU056, an inhibitor of YBX1, exhibited the potential to reverse platinum resistance in subcutaneous and PDO orthotopic xenograft models. In conclusion, YBX1 is critical for ovarian cancer cells to alleviate the platinum-induced stress and may be a potential target for reversing drug-resistant therapies.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huixian Miao
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yashuang Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Rolfe NW, Dadario NB, Canoll P, Bruce JN. A Review of Therapeutic Agents Given by Convection-Enhanced Delivery for Adult Glioblastoma. Pharmaceuticals (Basel) 2024; 17:973. [PMID: 39204078 PMCID: PMC11357193 DOI: 10.3390/ph17080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma remains a devastating disease with a bleak prognosis despite continued research and numerous clinical trials. Convection-enhanced delivery offers researchers and clinicians a platform to bypass the blood-brain barrier and administer drugs directly to the brain parenchyma. While not without significant technological challenges, convection-enhanced delivery theoretically allows for a wide range of therapeutic agents to be delivered to the tumoral space while preventing systemic toxicities. This article provides a comprehensive review of the antitumor agents studied in clinical trials of convection-enhanced delivery to treat adult high-grade gliomas. Agents are grouped by classes, and preclinical evidence for these agents is summarized, as is a brief description of their mechanism of action. The strengths and weaknesses of each clinical trial are also outlined. By doing so, the difficulty of untangling the efficacy of a drug from the technological challenges of convection-enhanced delivery is highlighted. Finally, this article provides a focused review of some therapeutics that might stand to benefit from future clinical trials for glioblastoma using convection-enhanced delivery.
Collapse
Affiliation(s)
- Nathaniel W. Rolfe
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| |
Collapse
|
22
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
23
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
24
|
Miti T, Desai B, Miroshnychenko D, Basanta D, Marusyk A. Dissecting the Spatially Restricted Effects of Microenvironment-Mediated Resistance on Targeted Therapy Responses. Cancers (Basel) 2024; 16:2405. [PMID: 39001467 PMCID: PMC11240540 DOI: 10.3390/cancers16132405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The response of tumors to anti-cancer therapies is defined not only by cell-intrinsic therapy sensitivities but also by local interactions with the tumor microenvironment. Fibroblasts that make tumor stroma have been shown to produce paracrine factors that can strongly reduce the sensitivity of tumor cells to many types of targeted therapies. Moreover, a high stroma/tumor ratio is generally associated with poor survival and reduced therapy responses. However, in contrast to advanced knowledge of the molecular mechanisms responsible for stroma-mediated resistance, its effect on the ability of tumors to escape therapeutic eradication remains poorly understood. To a large extent, this gap of knowledge reflects the challenge of accounting for the spatial aspects of microenvironmental resistance, especially over longer time frames. To address this problem, we integrated spatial inferences of proliferation-death dynamics from an experimental animal model of targeted therapy responses with spatial mathematical modeling. With this approach, we dissected the impact of tumor/stroma distribution, magnitude and distance of stromal effects. While all of the tested parameters affected the ability of tumor cells to resist elimination, spatial patterns of stroma distribution within tumor tissue had a particularly strong impact.
Collapse
Affiliation(s)
- Tatiana Miti
- Department of Integrative Mathematical Oncology, H. Lee Moffitt Cancer Centre and Research Institute, Tampa, FL 33612, USA;
| | - Bina Desai
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Centre and Research Institute, Tampa, FL 33612, USA (D.M.)
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Daria Miroshnychenko
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Centre and Research Institute, Tampa, FL 33612, USA (D.M.)
| | - David Basanta
- Department of Integrative Mathematical Oncology, H. Lee Moffitt Cancer Centre and Research Institute, Tampa, FL 33612, USA;
| | - Andriy Marusyk
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Centre and Research Institute, Tampa, FL 33612, USA (D.M.)
