1
|
Banjac I, Maimets M, Tsang IHC, Dioli M, Hansen SL, Krizic K, Bressan RB, Lövkvist C, Jensen KB. Fate mapping in mouse demonstrates early secretory differentiation directly from Lgr5+ intestinal stem cells. Dev Cell 2025:S1534-5807(24)00762-7. [PMID: 39793582 DOI: 10.1016/j.devcel.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing. Our integrated approach generated a spatially and temporally defined model of crypt maintenance based on two cycling populations: stem cells at the crypt-bottom and transit-amplifying (TA) cells above them. Subsequently, we validated the predictions from the mathematical model, demonstrating that fate decisions between the secretory and absorptive lineages are made within the stem cell compartment, whereas TA cell divisions contribute specifically to the absorptive lineage. These quantitative insights provide further direct evidence for crypt-bottom stem cells as the dominant driver of the intestinal epithelium replenishment.
Collapse
Affiliation(s)
- Isidora Banjac
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Martti Maimets
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ingrid H C Tsang
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marius Dioli
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Stine Lind Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kata Krizic
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Raul Bardini Bressan
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Cecilia Lövkvist
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
2
|
Fink M, Njah K, Patel SJ, Cook DP, Man V, Ruso F, Rajan A, Narimatsu M, Obersterescu A, Pye MJ, Trcka D, Chan K, Ayyaz A, Wrana JL. Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration. Nat Cell Biol 2024; 26:2084-2098. [PMID: 39548329 DOI: 10.1038/s41556-024-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kizito Njah
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shyam J Patel
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David P Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Cancer Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Man
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Ruso
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arsheen Rajan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andreea Obersterescu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Melanie J Pye
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Trcka
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kin Chan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Network Biology Collaboration Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arshad Ayyaz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
4
|
Trubin S, Patel DB, Tian A. Regulation of the Intestinal Stem Cell Pool and Proliferation in Drosophila. Cells 2024; 13:1856. [PMID: 39594605 PMCID: PMC11592481 DOI: 10.3390/cells13221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulation of somatic stem cells, both during homeostasis and in response to environmental challenges like injury, infection, chemical exposure, and nutritional changes, is critical because their dysregulation can result in tissue degeneration or tumorigenesis. The use of models such as the Drosophila and mammalian adult intestines offers valuable insights into tissue homeostasis and regeneration, advancing our knowledge of stem cell biology and cancer development. This review highlights significant findings from recent studies, unveiling the molecular mechanisms that govern self-renewal, proliferation, differentiation, and regeneration of intestinal stem cells (ISCs). These insights not only enhance our understanding of normal tissue maintenance but also provide critical perspectives on how ISC dysfunction can lead to pathological conditions such as colorectal cancer (CRC).
Collapse
Affiliation(s)
- Simona Trubin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dhruv B. Patel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Sadien ID, Adler S, Mehmed S, Bailey S, Sawle A, Couturier DL, Eldridge M, Adams DJ, Kemp R, Lourenço FC, Winton DJ. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 2024; 634:1196-1203. [PMID: 39478206 PMCID: PMC11525183 DOI: 10.1038/s41586-024-08053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis1,2. APC-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants3-5. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process6,7. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Collapse
Affiliation(s)
- Iannish D Sadien
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sam Adler
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shenay Mehmed
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sasha Bailey
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
6
|
Bao L, Fu L, Su Y, Chen Z, Peng Z, Sun L, Gonzalez FJ, Wu C, Zhang H, Shi B, Shi YB. Amino acid transporter SLC7A5 regulates cell proliferation and secretary cell differentiation and distribution in the mouse intestine. Int J Biol Sci 2024; 20:2187-2201. [PMID: 38617535 PMCID: PMC11008275 DOI: 10.7150/ijbs.94297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout (ΔIEC) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5ΔIEC reduces mTORC1 signaling. Surprisingly, adult Slc7a5ΔIEC intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in Slc7a5ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.
