1
|
Yang J, Liu Y, Deng G, Feng J, Yu H, Cen X, Li H, Huang Q, Zhang H. Thermosensitive and injectable chitosan-based hydrogel embedding umbilical cord mesenchymal stem cells for β-cell repairing in type 2 diabetes mellitus. Int J Biol Macromol 2024; 279:135546. [PMID: 39265905 DOI: 10.1016/j.ijbiomac.2024.135546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
A thermosensitive and injectable hydrogel composed of chitosan (CS), chitosan biguanide hydrochloride (CSG) and collagen (CO) could embed umbilical cord mesenchymal stem cells (UC-MSCs), then was applied for the type 2 diabetes mellitus (T2DM) treatment in vivo. UC-MSCs could adhere well on CS/CSG/CO hydrogel surface and cell division could be clearly observed. Especially, UC-MSCs maintained alive till they grew in CS/CSG/CO hydrogel for 8 days, while the amount of UC-MSCs was limited due to the steric hindrance in hydrogel. To T2DM mice contrastive treatment by intraperitoneal injection for thirteen weeks, UC-MSCs + Hydrogel group could improve the impaired glucose tolerance, maintain glucose homeostasis in vivo, and restore islet morphology for T2DM mice. The immunofluorescence staining and western blot experiments further displayed that both the nuclear antigen Ki67 for cell proliferation and pancreatic duodenal homeobox-1 (Pdx1) expression in UC-MSCs + Hydrogel group were significantly higher than the expressions in untreated T2DM group and treated UC-MSCs + PBS group, which indicated that UC-MSCs + Hydrogel elevated β cell transcriptional activity. Moreover, the positivity rates of iNOS and CD163 in UC-MSCs + Hydrogel group were generally decreased and increased, respectively, compared to those in untreated T2DM group and treated UC-MSCs + PBS group. It displayed that UC-MSCs + Hydrogel could reduce M1 macrophage expression and increase M2 macrophage polarization in T2DM mice.
Collapse
Affiliation(s)
- Jia Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China..
| | - Guodong Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jiawei Feng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Xiaoyang Cen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Haolun Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qiming Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Huiwen Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
2
|
Luo Y, Yu P, Liu J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine 2024; 86:1-14. [PMID: 38730069 DOI: 10.1007/s12020-024-03855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Nguyen VP, Karoukis AJ, Hu J, Wei Z, Yang D, Fahim AT, Wang X, Paulus YM. Selective nanosecond laser removal of retinal pigment epithelium for cell therapy. Sci Rep 2024; 14:19457. [PMID: 39169055 PMCID: PMC11339075 DOI: 10.1038/s41598-024-69917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Retinal pigment epithelial (RPE) cells play a crucial role in the health of the retina, and their dysfunction is associated with various ocular diseases. The transplantation of RPE cells has been proposed as a potential treatment for numerous degenerative diseases, including geographic atrophy from macular degeneration. However, current models to induce RPE damage in animal models prior to transplantation involve mechanical scraping, chemical administration, or laser photocoagulation techniques, which can damage the overlying neurosensory retina. This study aims to investigate the feasibility and efficacy of nanosecond duration laser treatment to safely remove large areas of RPE cells without causing damage to the adjacent tissue or affecting the retinal architecture. Twelve pigmented rabbits were treated with a nanosecond laser on each eye at a laser energy ranging from 200 to 800 nJ with a treated area of 5 × 5 mm2. Human induced pluripotent stem cells-differentiated to RPE (hiPSC-RPE) cells labeled with indocyanine green (ICG), an FDA approved dye, were transplanted subretinally into the damaged RPE areas at day 14 post-laser treatment. The RPE atrophy and hiPSC-RPE cell survival was evaluated and monitored over a period of 14 days using color photography, fluorescein angiography (FA), photoacoustic microscopy (PAM), and optical coherence tomography (OCT) imaging. All treated eyes demonstrated focal RPE loss with a success rate of 100%. The injured RPE layers and the transplanted hiPSC-RPE cells were visualized in three dimensions using PAM and OCT. By performing PAM at an optical wavelength of 700 nm, the location of hiPSC-RPE cells were identified and distinguished from the surrounding RPE cells, and the induced PA signal increased up to 18 times. Immunohistochemistry results confirmed the grafted hiPSC-RPE replaced regions of RPE damage. This novel technique has the potential to serve as an animal model of RPE degeneration, to improve models of RPE transplantation, and may help accelerate translation of this therapeutic strategy for clinical use.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Athanasios J Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Zhuying Wei
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yannis M Paulus
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Negi V, Lee J, Mandi V, Danvers J, Liu R, Perez-Garcia EM, Li F, Jagannathan R, Yang P, Filingeri D, Kumar A, Ma K, Moulik M, Yechoor VK. Bromodomain Protein Inhibition Protects β-Cells from Cytokine-Induced Death and Dysfunction via Antagonism of NF-κB Pathway. Cells 2024; 13:1108. [PMID: 38994961 PMCID: PMC11240345 DOI: 10.3390/cells13131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokine-induced β-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect β-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on β-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected β-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced β-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in β-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for β-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting β-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving β-cell functional mass in T1D.