| |
Collapse
|
25
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Whiting FJH, Househam J, Baker AM, Sottoriva A, Graham TA. Phenotypic noise and plasticity in cancer evolution. Trends Cell Biol 2024; 34:451-464. [PMID: 37968225 DOI: 10.1016/j.tcb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change. We suggest 'phenotypic noise' be used to distinguish non-genetic changes in phenotype that occur independently from the environment. We discuss the conceptual and methodological techniques used to identify these phenomena during cancer evolution. We propose that the distinction will guide efforts to define mechanisms of phenotype change, accelerate translational work to manipulate phenotypes through treatment, and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|
27
|
Zhang H, Li Q, Guo X, Wu H, Hu C, Liu G, Yu T, Hu X, Qiu Q, Guo G, She J, Chen Y. MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer. J Pharm Anal 2024; 14:100950. [PMID: 39027911 PMCID: PMC11255892 DOI: 10.1016/j.jpha.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer (CRC). Cisplatin (DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair. Among the elements that lead to DDP resistance, O 6-methylguanine (O 6-MG)-DNA-methyltransferase (MGMT), a DNA-repair enzyme, performs a quintessential role. In this study, we clarify the significant involvement of MGMT in conferring DDP resistance in CRC, elucidating the underlying mechanism of the regulatory actions of MGMT. A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study, and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo. Conversely, in cancer cells, MGMT overexpression abolishes their sensitivity to DDP treatment. Mechanistically, the interaction between MGMT and cyclin dependent kinase 1 (CDK1) inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1. Meanwhile, to achieve nonhomologous end joining, MGMT interacts with XRCC6 to resist chemotherapy drugs. Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation, and several Wnt inhibitors can repress drug-resistant cells. In summary, our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
Collapse
Affiliation(s)
- Haowei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qixin Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaolong Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiake Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gang Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
28
|
Nguyen CDK, Colón-Emeric BA, Murakami S, Shujath MNY, Yi C. PRMT1 promotes epigenetic reprogramming associated with acquired chemoresistance in pancreatic cancer. Cell Rep 2024; 43:114176. [PMID: 38691454 PMCID: PMC11238875 DOI: 10.1016/j.celrep.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Benjamín A Colón-Emeric
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mia N Y Shujath
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
29
|
Giaimo BD, Friedrich T, Ferrante F, Bartkuhn M, Borggrefe T. Comprehensive genomic features indicative for Notch responsiveness. Nucleic Acids Res 2024; 52:5179-5194. [PMID: 38647081 PMCID: PMC11109962 DOI: 10.1093/nar/gkae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factor RBPJ is the central component in Notch signal transduction and directly forms a coactivator complex together with the Notch intracellular domain (NICD). While RBPJ protein levels remain constant in most tissues, dynamic expression of Notch target genes varies depending on the given cell-type and the Notch activity state. To elucidate dynamic RBPJ binding genome-wide, we investigated RBPJ occupancy by ChIP-Seq. Surprisingly, only a small set of the total RBPJ sites show a dynamic binding behavior in response to Notch signaling. Compared to static RBPJ sites, dynamic sites differ in regard to their chromatin state, binding strength and enhancer positioning. Dynamic RBPJ sites are predominantly located distal to transcriptional start sites (TSSs), while most static sites are found in promoter-proximal regions. Importantly, gene responsiveness is preferentially associated with dynamic RBPJ binding sites and this static and dynamic binding behavior is repeatedly observed across different cell types and species. Based on the above findings we used a machine-learning algorithm to predict Notch responsiveness with high confidence in different cellular contexts. Our results strongly support the notion that the combination of binding strength and enhancer positioning are indicative of Notch responsiveness.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
- Institute for Lung Health, Aulweg 132, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
30
|
Xie T, Danieli-Mackay A, Buccarelli M, Barbieri M, Papadionysiou I, D'Alessandris QG, Robens C, Übelmesser N, Vinchure OS, Lauretti L, Fotia G, Schwarz RF, Wang X, Ricci-Vitiani L, Gopalakrishnan J, Pallini R, Papantonis A. Pervasive structural heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional programs. Nat Commun 2024; 15:3905. [PMID: 38724522 PMCID: PMC11082206 DOI: 10.1038/s41467-024-48053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.
Collapse
Affiliation(s)
- Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Q Giorgio D'Alessandris
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy
- Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Claudia Robens
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), University of Cologne, Cologne, Germany
| | - Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Omkar Suhas Vinchure
- Institute of Human Genetics, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Liverana Lauretti
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy
| | - Giorgio Fotia
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Roland F Schwarz
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Xiaotao Wang
- Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Roberto Pallini
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
31