Collapse
Affiliation(s)
- Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
7
|
Catozzi A, Peiris-Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Lallo A, Galvin M, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan J, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional Characterisation of the ATOH1 Molecular Subtype Indicates a Pro-Metastatic Role in Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580247. [PMID: 38405859 PMCID: PMC10888785 DOI: 10.1101/2024.02.16.580247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Maria Peiris-Pagès
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Yitao Chen
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Bethan Davies-Williams
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alice Lallo
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Foy
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Moutin EB, Bons J, Giavara G, Lourenco F, Pan D, Burton JB, Shah S, Colombé M, Gascard P, Tlsty T, Schilling B, Winton DJ. Extracellular Matrix Orchestration of Tissue Remodeling in the Chronically Inflamed Mouse Colon. Cell Mol Gastroenterol Hepatol 2024; 17:639-656. [PMID: 38199279 PMCID: PMC10905044 DOI: 10.1016/j.jcmgh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Chronic inflammatory illnesses are debilitating and recurrent conditions associated with significant comorbidities, including an increased risk of developing cancer. Extensive tissue remodeling is a hallmark of such illnesses, and is both a consequence and a mediator of disease progression. Despite previous characterization of epithelial and stromal remodeling during inflammatory bowel disease, a complete understanding of its impact on disease progression is lacking. METHODS A comprehensive proteomic pipeline using data-independent acquisition was applied to decellularized colon samples from the Muc2 knockout (Muc2KO) mouse model of colitis for an in-depth characterization of extracellular matrix remodeling. Unique proteomic profiles of the matrisomal landscape were extracted from prepathologic and overt colitis. Integration of proteomics and transcriptomics data sets extracted from the same murine model produced network maps describing the orchestrating role of matrisomal proteins in tissue remodeling during the progression of colitis. RESULTS The in-depth proteomic workflow used here allowed the addition of 34 proteins to the known colon matrisomal signature. Protein signatures of prepathologic and pathologic colitic states were extracted, differentiating the 2 states by expression of small leucine-rich proteoglycans. We outlined the role of this class and other matrisomal proteins in tissue remodeling during colitis, as well as the potential for coordinated regulation of cell types by matrisomal ligands. CONCLUSIONS Our work highlights a central role for matrisomal proteins in tissue remodeling during colitis and defines orchestrating nodes that can be exploited in the selection of therapeutic targets.
Collapse
Affiliation(s)
- Elisa B Moutin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California
| | - Giada Giavara
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Filipe Lourenco
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Deng Pan
- Department of Pathology, University of California, San Francisco, California
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, California
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, California
| | - Thea Tlsty
- Department of Pathology, University of California, San Francisco, California
| | | | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024; 31:7-24. [PMID: 38181752 PMCID: PMC10769195 DOI: 10.1016/j.stem.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.
Collapse
Affiliation(s)
- Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Hans Clevers
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| |
Collapse
|
10
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Bargonetti J, Zhang L, Xie P, Feng Z, Hu W. p53 suppresses MHC class II presentation by intestinal epithelium to protect against radiation-induced gastrointestinal syndrome. Nat Commun 2024; 15:137. [PMID: 38167344 PMCID: PMC10762193 DOI: 10.1038/s41467-023-44390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, 08536, USA
| | - Ping Xie
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
11