Collapse
Affiliation(s)
- Vinny Negi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Varun Mandi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Joseph Danvers
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Eliana M. Perez-Garcia
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Feng Li
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Rajaganapati Jagannathan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Ping Yang
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Domenic Filingeri
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Amit Kumar
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| |
Collapse
|
5
|
Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z, Fu J, Xu Y. Optogenetic therapeutic strategies for diabetes mellitus. J Diabetes 2024; 16:e13557. [PMID: 38751366 PMCID: PMC11096815 DOI: 10.1111/1753-0407.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Collapse
Affiliation(s)
- Xin Deng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Dandan Peng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yuanfa Yao
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Ke Huang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jinling Wang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zhihao Ma
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Junfen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yingke Xu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Wu J, Li T, Guo M, Ji J, Meng X, Fu T, Nie T, Wei T, Zhou Y, Dong W, Zhang M, Shi Y, Cheng X, Yin H. Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue. Cell Discov 2024; 10:45. [PMID: 38684699 PMCID: PMC11058776 DOI: 10.1038/s41421-024-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Jiaying Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tuo Li
- Department of Endocrinology, Shanghai Changzheng Hospital (Second Affiliated Hospital of Naval Medical University), Shanghai, China
| | - Meng Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Junsong Ji
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| | - Xiaoxi Meng
- Department of Interventional Radiology, Shanghai Changzheng Hospital, Shanghai, China
| | - Tianlong Fu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Nie
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tongkun Wei
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhou
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Dong
- Department of Interventional Radiology, Shanghai Changzheng Hospital, Shanghai, China.
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yongquan Shi
- Department of Endocrinology, Shanghai Changzheng Hospital (Second Affiliated Hospital of Naval Medical University), Shanghai, China.
| | - Xin Cheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China.
- Islet Transplantation Training Base of Shanghai Endocrinology Clinical Quality Control Center, Shanghai, China.
| |
Collapse
|
7
|
Wang Y, Wang K, Wang X, Luo Y, Chen H. Hydrogel-Composited Laminate for Islet Immune-Isolation to Treat Type 1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3042-3055. [PMID: 38215348 DOI: 10.1021/acsami.3c12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Challenges remain to be solved for the clinical translation of β-cell encapsulation technology in the treatment of type 1 diabetes (T1D). Successful delivery of β cells urgently needs the development of an encapsulation device with a thin dimension and rapid mass transport that offers stable immune isolation and complete retrieval. In this study, we focus on a laminate in which an islet-embedding alginate hydrogel layer (Alg) is sandwiched between two polymer layers (polyether sulfone, PES). Mechanical support by the PES layer protects the alginate from disintegrating after implantation and allows complete retrieval. The multilayered device has a thin membrane configuration (∼1 mm), and the edge of the laminate and the gaps between Alg and PES offer a semiopen structure that could be more permeable to molecules compared with the closed pocket of conventional macroencapsulation. Islets are suspended in the alginate solution and then encapsulated in the hydrogel layer in the middle of the laminate after gelation. Encapsulating syngeneic or xenogeneic islets in the laminate device corrected chemically induced T1D in mice for over 90 days in both the intraperitoneal space and the epididymal fat pad. The multilayered membrane system may therefore provide a translatable solution in β cell-transplantation therapy in T1D.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xi Wang
- State key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Ying Luo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| |
Collapse
|
8
|
Agerskov RH, Nyeng P. Innervation of the pancreas in development and disease. Development 2024; 151:dev202254. [PMID: 38265192 DOI: 10.1242/dev.202254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The autonomic nervous system innervates the pancreas by sympathetic, parasympathetic and sensory branches during early organogenesis, starting with neural crest cell invasion and formation of an intrinsic neuronal network. Several studies have demonstrated that signals from pancreatic neural crest cells direct pancreatic endocrinogenesis. Likewise, autonomic neurons have been shown to regulate pancreatic islet formation, and have also been implicated in type I diabetes. Here, we provide an overview of recent progress in mapping pancreatic innervation and understanding the interactions between pancreatic neurons, epithelial morphogenesis and cell differentiation. Finally, we discuss pancreas innervation as a factor in the development of diabetes.
Collapse
Affiliation(s)
- Rikke Hoegsberg Agerskov
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| | - Pia Nyeng
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| |
Collapse
|
9
|
Shafaf T, Kazeminejad SR, Hoveizi E. Evaluation of lncRNA Expression During the Differentiation of Mesenchymal Stem Cells to Insulin-Secreting Progenitors. Mol Neurobiol 2024; 61:372-384. [PMID: 37610615 DOI: 10.1007/s12035-023-03571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Diabetes mellitus is a metabolic disease caused by a defect in insulin secretion, insulin function, or both that destroys pancreatic islet beta cells. There is ample evidence that long non-coding RNAs (lncRNAs) play a vital role in cell formation and differentiation. The present study aims to investigate the expression pattern of specific lncRNAs in mesenchymal stem cell (MSC) differentiation into insulin-producing beta cell (IPCs) progenitors for cell therapy purposes. MSCs were extracted from human umbilical cord Wharton jelly (hWJ-MSCs) using the explant method and cultured in two-dimensional (2D) and three-dimensional (3D) media on polylactic acid/Wax (PLA/Wax) nanofibrous scaffold using a three-step protocol containing CHIR99021 small molecules and Indolactam V. At the end of each differentiation step, immunocytochemistry and qRT-PCR were used to confirm the differentiation at the protein and RNA levels and the expression changes of six selective lncRNAs were evaluated by qRT-PCR. The results indicated that the expression of the selected lncRNAs was significantly altered during the differentiation process into beta progenitor cells, indicating their potential role in regulating the IPC differentiation process. More specifically, all of the desired lncRNAs demonstrated a significant increase during the beta cell differentiation, with HI-LNC71 and HI-LNA12 experiencing the highest expression in the produced Beta cell progenitors respectively (p<0.0001). These results can be valuable in tissue engineering and treatment studies by replacing beta precursor cells to control diabetic patients.