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Johnson AL, Lopez-Bertoni H. Cellular diversity through space and time: adding new dimensions to GBM therapeutic development. Front Genet 2024; 15:1356611. [PMID: 38774283 PMCID: PMC11106394 DOI: 10.3389/fgene.2024.1356611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability. These cutting-edge approaches are providing new molecular insights highlighting a critical role for the tumor microenvironment (TME) as a driver of cellular plasticity and phenotypic heterogeneity. With this expanded molecular toolbox, the influence of TME factors, including endogenous (e.g., oxygen and nutrient availability and interactions with non-malignant cells) and iatrogenically induced (e.g., post-therapeutic intervention) stimuli, on tumor cell states can be explored to a greater depth. There exists a critical need for interrogating the temporal and spatial aspects of patient tumors at a high, cell-level resolution to identify therapeutically targetable states, interactions and mechanisms. In this review, we discuss advancements in our understanding of spatiotemporal diversity in GBM with an emphasis on the influence of hypoxia and immune cell interactions on tumor cell heterogeneity. Additionally, we describe specific high-resolution spatially resolved methodologies and their potential to expand the impact of pre-clinical GBM studies. Finally, we highlight clinical attempts at targeting hypoxia- and immune-related mechanisms of malignancy and the potential therapeutic opportunities afforded by single-cell and spatial exploration of GBM patient specimens.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
- Oncology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
35
|
Pichol-Thievend C, Anezo O, Pettiwala AM, Bourmeau G, Montagne R, Lyne AM, Guichet PO, Deshors P, Ballestín A, Blanchard B, Reveilles J, Ravi VM, Joseph K, Heiland DH, Julien B, Leboucher S, Besse L, Legoix P, Dingli F, Liva S, Loew D, Giani E, Ribecco V, Furumaya C, Marcos-Kovandzic L, Masliantsev K, Daubon T, Wang L, Diaz AA, Schnell O, Beck J, Servant N, Karayan-Tapon L, Cavalli FMG, Seano G. VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance. Nat Commun 2024; 15:3602. [PMID: 38684700 PMCID: PMC11058782 DOI: 10.1038/s41467-024-47985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Oceane Anezo
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Aafrin M Pettiwala
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
- Institut Curie, PSL University, 75005, Paris, France
| | - Guillaume Bourmeau
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Remi Montagne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Anne-Marie Lyne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Pauline Deshors
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Alberto Ballestín
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Benjamin Blanchard
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Juliette Reveilles
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Boris Julien
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | | | - Laetitia Besse
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UMS2016, INSERM US43, Multimodal Imaging Center, 91400, Orsay, France
| | - Patricia Legoix
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Stephane Liva
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Damarys Loew
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Valentino Ribecco
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Charita Furumaya
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Laura Marcos-Kovandzic
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Thomas Daubon
- Université Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Hematologic Malignancies Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France.
| |
Collapse
|
36
|
Hu B, Wiesehofer M, de Miguel FJ, Liu Z, Chan LH, Choi J, Melnick MA, Estape AA, Walther Z, Zhao D, Lopez-Giraldez F, Wurtz A, Cai G, Fan R, Gettinger S, Xiao A, Yan Q, Homer R, Nguyen DX, Politi K. ASCL1 Drives Tolerance to Osimertinib in EGFR Mutant Lung Cancer in Permissive Cellular Contexts. Cancer Res 2024; 84:1303-1319. [PMID: 38359163 PMCID: PMC11142404 DOI: 10.1158/0008-5472.can-23-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.
Collapse
Affiliation(s)
- Bomiao Hu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | | | | | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Lok-Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Present address: Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Anna Arnal Estape
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Dejian Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Anna Wurtz
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Guoping Cai
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Rong Fan
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut
| | - Scott Gettinger
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Andrew Xiao
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Don X. Nguyen
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| |
Collapse
|
37
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation during heterochromatin misregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548368. [PMID: 37503217 PMCID: PMC10369875 DOI: 10.1101/2023.07.10.548368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.
Collapse
|
38
|
Kohan AA, Lupien M, Cescon D, Deblois G, Ventura M, Metser U, Veit-Haibach P. Detection of metabolic adaptation in a triple-negative breast cancer animal model with [ 18F]choline-PET imaging as a surrogate for drug resistance. Eur J Nucl Med Mol Imaging 2024; 51:1261-1267. [PMID: 38095672 DOI: 10.1007/s00259-023-06546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/26/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Test the feasibility of an image-based method to identify taxane resistance in mouse bearing triple-negative breast cancer (TNBC) tumor xenografts. METHODS Xenograft tumor-bearing mice from paclitaxel-sensitive and paclitaxel-resistant TNBC cells (MDA-MD-346) were generated by orthotopic injection into female NOD-SCID mice. When tumors reached 100-150 mm3, mice were scanned using [18F]choline PET/CT. Tumors were collected and sliced for autoradiography and immunofluorescence analysis. Quantitative data was analyzed accordingly. RESULTS From fifteen mice scanned, five had taxane-sensitive cell line tumors of which two underwent taxol-based treatment. From the remaining 10 mice with taxane-resistant cell line tumors, four underwent taxol-based treatment. Only 13 mice had the tumor sample analyzed histologically. When normalized to the blood pool, both cell lines showed differences in metabolic uptake before and after treatment. CONCLUSIONS Treated and untreated taxane-sensitive and taxane-resistant cell lines have different metabolic properties that could be leveraged before the start of chemotherapy.