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Orzechowska-Licari EJ, Bialkowska AB, Yang VW. Sonic Hedgehog and WNT Signaling Regulate a Positive Feedback Loop Between Intestinal Epithelial and Stromal Cells to Promote Epithelial Regeneration. Cell Mol Gastroenterol Hepatol 2023; 16:607-642. [PMID: 37481204 PMCID: PMC10470419 DOI: 10.1016/j.jcmgh.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND AIMS Active intestinal stem cells are prone to injury by ionizing radiation. We previously showed that upon radiation-induced injury, normally quiescent reserve intestinal stem cells (rISCs) (marked by BMI1) are activated by Musashi-1 (MSI1) and exit from the quiescent state to regenerate the intestinal epithelium. This study aims to further establish the mechanism that regulates activation of Bmi1-CreER;Rosa26eYFP (Bmi1-CreER) rISCs following γ radiation-induced injury. METHODS Bmi1-CreER mice were treated with tamoxifen to initiate lineage tracing of BMI1 (eYFP+) cells and exposed to 12 Gy of total body γ irradiation or sham. Intestinal tissues were collected and analyzed by immunofluorescence, Western blot, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and chromatin immunoprecipitation real-time polymerase chain reaction. RESULTS After irradiation, increased expression of Msi1 in eYFP+ cells was accompanied by increased expression of Axin2, a WNT marker. Promoter studies of the Msi1 gene indicated that Msi1 is a WNT target gene. Coculture of stromal cells isolated from irradiated mice stimulated Bmi1-CreER-derived organoid regeneration more effectively than those from sham mice. Expression of WNT ligands, including Wnt2b, Wnt4, Wnt5a, and Rspo3, was increased in irradiated stromal cells compared with sham-treated stromal cells. Moreover, expression of the Sonic hedgehog (SHH) effector Gli1 was increased in stromal cells from irradiated mice. This was correlated with an increased expression of SHH in epithelial cells postirradiation, indicating epithelial-stromal interaction. Finally, preinjury treatment with SHH inhibitor cyclopamine significantly reduced intestinal epithelial regeneration and Msi1 expression postirradiation. CONCLUSIONS Upon ionizing radiation-induced injury, intestinal epithelial cells increase SHH secretion, stimulating stromal cells to secrete WNT ligands. WNT activators induce Msi1 expression in the Bmi1-CreER cells. This stromal-epithelial interaction leads to Bmi1-CreER rISCs induction and epithelial regeneration.
Collapse
Affiliation(s)
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
13
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
14
|
Liu Y, Reyes E, Castillo-Azofeifa D, Klein OD, Nystul T, Barber DL. Intracellular pH dynamics regulates intestinal stem cell lineage specification. Nat Commun 2023; 14:3745. [PMID: 37353491 PMCID: PMC10290085 DOI: 10.1038/s41467-023-39312-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Intracellular pH dynamics is increasingly recognized to regulate myriad cell behaviors. We report a finding that intracellular pH dynamics also regulates adult stem cell lineage specification. We identify an intracellular pH gradient in mouse small intestinal crypts, lowest in crypt stem cells and increasing along the crypt column. Disrupting this gradient by inhibiting H+ efflux by Na+/H+ exchanger 1 abolishes crypt budding and blocks differentiation of Paneth cells, which are rescued with exogenous WNT. Using single-cell RNA sequencing and lineage tracing we demonstrate that intracellular pH dynamics acts downstream of ATOH1, with increased pH promoting differentiation toward the secretory lineage. Our findings indicate that an increase in pH is required for the lineage specification that contributes to crypt maintenance, establishing a role for intracellular pH dynamics in cell fate decisions within an adult stem cell lineage.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Efren Reyes
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Castillo-Azofeifa
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Todd Nystul
- Departments of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
15
|
Junaid F, Tomic G, Kemp R, Winton DJ. Single-copy Snail upregulation causes partial epithelial-mesenchymal transition in colon cancer cells. BMC Cancer 2023; 23:153. [PMID: 36788501 PMCID: PMC9926732 DOI: 10.1186/s12885-023-10581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an embryonic programme implicated in cancer stem cells, metastasis and therapeutic resistance. Its role in cancer progression remains controversial because the transition can be partial or complete in different models and contexts. METHODS Using human colon cancer DLD-1 cells, we engineered a cell line with a single-copy of Snail that was doxycycline-inducible and compared it to existing EMT models in DLD-1. The effect of Snail upregulation was characterised functionally, morphologically, and by transcriptional profiling and protein expression. RESULTS Induction with doxycycline increased Snail expression to a level similar to that observed in cancer cell lines spontaneously expressing Snail and results in partial EMT. In comparison, higher levels of overexpression arising from introduction of episomal-Snail, results in complete EMT. DLD-1 cells with partial EMT show chemoresistance in vitro, increased tumour growth in vivo and decreased apoptosis. CONCLUSIONS These findings highlight that the amount of bioavailable Snail can dictate phenotypic outcome and that partial EMT may be a preferred outcome of models operating within a natural range of Snail overexpression.