Collapse
Affiliation(s)
- Tina Shafaf
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Reza Kazeminejad
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
10
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Peng Y, Wu X, Zhang Y, Yin Y, Chen X, Zheng D, Wang J. An Overview of Traditional Chinese Medicine in the Treatment After Radical Resection of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2305-2321. [PMID: 38143910 PMCID: PMC10743783 DOI: 10.2147/jhc.s413996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
According to the Barcelona Clinic Liver Cancer (BCLC) system, radical resection of early stage primary hepatocellular carcinoma (HCC) mainly includes liver transplantation, surgical resection, and radiofrequency ablation (RFA), which yield 5-year survival rates of about 70-79%, 41.3-69.5%, and 40-70%, respectively. The tumor-free 5-year rate for HCC patients undergoing radical resection only reach up to 13.7 months, so the prevention of recurrence after radical resection of HCC is very important for the prognosis of patients. The traditional Chinese medicine (TCM) takes the approach of multitarget and overall-regulation to treat tumors, it can also independently present the "component-target-pathway" related to a particular disease, and its systematic and holistic characteristics can provide a personalized therapy based on symptoms of the patient by treating the patient as a whole. TCM as postoperative adjuvant therapy after radical resection of HCC in Barcelona Clinic liver cancer A or B stages, and the numerous clinical trials confirmed that the efficacy of TCM in the field of HCC has a significant effect, not only improving the prognosis and quality of life but also enhancing patient survival rate. However, with the characteristics of multi-target, multi-component, and multi-pathway, the specific mechanism of Chinese medicine in the treatment of diseases is still unclear. Because of the positive pharmacological activities of TCM in combating anti-tumors, the mechanism studies of TCM have demonstrated beneficial effects on the regulation of immune function, chronic inflammation, the proliferation and metastasis of liver cancer cells, autophagy, and cell signaling pathways related to liver cancer. Therefore, this article reviews the mechanism of traditional Chinese medicine in reducing the recurrence rate of HCC after radical resection.
Collapse
Affiliation(s)
- Yichen Peng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Xia Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Yurong Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Yue Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Xianglin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Ding Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Jing Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| |
Collapse
|
12
|
Doke M, Álvarez-Cubela S, Klein D, Altilio I, Schulz J, Mateus Gonçalves L, Almaça J, Fraker CA, Pugliese A, Ricordi C, Qadir MMF, Pastori RL, Domínguez-Bendala J. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab 2023; 35:1944-1960.e7. [PMID: 37898119 DOI: 10.1016/j.cmet.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Collapse
Affiliation(s)
- Mayur Doke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph Schulz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alberto Pugliese
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mirza M F Qadir
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Stabler CL, Russ HA. Regulatory approval of islet transplantation for treatment of type 1 diabetes: Implications and what is on the horizon. Mol Ther 2023; 31:3107-3108. [PMID: 37865099 PMCID: PMC10638039 DOI: 10.1016/j.ymthe.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Diabetes Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Holger A Russ
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Diabetes Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Wu J, Shi Y, Yang S, Tang Z, Li Z, Li Z, Zuo J, Ji W, Niu Y. Current state of stem cell research in non-human primates: an overview. MEDICAL REVIEW (2021) 2023; 3:277-304. [PMID: 38235400 PMCID: PMC10790211 DOI: 10.1515/mr-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.
Collapse
Affiliation(s)
- Junmo Wu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuxi Shi
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shanshan Yang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zengli Tang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zifan Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhuoyao Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jiawei Zuo
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Weizhi Ji
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuyu Niu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
15
|
Chendke GS, Kharbikar BN, Ashe S, Faleo G, Sneddon JB, Tang Q, Hebrok M, Desai TA. Replenishable prevascularized cell encapsulation devices increase graft survival and function in the subcutaneous space. Bioeng Transl Med 2023; 8:e10520. [PMID: 37476069 PMCID: PMC10354771 DOI: 10.1002/btm2.10520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 07/22/2023] Open
Abstract
Beta cell replacement therapy (BCRT) for patients with type 1 diabetes (T1D) improves blood glucose regulation by replenishing the endogenous beta cells destroyed by autoimmune attack. Several limitations, including immune isolation, prevent this therapy from reaching its full potential. Cell encapsulation devices used for BCRT provide a protective physical barrier for insulin-producing beta cells, thereby protecting transplanted cells from immune attack. However, poor device engraftment posttransplantation leads to nutrient deprivation and hypoxia, causing metabolic strain on transplanted beta cells. Prevascularization of encapsulation devices at the transplantation site can help establish a host vascular network around the implant, increasing solute transport to the encapsulated cells. Here, we present a replenishable prevascularized implantation methodology (RPVIM) that allows for the vascular integration of replenishable encapsulation devices in the subcutaneous space. Empty encapsulation devices were vascularized for 14 days, after which insulin-producing cells were inserted without disrupting the surrounding vasculature. The RPVIM devices were compared with nonprevascularized devices (Standard Implantation Methodology [SIM]) and previously established prevascularized devices (Standard Prevascularization Implantation Methodology [SPVIM]). Results show that over 75% of RPVIM devices containing stem cell-derived insulin-producing beta cell clusters showed a signal after 28 days of implantation in subcutaneous space. Notably, not only was the percent of RPVIM devices showing signal significantly greater than SIM and SPVIM devices, but the intraperitoneal glucose tolerance tests and histological analyses showed that encapsulated stem-cell derived insulin-producing beta cell clusters retained their function in the RPVIM devices, which is crucial for the successful management of T1D.