Collapse
Affiliation(s)
- Andres A Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Manuela Ventura
- STTARR Innovation Centre, University Health Network, Toronto, Ontario, Canada
- Animal Resources GSU, Human Technopole Foundation, Milan, Italy
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada
| |
Collapse
|
39
|
Fatma H, Siddique HR. Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked? Cancer Metastasis Rev 2024; 43:423-440. [PMID: 37796391 DOI: 10.1007/s10555-023-10144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
40
|
Collignon E. Unveiling the role of cellular dormancy in cancer progression and recurrence. Curr Opin Oncol 2024; 36:74-81. [PMID: 38193374 DOI: 10.1097/cco.0000000000001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cellular dormancy is a major contributor to cancer progression and recurrence. This review explores recent findings on the molecular mechanisms implicated in cancer dormancy and investigates potential strategies to improve therapeutic interventions. RECENT FINDINGS Research on cancer dormancy reveals a complex and multifaceted phenomenon. Providing a latent reservoir of tumor cells with reduced proliferation and enhanced drug-tolerance, dormant cancer cells emerge from a clonally diverse population after therapy or at metastatic sites. These cells exhibit distinct transcriptional and epigenetic profiles, involving the downregulation of Myc and mechanistic target of rapamycin (mTOR) pathways, and the induction of autophagy. Senescence traits, under the control of factors such as p53, also contribute significantly. The tumor microenvironment can either promote or prevent dormancy establishment, notably through the involvement of T and NK cells within the dormant tumor niche. Strategies to combat dormancy-related relapse include direct elimination of dormant tumor cells, sustaining dormancy to prolong survival, or awakening dormant cells to re-sensitize them to antiproliferative drugs. SUMMARY Improving our understanding of cancer dormancy at primary and secondary sites provides valuable insights into patient care and relapse prevention.
Collapse
Affiliation(s)
- Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
41
|
Mancini C, Lori G, Pranzini E, Taddei ML. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol Metab 2024; 35:263-276. [PMID: 38071164 DOI: 10.1016/j.tem.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 03/14/2024]
Abstract
Resistance to anticancer therapy still represents one of the main obstacles to cancer treatment. Numerous components of the tumor microenvironment (TME) contribute significantly to the acquisition of drug resistance. Microenvironmental pressures arising during cancer evolution foster tumor heterogeneity (TH) and facilitate the emergence of drug-resistant clones. In particular, metabolic pressures arising in the TME may favor epigenetic adaptations supporting the acquisition of persistence features in tumor cells. Tumor-persistent cells (TPCs) are characterized by high phenotypic and metabolic plasticity, representing a noticeable advantage in chemo- and radio-resistance. Understanding the crosslink between the evolution of metabolic pressures in the TME, epigenetics, and TPC evolution is significant for developing novel therapeutic strategies specifically targeting TPC vulnerabilities to overcome drug resistance.
Collapse
Affiliation(s)
- Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
42
|
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, Albalawi IA, Masoodi T, Subbaraj GK, Jamal F, Singh M, Kumar R, Macha MA, Uddin S, Akil ASAS, Haris M, Bhat AA. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev 2024; 43:197-228. [PMID: 38329598 PMCID: PMC11016008 DOI: 10.1007/s10555-024-10172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Bilal Rah
- Iron Biology Group, Research Institute of Medical and Health Science, University of Sharjah, Sharjah, UAE
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | | | - Farrukh Jamal
- Dr. Rammanohar, Lohia Avadh University, Ayodhya, India
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Institute of Medical Sciences (AIIMS), Dr. BRAIRCH, All India, New Delhi, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
43
|
Glancy E, Choy N, Eckersley-Maslin MA. Bivalent chromatin: a developmental balancing act tipped in cancer. Biochem Soc Trans 2024; 52:217-229. [PMID: 38385532 PMCID: PMC10903468 DOI: 10.1042/bst20230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.
Collapse
Affiliation(s)
- Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Natalie Choy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie A. Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
44
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
45
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
46
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal profiling defines persistence and resistance dynamics during targeted treatment of melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577085. [PMID: 38370717 PMCID: PMC10871267 DOI: 10.1101/2024.02.02.577085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.
Collapse
|
47
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
48
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
49
|
Bukkuri A. Modeling stress-induced responses: plasticity in continuous state space and gradual clonal evolution. Theory Biosci 2024; 143:63-77. [PMID: 38289469 DOI: 10.1007/s12064-023-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/13/2023] [Indexed: 03/01/2024]
Abstract
Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
50
|
Ullrich V, Ertmer S, Baginska A, Dorsch M, Gull HH, Cima I, Berger P, Dobersalske C, Langer S, Meyer L, Dujardin P, Kebir S, Glas M, Blau T, Keyvani K, Rauschenbach L, Sure U, Roesch A, Grüner BM, Scheffler B. KDM5B predicts temozolomide-resistant subclones in glioblastoma. iScience 2024; 27:108596. [PMID: 38174322 PMCID: PMC10762356 DOI: 10.1016/j.isci.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.
Collapse
Affiliation(s)
- Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Ertmer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Baginska
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Hanah H. Gull
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Igor Cima
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pia Berger
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Celia Dobersalske
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Langer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Loona Meyer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philip Dujardin
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sied Kebir
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Martin Glas
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Laurèl Rauschenbach
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Barbara M. Grüner
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|