Collapse
Affiliation(s)
- Fatima Junaid
- Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Goran Tomic
- Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Richard Kemp
- Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Doug J. Winton
- Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| |
Collapse
|
16
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
17
|
Bao L, Fu L, Su Y, Chen Z, Peng Z, Sun L, Gonzalez FJ, Wu C, Zhang H, Shi B, Shi YB. Amino acid transporter SLC7A5 regulates Paneth cell function to affect the intestinal inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.524966. [PMID: 36789439 PMCID: PMC9928054 DOI: 10.1101/2023.01.24.524966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.
Collapse
|
18
|
Chen L, Dupre A, Qiu X, Pellon-Cardenas O, Walton KD, Wang J, Perekatt AO, Hu W, Spence JR, Verzi MP. TGFB1 Induces Fetal Reprogramming and Enhances Intestinal Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523825. [PMID: 36711781 PMCID: PMC9882197 DOI: 10.1101/2023.01.13.523825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Katherine D. Walton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Ansu O. Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA
- Member of the NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ, USA
- Lead Contact
| |
Collapse
|
19
|
Du Y, Gao H, He C, Xin S, Wang B, Zhang S, Gong F, Yu X, Pan L, Sun F, Wang W, Xu J. An update on the biological characteristics and functions of tuft cells in the gut. Front Cell Dev Biol 2023; 10:1102978. [PMID: 36704202 PMCID: PMC9872863 DOI: 10.3389/fcell.2022.1102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.
Collapse
Affiliation(s)
- Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fanglin Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
20
|
Yagishita Y, Joshi T, Kensler TW, Wakabayashi N. Transcriptional Regulation of Math1 by Aryl Hydrocarbon Receptor: Effect on Math1 + Progenitor Cells in Mouse Small Intestine. Mol Cell Biol 2023; 43:43-63. [PMID: 36720468 PMCID: PMC9937019 DOI: 10.1080/10985549.2022.2160610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 01/28/2023] Open
Abstract
The physiological roles of aryl hydrocarbon receptor (AhR) in the small intestine have been revealed as immunomodulatory and barrier functions. However, its contributions to cell fate regulation are incompletely understood. The Notch-activated signaling cascade is a central component of intestinal cell fate determinations. The lateral inhibitory mechanism governed by Notch directs cell fates toward distinct cell lineages (i.e., absorptive and secretory cell lineages) through its downstream effector, mouse atonal homolog 1 (MATH1). An investigation employing cell lines and intestinal crypt cells revealed that AhR regulates Math1 expression in a xenobiotic response element (XRE)-dependent manner. The AhR-Math1 axis was further addressed using intestinal organoids, where AhR-Math1 and HES1-Math1 axes appeared to coexist within the underlying Math1 transcriptional machinery. When the HES1-Math1 axis was pharmacologically suppressed, β-naphthoflavone-mediated AhR activation increased the number of goblet and Math1+ progenitor cells in the organoids. The same pharmacological dissection of the AhR-Math1 axis was applied in vivo, demonstrating an enhanced number of Math1+ progenitor cells in the small intestine following AhR activation. We report here that AhR-Math1 is a direct transcriptional axis with effects on Math1+ progenitor cells in the small intestine, highlighting a novel molecular basis for fine-tuning Notch-mediated cell fate regulation.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
21
|
Johnson NM, Parham LR, Na J, Monaghan KE, Kolev HM, Klochkova A, Kim MS, Danan CH, Cramer Z, Simon LA, Naughton KE, Adams‐Tzivelekidis S, Tian Y, Williams PA, Leu NA, Sidoli S, Whelan KA, Li N, Lengner CJ, Hamilton KE. Autophagic state prospectively identifies facultative stem cells in the intestinal epithelium. EMBO Rep 2022; 23:e55209. [PMID: 36120829 PMCID: PMC9638868 DOI: 10.15252/embr.202255209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here, we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic vesicle content predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic marker for the prospective identification of facultative stem cells.