Collapse
Affiliation(s)
- Gauree S. Chendke
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Gaetano Faleo
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Julie B. Sneddon
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Cell and Tissue BiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchSan FranciscoCaliforniaUSA
| | - Qizhi Tang
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Organoid Systems, Technical University MunichGarchingGermany
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes CenterNeuherbergGermany
| | - Tejal A. Desai
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- School of Engineering, Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
16
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
17
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
18
|
Martin D, Alberti P, Demartines N, Phillips M, Casey J, Sutherland A. Whole-Organ Pancreas and Islets Transplantations in UK: An Overview and Future Directions. J Clin Med 2023; 12:3245. [PMID: 37176684 PMCID: PMC10179530 DOI: 10.3390/jcm12093245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Whole-organ pancreas and islets transplantations are two therapeutic options to treat type 1 diabetic patients resistant to optimised medical treatment in whom severe complications develop. Selection of the best option for β-cell replacement depends on several factors such as kidney function, patient comorbidities, and treatment goals. For a patient with end-stage kidney disease, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK). However, it remains a major surgical procedure in patients with multiple comorbidities and therefore it is important to select those who will benefit from it. Additionally, in view of the organ shortage, new strategies to improve outcomes and reduce immune reactions have been developed, including dynamic organ perfusion technologies, pancreas bioengineering, and stem cell therapies. The purpose of this article is to review the indications, surgical techniques, outcomes, and future directions of whole-organ pancreas and islets transplantations.
Collapse
Affiliation(s)
- David Martin
- Department of Visceral Surgery and Transplantation, University Hospital CHUV, University of Lausanne (UNIL), 1015 Lausanne, Switzerland;
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Piero Alberti
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Nicolas Demartines
- Department of Visceral Surgery and Transplantation, University Hospital CHUV, University of Lausanne (UNIL), 1015 Lausanne, Switzerland;
| | - Melanie Phillips
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - John Casey
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Andrew Sutherland
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| |
Collapse
|
19
|
Huang X, Gu W, Zhang J, Lan Y, Colarusso JL, Li S, Pertl C, Lu J, Kim H, Zhu J, Breault DT, Sévigny J, Zhou Q. Stomach-derived human insulin-secreting organoids restore glucose homeostasis. Nat Cell Biol 2023; 25:778-786. [PMID: 37106062 DOI: 10.1038/s41556-023-01130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4High endocrine and GalaninHigh GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wei Gu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Lan
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan L Colarusso
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanlan Li
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Pertl
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Lu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hyunkee Kim
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zhu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Qiao Zhou
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Hu X, Gattis C, Olroyd AG, Friera AM, White K, Young C, Basco R, Lamba M, Wells F, Ankala R, Dowdle WE, Lin A, Egenberger K, Rukstalis JM, Millman JR, Connolly AJ, Deuse T, Schrepfer S. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci Transl Med 2023; 15:eadg5794. [PMID: 37043559 DOI: 10.1126/scitranslmed.adg5794] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Transplantation of allogeneic pancreatic donor islets has successfully been performed in selected patients with difficult-to-control insulin-dependent diabetes and impaired awareness of hypoglycemia (IAH). However, the required systemic immunosuppression associated with this procedure prevents this cell replacement therapy from more widespread adoption in larger patient populations. We report the editing of primary human islet cells to the hypoimmune HLA class I- and class II-negative and CD47-overexpressing phenotype and their reaggregation into human HIP pseudoislets (p-islets). Human HIP p-islets were shown to survive, engraft, and ameliorate diabetes in immunocompetent, allogeneic, diabetic humanized mice. HIP p-islet cells were further shown to avoid autoimmune killing in autologous, diabetic humanized autoimmune mice. The survival and endocrine function of HIP p-islet cells were not impaired by contamination of unedited or partially edited cells within the p-islets. HIP p-islet cells were eliminated quickly and reliably in this model using a CD47-targeting antibody, thus providing a safety strategy in case HIP cells exert toxicity in a future clinical setting. Transplantation of human HIP p-islets for which no immunosuppression is required has the potential to lead to wider adoption of this therapy and help more diabetes patients with IAH and history of severe hypoglycemic events to achieve insulin independence.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Corie Gattis
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Ari G Olroyd
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Annabelle M Friera
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Kathy White
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Chi Young
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Ron Basco
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Meghan Lamba
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Frank Wells
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Ramya Ankala
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - William E Dowdle
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - August Lin
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Kyla Egenberger
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | | | - Jeffrey R Millman
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Andrew J Connolly
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI) Lab, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sonja Schrepfer
- Sana Biotechnology Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Wang Y, Wang K, Luo Y, Chen H. Hydrogel-Bondable Asymmetric Planar Membranes with Hierarchical Pore Structures for Cell Scaffolding and Encapsulation. ACS Biomater Sci Eng 2023; 9:1706-1719. [PMID: 36795620 DOI: 10.1021/acsbiomaterials.2c01415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Biomaterials for cell replacement therapy could facilitate the delivery, function, and retrieval of transplanted therapeutic cells. However, the limited capacity to accommodate a sufficient quantity of cells in biomedical devices has hindered the success of clinical application, resulting from the suboptimal spatial organization of cells and insufficient permeation of nutrients in the materials. Herein, through the immersion-precipitation phase transfer (IPPT) process from polyether sulfone (PES), we develop planar asymmetric membranes with a hierarchical pore architecture spanning from nanopores (∼20 nm) in the dense skin and open-ended microchannel arrays with gradient pore size increasing vertically from microns to ∼100 μm. The nanoporous skin would be an ultrathin diffusion barrier, while the microchannels could support high-density cell loading by acting as separate chambers allowing uniform distribution of cells in the scaffold. Alginate hydrogel could permeate into the channels and form a sealing layer after gelation, which could slow down the invasion of host immune cells into the scaffold. The hybrid thin-sheet encapsulation system (∼400 μm thick) could protect allogeneic cells over half-year after intraperitoneal (IP) implantation in immune-competent mice. Such structural membranes and plastic-hydrogel hybrids of thin dimensions could find important applications in cell delivery therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Ying Luo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| |