Collapse
Affiliation(s)
- Nicolette M Johnson
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis R Parham
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Jeeyoon Na
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Keara E Monaghan
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hannah M Kolev
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alena Klochkova
- Fels Institute for Cancer Research & Molecular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Melissa S Kim
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Charles H Danan
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lauren A Simon
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kaitlyn E Naughton
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Stephanie Adams‐Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yuhua Tian
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Patrick A Williams
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simone Sidoli
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Kelly A Whelan
- Fels Institute for Cancer Research & Molecular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
- Department of Pathology & Laboratory MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Cell & Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kathryn E Hamilton
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
22
|
Ishikawa K, Sugimoto S, Oda M, Fujii M, Takahashi S, Ohta Y, Takano A, Ishimaru K, Matano M, Yoshida K, Hanyu H, Toshimitsu K, Sawada K, Shimokawa M, Saito M, Kawasaki K, Ishii R, Taniguchi K, Imamura T, Kanai T, Sato T. Identification of Quiescent LGR5 + Stem Cells in the Human Colon. Gastroenterology 2022; 163:1391-1406.e24. [PMID: 35963362 DOI: 10.1053/j.gastro.2022.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-β signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.
Collapse
Affiliation(s)
- Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ishimaru
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Hanyu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Center for Integrated Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Mariko Shimokawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
23
|
Dou Y, Pizarro T, Zhou L. Organoids as a Model System for Studying Notch Signaling in Intestinal Epithelial Homeostasis and Intestinal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1347-1357. [PMID: 35752229 PMCID: PMC9552028 DOI: 10.1016/j.ajpath.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Organoid culture is an approach that allows three-dimensional growth for stem cells to self-organize and develop multicellular structures. Intestinal organoids have been widely used to study cellular or molecular processes in stem cell and cancer research. These cultures possess the ability to maintain cellular complexity as well as recapitulate many properties of the human intestinal epithelium, thereby providing an ideal in vitro model to investigate cellular and molecular signaling pathways. These include, but are not limited to, the mechanisms required for maintaining balanced populations of epithelial cells. Notch signaling is one of the major pathways of regulating stem cell functions in the gut, driving proliferation and controlling cell fate determination. Notch also plays an important role in regulating tumor progression and metastasis. Understanding how Notch pathway regulates epithelial regeneration and differentiation by using intestinal organoids is critical for studying both homeostasis and pathogenesis of intestinal stem cells that can lead to discoveries of new targets for drug development to treat intestinal diseases. In addition, use of patient-derived organoids can provide effective personalized medicine. This review summarizes the current literature regarding epithelial Notch pathways regulating intestinal homeostasis and regeneration, highlighting the use of organoid cultures and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yingtong Dou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Theresa Pizarro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
24
|
Orzechowska-Licari EJ, LaComb JF, Giarrizzo M, Yang VW, Bialkowska AB. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J Vis Exp 2022:10.3791/64028. [PMID: 35969101 PMCID: PMC9631267 DOI: 10.3791/64028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The intestinal epithelium consists of a single layer of cells yet contains multiple types of terminally differentiated cells, which are generated by the active proliferation of intestinal stem cells located at the bottom of intestinal crypts. However, during events of acute intestinal injury, these active intestinal stem cells undergo cell death. Gamma irradiation is a widely used colorectal cancer treatment, which, while therapeutically efficacious, has the side effect of depleting the active stem cell pool. Indeed, patients frequently experience gastrointestinal radiation syndrome while undergoing radiotherapy, in part due to active stem cell depletion. The loss of active intestinal stem cells in intestinal crypts activates a pool of typically quiescent reserve intestinal stem cells and induces dedifferentiation of secretory and enterocyte precursor cells. If not for these cells, the intestinal epithelium would lack the ability to recover from radiotherapy and other such major tissue insults. New advances in lineage-tracing technologies allow tracking of the activation, differentiation, and migration of cells during regeneration and have been successfully employed for studying this in the gut. This study aims to depict a method for the analysis of cells within the mouse intestinal epithelium following radiation injury.
Collapse
Affiliation(s)
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University
| | | |
Collapse
|
25
|
Lee JH, Kim S, Han S, Min J, Caldwell B, Bamford AD, Rocha ASB, Park J, Lee S, Wu SHS, Lee H, Fink J, Pilat-Carotta S, Kim J, Josserand M, Szep-Bakonyi R, An Y, Ju YS, Philpott A, Simons BD, Stange DE, Choi E, Koo BK, Kim JK. p57 Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell 2022; 29:826-839.e9. [PMID: 35523142 PMCID: PMC9097776 DOI: 10.1016/j.stem.2022.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
Adult stem cells constantly react to local changes to ensure tissue homeostasis. In the main body of the stomach, chief cells produce digestive enzymes; however, upon injury, they undergo rapid proliferation for prompt tissue regeneration. Here, we identified p57Kip2 (p57) as a molecular switch for the reserve stem cell state of chief cells in mice. During homeostasis, p57 is constantly expressed in chief cells but rapidly diminishes after injury, followed by robust proliferation. Both single-cell RNA sequencing and dox-induced lineage tracing confirmed the sequential loss of p57 and activation of proliferation within the chief cell lineage. In corpus organoids, p57 overexpression induced a long-term reserve stem cell state, accompanied by altered niche requirements and a mature chief cell/secretory phenotype. Following the constitutive expression of p57 in vivo, chief cells showed an impaired injury response. Thus, p57 is a gatekeeper that imposes the reserve stem cell state of chief cells in homeostasis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Seungmin Han
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jimin Min
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brianna Caldwell
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Andreia Sofia Batista Rocha
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - JinYoung Park
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Sieun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Juergen Fink
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sandra Pilat-Carotta
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria; Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Manon Josserand
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Réka Szep-Bakonyi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Anna Philpott
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Eunyoung Choi
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria; Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
26
|
Shi X, Li Y, Yuan Q, Tang S, Guo S, Zhang Y, He J, Zhang X, Han M, Liu Z, Zhu Y, Gao S, Wang H, Xu X, Zheng K, Jing W, Chen L, Wang Y, Jin G, Gao D. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity. Nat Commun 2022; 13:2169. [PMID: 35449156 PMCID: PMC9023604 DOI: 10.1038/s41467-022-29857-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Chromatin accessibility plays an essential role in controlling cellular identity and the therapeutic response of human cancers. However, the chromatin accessibility landscape and gene regulatory network of pancreatic cancer are largely uncharacterized. Here, we integrate the chromatin accessibility profiles of 84 pancreatic cancer organoid lines with whole-genome sequencing data, transcriptomic sequencing data and the results of drug sensitivity analysis of 283 epigenetic-related chemicals and 5 chemotherapeutic drugs. We identify distinct transcription factors that distinguish molecular subtypes of pancreatic cancer, predict numerous chromatin accessibility peaks associated with gene regulatory networks, discover regulatory noncoding mutations with potential as cancer drivers, and reveal the chromatin accessibility signatures associated with drug sensitivity. These results not only provide the chromatin accessibility atlas of pancreatic cancer but also suggest a systematic approach to comprehensively understand the gene regulatory network of pancreatic cancer in order to advance diagnosis and potential personalized medicine applications.
Collapse
Affiliation(s)
- Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuyue Yuan
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100080, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yehan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiongfei Xu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China.