Collapse
|
22
|
Zhao Y, Veysman B. Revisiting the Pathogenesis of Type 1 Diabetes: Importance of Neural Input to Pancreatic Islets and the Therapeutic Capability of Stem Cell Educator TM Therapy to Restore Their Integrity. Biomedicines 2023; 11:594. [PMID: 36831130 PMCID: PMC9952924 DOI: 10.3390/biomedicines11020594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with a shortage of islet β cells. To date, the etiology of T1D remains elusive. Increasing clinical evidence and animal studies demonstrate that autoimmune cells are directed against the nervous system of pancreatic islets, contributing to the development of T1D. Therefore, it highlights the necessity to explore novel clinical approaches to fundamentally correct the T1D autoimmunity not only focusing on islet β cells but also on protecting the islet nervous system. This allows the restoration of the integrity of islet innervation and the normal islet β-cell function. To address these issues, we developed a novel technology designated the Stem Cell Educator TM therapy, based on immune education by human cord-blood-derived multipotent stem cells (CB-SC). International amulticenter clinical trials demonstrated its clinical safety and efficacy to treat T1D and other autoimmune diseases. Stem Cell Educator TM therapy may have the potential to revolutionize the treatment of T1D, without the safety and ethical concerns associated with conventional immune and/or stem cell-based therapies.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | |
Collapse
|
23
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
24
|
Wang M, Liu Y, Wang Z, Qiao L, Ma X, Hu L, Kong D, Wang Y, Ye H. An Optogenetic-Controlled Cell Reprogramming System for Driving Cell Fate and Light-Responsive Chimeric Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202858. [PMID: 36507552 PMCID: PMC9896073 DOI: 10.1002/advs.202202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Collapse
Affiliation(s)
- Meiyan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Yuanxiao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Ziwei Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Longliang Qiao
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Xiaoding Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Lingfeng Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMI48824USA
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityDongchuan Road 500Shanghai200241China
| |
Collapse
|
25
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
26
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
27
|
Leavens KF, Alvarez-Dominguez JR, Vo LT, Russ HA, Parent AV. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol Metab 2022; 66:101610. [PMID: 36209784 PMCID: PMC9587366 DOI: 10.1016/j.molmet.2022.101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing β cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived β cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Linda T Vo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
29
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
30
|
Zhao X, Zhang Y, Zuo X, Wang S, Dong X. Knockdown of Adra2a Increases Secretion of Growth Factors and Wound Healing Ability in Diabetic Adipose-Derived Stem Cells. Stem Cells Int 2022; 2022:5704628. [PMID: 36420091 PMCID: PMC9678456 DOI: 10.1155/2022/5704628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 08/04/2024] Open
Abstract
Studies showed that compared to normal adipose-derived stem cells (ASCs), ASCs from type 2 diabetic (T2D) mice were less effective in treating diabetic cutaneous wounds. However, the mechanisms remain unclear. Our transcriptomic profiling comparison showed that the expression of α2A-adrenergic receptor (Adra2a) was significantly increased in ASCs from T2D mice (T2D ASCs). Therefore, the purpose of this study was to investigate whether the elevated Adra2a is involved in the diminished wound-healing capabilities of T2D ASCs. RNA-seq was used to compare the transcriptomic profiles of T2D and normal ASCs. The differential genes were verified by real-time RT-qPCR. Clonidine was used to active Adra2a, and lentivirus-mediated RNAi was used to knockdown Adra2a. The secretion and expression of growth factors were detected by enzyme-linked immunosorbent assay (ELISA) and real-time RT-qPCR, respectively. The cAMP and PKA activity were also detected. Wound healing abilities of various ASCs were assessed in T2D mouse excisional wound models. The results showed Adra2a agonist clonidine decreased the expression and secretion of growth factors, cAMP content, and activity of PKA in ASCs, while Adra2a knockdown T2D ASCs showed the opposite effects. Adra2a knockdown T2D ASCs also showed increased wound-healing capabilities compared to untreated T2D ASCs. Altogether, T2D increased Adra2a expression, which may subsequently decrease the expression and secretion of growth factors and eventually diminish the wound-healing capabilities of T2D ASCs. Adra2a knockdown can restore the secretion of growth factors in T2D ASCs and then accelerate the wound healing, which may provide a new possibility in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinzhen Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xiao Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| |
Collapse
|
31
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Behrouz Aflatoonian,
| |
Collapse
|
32
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
33
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Jalan S, Anjankar A, Deshpande S. Effective Treatment of Diabetes Mellitus by Resonance Medicine. Cureus 2022; 14:e29535. [PMID: 36312660 PMCID: PMC9595267 DOI: 10.7759/cureus.29535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/24/2022] [Indexed: 12/04/2022] Open
Abstract
The metabolic disorder known as diabetes mellitus (DM) has several different causes, distinguished by recurring hyperglycemia due to inadequate insulin secretion, insulin action, or both. T-lymphocytes target such cells for destruction, which include beta cells. Transplants of the pancreas, islets of Langerhans, and individual beta cells are all effective treatments for DM. Additionally, treating DM using stem cells is popular currently. The basis of stem cell therapy for DM is the replacement of beta cells, or dead pancreatic cells, with stem cells. After attaching to the tissues of the pancreas, the stem cells differentiate into active cells. An X-ray scanner is used to place a catheter into the pancreatic artery in DM, and the process lasts 90 minutes. The use of stem cells to replace dead pancreatic beta cells forms the cornerstone of stem cell treatment for DM. Transplants of the pancreas, islets of Langerhans, and individual beta cells are all effective treatments for insulin-dependent DM. In contrast to prior studies, where we only used low potencies of nosodes and organopreparations, our research used both high and low potencies of these substances. Choosing the strength of the nosode stomach cancer in the computer-connected device selector so that it will resonate with the nosode that is tested in the patient's device is the doctor's responsibility when using the bioresonance therapy method. The initial nosode, which is in the computer programme of the device for bioresonance therapy, is no longer tested when the stomach cancer nosode is tested in a patient along with the chosen potency of this nosode. The initial nosode in the bioresonance therapy device itself is still being studied in case the chosen nosode's potency is inadequate (the frequency of oscillations of the nosode is lower than the frequency of oscillations of the tumour).