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100080, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
28
|
Lin X, Gaudino SJ, Jang KK, Bahadur T, Singh A, Banerjee A, Beaupre M, Chu T, Wong HT, Kim CK, Kempen C, Axelrad J, Huang H, Khalid S, Shah V, Eskiocak O, Parks OB, Berisha A, McAleer JP, Good M, Hoshino M, Blumberg R, Bialkowska AB, Gaffen SL, Kolls JK, Yang VW, Beyaz S, Cadwell K, Kumar P. IL-17RA-signaling in Lgr5 + intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 2022; 55:237-253.e8. [PMID: 35081371 PMCID: PMC8895883 DOI: 10.1016/j.immuni.2021.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/06/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
The Th17 cell-lineage-defining cytokine IL-17A contributes to host defense and inflammatory disease by coordinating multicellular immune responses. The IL-17 receptor (IL-17RA) is expressed by diverse intestinal cell types, and therapies targeting IL-17A induce adverse intestinal events, suggesting additional tissue-specific functions. Here, we used multiple conditional deletion models to identify a role for IL-17A in secretory epithelial cell differentiation in the gut. Paneth, tuft, goblet, and enteroendocrine cell numbers were dependent on IL-17A-mediated induction of the transcription factor ATOH1 in Lgr5+ intestinal epithelial stem cells. Although dispensable at steady state, IL-17RA signaling in ATOH1+ cells was required to regenerate secretory cells following injury. Finally, IL-17A stimulation of human-derived intestinal organoids that were locked into a cystic immature state induced ATOH1 expression and rescued secretory cell differentiation. Our data suggest that the cross talk between immune cells and stem cells regulates secretory cell lineage commitment and the integrity of the mucosa.
Collapse
Affiliation(s)
- Xun Lin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen J Gaudino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kyung Ku Jang
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Tej Bahadur
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Anirban Banerjee
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Michael Beaupre
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Timothy Chu
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Hoi Tong Wong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Chang-Kyung Kim
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Cody Kempen
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Huakang Huang
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Saba Khalid
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Vyom Shah
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Olivia B Parks
- University of Pittsburgh School of Medicine, Medical Scientist Training Program, Pittsburgh, PA 15213, USA
| | - Artan Berisha
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Jeremy P McAleer
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Huntington, WV 25701, USA
| | - Misty Good
- Washington University School of Medicine, Department of Pediatrics, Division of Newborn Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Miko Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Richard Blumberg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
29
|
Eggington HR, Mulholland EJ, Leedham SJ. Morphogen regulation of stem cell plasticity in intestinal regeneration and carcinogenesis. Dev Dyn 2022; 251:61-74. [PMID: 34716737 DOI: 10.1002/dvdy.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.
Collapse
Affiliation(s)
- Holly R Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
30
|
Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2021; 13:843-856. [PMID: 34915204 PMCID: PMC8803615 DOI: 10.1016/j.jcmgh.2021.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The epithelial lining of the intestine, particularly the stem cell compartment, is affected by harsh conditions in the luminal environment and also is susceptible to genotoxic agents such as radiation and chemotherapy. Therefore, the ability for intestinal epithelial cells to revert to a stem cell state is an important physiological damage response to regenerate the intestinal epithelium at sites of mucosal injury. Many signaling networks involved in maintaining the stem cell niche are activated as part of the damage response to promote cellular plasticity and regeneration. The relative contribution of each cell type and signaling pathway is a critical area of ongoing research, likely dependent on the nature of injury as well as the regional specification within the intestine. Here, we review the current understanding of the multicellular cooperation to restore the intestinal epithelium after damage.
Collapse
Affiliation(s)
| | | | | | - Peter J. Dempsey
- Correspondence Address correspondence to: Peter J. Dempsey, PhD, Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, 1775 Aurora Court, Barbara Davis Center, M20–3306, Aurora, Colorado 80045. fax: (303) 724-6538.