Collapse
Affiliation(s)
- Shyam Jalan
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Shubham Deshpande
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
35
|
Wang Y, Zhang Y, Chen K, Liu J, Wu D, Cheng Y, Wang H, Li Y. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy. Stem Cell Res Ther 2022; 13:418. [PMID: 35964109 PMCID: PMC9375418 DOI: 10.1186/s13287-022-03099-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism. Methods Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy. Results Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair. Conclusions Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM. Graphical abstract Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03099-1.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yuying Zhang
- Department of Pathology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jie Liu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Donghong Wu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yao Cheng
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Hongjie Wang
- Department of Endocrinology, Forth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. .,Department of Endocrinology, South China Hospital of Shenzhen University, No. 1 Fuxin Road, Longgang District, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
36
|
Nakafusa Y, Nitta N, Ishii K, Shirasu N, Iwamoto T, Nemoto T, Nakamura M, Goto M, Iwata H, Taniguchi M, Yasunami Y. Acceptance of Murine Islet Allografts Without Immunosuppression in Inguinal Subcutaneous White Adipose Tissue Pretreated With bFGF. Diabetes 2022; 71:1721-1734. [PMID: 35604856 DOI: 10.2337/db21-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/24/2022] [Indexed: 11/13/2022]
Abstract
Prevention of immune rejection without immunosuppression is the ultimate goal of transplant immunobiology. One way to achieve this in cellular transplantation, such as with islet transplantation, is to create a favorable local environment at the transplant site. In the current study, we found that C57BL/6 mice with streptozotocin-induced diabetes remained normoglycemic for >1 year after transplantation of BALB/c islets without immunosuppression when the inguinal subcutaneous white adipose tissue (ISWAT) was the site of transplantation and when the site was pretreated with basic fibroblast growth factor. Mechanistically, mesenchymal stem cells (MSCs) expanded in the ISWAT after the treatment was found to produce transforming growth factor-β (TGF-β), and prevention of islet allograft rejection could be achieved by cotransplantation with syngeneic MSCs isolated from the ISWAT after the treatment, which was abolished by anti-TGF-β antibody treatment. Importantly, TGF-β-producing cells remained present at the site of cotransplantation up to the end of observation period at 240 days after transplantation. These findings indicate that prevention of islet allograft rejection without immunosuppression is feasible with the use of syngeneic TGF-β-producing MSCs expanded in the ISWAT after the treatment with bFGF, providing a novel strategy for prevention of islet allograft rejection without immunosuppression.
Collapse
Affiliation(s)
- Yuki Nakafusa
- Research Institute for Islet Biology, Fukuoka University Central Research Organization, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoyoshi Nitta
- Research Institute for Islet Biology, Fukuoka University Central Research Organization, Fukuoka, Japan
| | - Kazunari Ishii
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takahiro Iwamoto
- Research Institute for Islet Biology, Fukuoka University Central Research Organization, Fukuoka, Japan
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroo Iwata
- Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Masaru Taniguchi
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yohichi Yasunami
- Research Institute for Islet Biology, Fukuoka University Central Research Organization, Fukuoka, Japan
| |
Collapse
|
37
|
Yin J, Meng H, Lin J, Ji W, Xu T, Liu H. Pancreatic islet organoids-on-a-chip: how far have we gone? J Nanobiotechnology 2022; 20:308. [PMID: 35764957 PMCID: PMC9238112 DOI: 10.1186/s12951-022-01518-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is a disease caused by dysfunction or disruption of pancreatic islets. The advent and development of microfluidic organoids-on-a-chip platforms have facilitated reproduce of complex and dynamic environment for tissue or organ development and complex disease processes. For the research and treatment of DM, the platforms have been widely used to investigate the physiology and pathophysiology of islets. In this review, we first highlight how pancreatic islet organoids-on-a-chip have improved the reproducibility of stem cell differentiation and organoid culture. We further discuss the efficiency of microfluidics in the functional evaluation of pancreatic islet organoids, such as single-islet-sensitivity detection, long-term real-time monitoring, and automatic glucose adjustment to provide relevant stimulation. Then, we present the applications of islet-on-a-chip technology in disease modeling, drug screening and cell replacement therapy. Finally, we summarize the development and challenges of islet-on-a-chip and discuss the prospects of future research.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Bioland Laboratory, Guangzhou, Guangdong, China.,Guangzhou Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | | | - Wei Ji
- Bioland Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, Guangdong, China. .,Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Abstract
The pancreatic β-cells are essential for regulating glucose homeostasis through the coordinated release of the insulin hormone. Dysfunction of the highly specialized β-cells results in diabetes mellitus, a growing global health epidemic. In this review, we describe the development and function of β-cells the emerging concept of heterogeneity within insulin-producing cells, and the potential of other cell types to assume β-cell functionality via transdifferentiation. We also discuss emerging routes to design cells with minimal β-cell properties and human stem cell differentiation efforts that carry the promise to restore normoglycemia in patients suffering from diabetes.
Collapse
Affiliation(s)
- Natanya Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
39
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
40
|
Chen S, Luo J, Shen L, Liu X, Wang W, Xu J, Ren Y, Ye Y, Shi G, Cheng F, Cheng L, Su X, Dai L, Gou M, Deng H. 3D Printing Mini-Capsule Device for Islet Delivery to Treat Type 1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23139-23151. [PMID: 35544723 DOI: 10.1021/acsami.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transplantation of encapsulated islets has been shown to hold a promising potential treatment for type 1 diabetes (T1D). However, there are several obstacles to overcome, such as immune rejection by the host of the grafts, sustainability of islet function, and retrievability or replacement of the encapsulated system, hinder their clinical applications. In this study, mini-capsule devices containing islets were fabricated by using digital light processing (DLP) 3D printing. To ensure a high survival rate and low immunogenicity of the fabricated islets, 20s was selected as the most suitable printing condition. Meanwhile, the mini-capsule devices with a groove structure were fabricated to prevent islet cells leakage. Subcutaneous transplantations of encapsulated islets in immunocompetent C57BL/6 mice indicated significant improvement in the symptoms of streptozotocin-induced hyperglycemia without any immunosuppression treatment for at least 15 weeks. In vivo intraperitoneal glucose tolerance tests (IPGTT) performed at different time points demonstrated therapeutically relevant glycemic ameliorate of the device. The implants retrieved after 15 weeks still contained viable and adequate numbers of islet cells. The results of this study indicate that the proposed mini-capsule device can deliver sufficient islet cell mass, prevent islet cells leakage, and maintain long-term cell survival while allowing easy retrieval. Furthermore, the proposed encapsulated islets may help with T1D cellular treatment by overcoming the obstacles of islet transplantation.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanlin Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenshuang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
42
|
Zeng Q, Song J, Wang D, Sun X, Xiao Y, Zhang H, Xiao Y, Zhou Z, Deng T. Identification of Sorafenib as a Treatment for Type 1 Diabetes. Front Immunol 2022; 13:740805. [PMID: 35242127 PMCID: PMC8886732 DOI: 10.3389/fimmu.2022.740805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Th1 cell activation is considered a key mediator of the pathogenesis of type 1 diabetes. Targeting IL-12-induced Th1 cell differentiation seems to be an effective way to block the development of type 1 diabetes. However, given the critical function of Th1 in the immune system, the potential side effects hinder the application of anti-Th1 therapy in the treatment of type 1 diabetes. To identify safe anti-Th1 treatment(s), we screened the FDA-approved tyrosine kinase inhibitor (TKI) drug library using an IL-12-induced Th1 differentiation cell model. We found that among the TKIs with little effect on T cell viability, sorafenib is the top contender for the inhibition of Th1 differentiation. Treatment of NOD mice with sorafenib significantly impeded the development of type 1 diabetes and ameliorated insulitis, which coincided with a specifically decreased accumulation of Th1 cell population in the pancreas but not in peripheral immune organs. Mechanistically, sorafenib indirectly inhibited janus kinase 2 (JAK2) activity and blocked IL-12-induced phosphorylations of JAK2 and signal transducer and activator of transcription 4 (STAT4). Since sorafenib is classified as an FDA-approved drug, it serves as a preliminary lead point for additional experimentation and may be a promising therapy for type 1 diabetes in humans.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalun Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
43
|
Sparre T, Hansen NAB, Wernersson AS, Guarraia M. Development of an Insulin Pen is a Patient-Centric Multidisciplinary Undertaking: A Commentary. J Diabetes Sci Technol 2022; 16:617-622. [PMID: 34852662 PMCID: PMC9158249 DOI: 10.1177/19322968211058707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of human-centered insulin pen design is to relieve the treatment burden of a chronic condition and help affected individuals to feel free of disease. The patient as well as their entire ecosystem should be considered. At Novo Nordisk A/S, we believe that embedding human-centered design at the heart of our development processes is best achieved with multidisciplinary experts in-house to work alongside product development teams and, importantly, the end user. Novo Nordisk introduced the first commercially available insulin pen in 1985 and has continued to develop reusable/durable and prefilled insulin pens to meet different patient needs, through to the latest NovoPen 6 and NovoPen Echo Plus with SMART technology. Human-centered design is essential for delivering meaningful and practical solutions for individuals with diabetes.
Collapse
Affiliation(s)
- Thomas Sparre
- Novo Nordisk A/S, Søborg, Denmark
- Thomas Sparre, MD, PhD, Novo Nordisk A/S,
Vandtårnsvej 112, DK-2860 Søborg, Denmark.
| | | | | | | |
Collapse
|
44
|
Carvalho AM, Nunes R, Sarmento B. From pluripotent stem cells to bioengineered islets: A challenging journey to diabetes treatment. Eur J Pharm Sci 2022; 172:106148. [DOI: 10.1016/j.ejps.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
45
|
Tootee A, Nikbin B, Nasli Esfahani E, Arjmand B, Aghayan H, Qorbani M, Ghahari A, Larijani B. Clinical Outcomes of Fetal Stem Cell Transplantation in Type 1 Diabetes Are Related to Alternations to Different Lymphocyte Populations. Med J Islam Repub Iran 2022; 36:34. [PMID: 36128298 PMCID: PMC9448473 DOI: 10.47176/mjiri.36.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background: In patients with diabetes, transplantation of stem cells increases C-peptide levels and induces insulin independence for some period. Today, this positive therapeutic outcome is widely attributed to the well-documented immunomodulatory properties of stem cells. The aim of this study was to report alternations (the trend of increase or decrease) in different lymphocyte populations in a stem cell clinical trial performed in our institute. Methods: Recorded data of a clinical trial conducted on 72 patients with type 1 diabetes who had received fetal stem cell transplantation several years ago and were regularly monitored before and after the procedure in 1, 3, 6, 12, 24 months were analyzed. In these regular follow-up visits, insulin demand, HbA1c, C-peptide, and alternation to B cell and T cell populations were analyzed and recorded. For the purpose of the current study, patients were retrospectively divided into 2 groups, namely, those with the positive response to treatment and patients without such response. Temporary positive therapeutic response was defined by 2 different indicators, namely, plasma C-peptide levels and insulin dose-adjusted A1C (IDAA1c), which was calculated as A1C (percent) + (4 × insulin dose (units per kilogram per 24 h). Data analysis was performed by means of SPSS Version 18. Results: Besides the short-term therapeutic effect, we observed remarkably significant alternations to the populations of B and T lymphocytes in the recipients. When patients were retrospectively assigned to 2 different groups of patients with a positive therapeutic response (based on C-peptide changes) and those without it, it was observed that alternations to different populations of B-cells and T-cells were significantly different in these 2 groups. Conclusion: Our results demonstrated that transplantation of stem cells leads to significant positive therapeutic outcomes in one group of patients who showed totally distinct patterns of alternation to different groups of lymphocytes.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Aziz Ghahari
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, Canada
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Parent AV, Ashe S, Nair GG, Li ML, Chavez J, Liu JS, Zhong Y, Streeter PR, Hebrok M. Development of a scalable method to isolate subsets of stem cell-derived pancreatic islet cells. Stem Cell Reports 2022; 17:979-992. [PMID: 35245441 PMCID: PMC9023773 DOI: 10.1016/j.stemcr.2022.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cell replacement therapy using β cells derived from stem cells is a promising alternative to conventional diabetes treatment options. Although current differentiation methods produce glucose-responsive β cells, they can also yield populations of undesired endocrine progenitors and other proliferating cell types that might interfere with long-term islet function and safety of transplanted cells. Here, we describe the generation of an array of monoclonal antibodies against cell surface markers that selectively label stem cell-derived islet cells. A high-throughput screen identified promising candidates, including three clones that mark a high proportion of endocrine cells in differentiated cultures. A scalable magnetic sorting method was developed to enrich for human pluripotent stem cell (hPSC)-derived islet cells using these three antibodies, leading to the formation of islet-like clusters with improved glucose-stimulated insulin secretion and reduced growth upon transplantation. This strategy should facilitate large-scale production of functional islet clusters from stem cells for disease modeling and cell replacement therapy.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mei-Lan Li
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer S Liu
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongping Zhong
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip R Streeter
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
48
|
Sthijns MMJPE, Rademakers T, Oosterveer J, Geuens T, van Blitterswijk CA, LaPointe VLS. The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS One 2022; 17:e0257578. [PMID: 35290395 PMCID: PMC8923503 DOI: 10.1371/journal.pone.0257578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans have low endogenous antioxidant levels and are thus especially sensitive to oxidative stress, which is known to influence cell survival and behaviour. As bioengineered islets are gaining interest for therapeutic purposes, it is important to understand how their composition can be optimized to diminish oxidative stress. We investigated how the ratio of the two main islet cell types (alpha and beta cells) and their culture in three-dimensional aggregates could protect against oxidative stress. Monolayer and aggregate cultures were established by seeding the alphaTC1 (alpha) and INS1E (beta) cell lines in varying ratios, and hydrogen peroxide was applied to induce oxidative stress. Viability, oxidative stress, and the level of the antioxidant glutathione were measured. Both aggregation and an increasing prevalence of INS1E cells in the co-cultures conferred greater resistance to cell death induced by oxidative stress. Increasing the prevalence of INS1E cells also decreased the number of alphaTC1 cells experiencing oxidative stress in the monolayer culture. In 3D aggregates, culturing the alphaTC1 and INS1E cells in a ratio of 50:50 prevented oxidative stress in both cell types. Together, the results of this study lead to new insight into how modulating the composition and dimensionality of a co-culture can influence the oxidative stress levels experienced by the cells.
Collapse
Affiliation(s)
- Mireille M. J. P. E. Sthijns
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 2022; 28:272-282. [PMID: 35115708 DOI: 10.1038/s41591-021-01645-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.
Collapse
|
50
|
Ma J, Zhang C, Shi G, Yue D, Shu Y, Hu S, Qi Z, Chen Y, Zhang B, Zhang Y, Huang A, Su C, Zhang Y, Deng H, Cheng P. High-dose VitC plus oncolytic adenoviruses enhance immunogenic tumor cell death and reprogram tumor immune microenvironment. Mol Ther 2022; 30:644-661. [PMID: 34547462 PMCID: PMC8821933 DOI: 10.1016/j.ymthe.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical and clinical studies have validated the antitumor effects of several oncolytic viruses (OVs). However, the efficacy of OVs is limited when they are administered as monotherapies. Combination therapy is a promising direction for oncolytic virotherapy in the future. A high dose of vitamin C (VitC) exerts anticancer effects by triggering the accretion of substantial amounts of reactive oxygen species (ROS). OVs can induce immunogenic tumor cell death and elicit an antitumor immune response. ROS play an important role in immunogenic cell death (ICD). This study aimed to explore whether high-dose VitC in combination with oncolytic adenoviruses (oAds) exhibited a synergistic antitumor effect. High-dose VitC synergized with oAds against tumor by enhancing immunogenic tumor cell death. Combination therapy with high-dose VitC and oAds significantly increased the number of T cells in the tumor microenvironment (TME) and promoted the activation of T cells. Furthermore, the antitumor effect of the combination therapy was CD8+ T cell dependent. In addition, combination therapy with high-dose VitC and oAds reprogramed the immunosuppressive TME. Our study provides a new strategy for combination therapy of OVs.
Collapse
Affiliation(s)
- Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Chunxue Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Dan Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Anliang Huang
- Department of Pathology, Chengdu Fifth People’s Hospital, Chengdu, PR China
| | - Chao Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China,Corresponding author: Prof. Ping Cheng, State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China.
| |
Collapse
|