| |
Collapse
|
31
|
Boby N, Cao X, Ransom A, Pace BT, Mabee C, Shroyer MN, Das A, Didier PJ, Srivastav SK, Porter E, Sha Q, Pahar B. Identification, Characterization, and Transcriptional Reprogramming of Epithelial Stem Cells and Intestinal Enteroids in Simian Immunodeficiency Virus Infected Rhesus Macaques. Front Immunol 2021; 12:769990. [PMID: 34887863 PMCID: PMC8650114 DOI: 10.3389/fimmu.2021.769990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Alyssa Ransom
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Barcley T Pace
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
32
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
33
|
Identifying key regulators of the intestinal stem cell niche. Biochem Soc Trans 2021; 49:2163-2176. [PMID: 34665221 PMCID: PMC8589435 DOI: 10.1042/bst20210223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The intestinal tract is lined by a single layer of epithelium that is one of the fastest regenerating tissues in the body and which therefore requires a very active and exquisitely controlled stem cell population. Rapid renewal of the epithelium is necessary to provide a continuous physical barrier from the intestinal luminal microenvironment that contains abundant microorganisms, whilst also ensuring an efficient surface for the absorption of dietary components. Specialised epithelial cell populations are important for the maintenance of intestinal homeostasis and are derived from adult intestinal stem cells (ISCs). Actively cycling ISCs divide by a neutral drift mechanism yielding either ISCs or transit-amplifying epithelial cells, the latter of which differentiate to become either absorptive lineages or to produce secretory factors that contribute further to intestinal barrier maintenance or signal to other cellular compartments. The mechanisms controlling ISC abundance, longevity and activity are regulated by several different cell populations and signalling pathways in the intestinal lamina propria which together form the ISC niche. However, the complexity of the ISC niche and communication mechanisms between its different components are only now starting to be unravelled with the assistance of intestinal organoid/enteroid/colonoid and single-cell imaging and sequencing technologies. This review explores the interaction between well-established and emerging ISC niche components, their impact on the intestinal epithelium in health and in the context of intestinal injury and highlights future directions and implications for this rapidly developing field.
Collapse
|
34
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
35
|
Koppens MAJ, Davis H, Valbuena GN, Mulholland EJ, Nasreddin N, Colombe M, Antanaviciute A, Biswas S, Friedrich M, Lee L, Wang LM, Koelzer VH, East JE, Simmons A, Winton DJ, Leedham SJ. Bone Morphogenetic Protein Pathway Antagonism by Grem1 Regulates Epithelial Cell Fate in Intestinal Regeneration. Gastroenterology 2021; 161:239-254.e9. [PMID: 33819486 PMCID: PMC7613733 DOI: 10.1053/j.gastro.2021.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.
Collapse
Affiliation(s)
- Martijn A J Koppens
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hayley Davis
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabriel N Valbuena
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mathilde Colombe
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Agne Antanaviciute
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sujata Biswas
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Friedrich
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Lennard Lee
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lai Mun Wang
- Department of Laboratory Medicine, Changi General Hospital, SingHealth, Singapore, Singapore
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland; Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alison Simmons
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Douglas J Winton
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
36
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Miyashita S, Owa T, Seto Y, Yamashita M, Aida S, Sone M, Ichijo K, Nishioka T, Kaibuchi K, Kawaguchi Y, Taya S, Hoshino M. Cyclin D1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1. EMBO J 2021; 40:e105712. [PMID: 34057742 PMCID: PMC8280807 DOI: 10.15252/embj.2020105712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.
Collapse
Affiliation(s)
- Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yusuke Seto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Shogo Aida
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Kentaro Ichijo
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
38
|
Reprogramming cellular identity during intestinal regeneration. Curr Opin Genet Dev 2021; 70:40-47. [PMID: 34062491 DOI: 10.1016/j.gde.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
The intestine is a vital organ mediating absorption of nutrients and water. Following tissue damage, the intestine mounts a remarkable regenerative response by reprogramming cellular identity to facilitate reinstatement of homeostasis. Here we review recent advances within intestinal regenerative biology and the emerging concept of fetal-like reprogramming, in which the adult intestinal epithelium transiently enters a repair-associated state reminiscent of ontologically pre-existing stages. We focus on molecular mechanisms governing reprogramming of cellular identity via epithelial-mesenchymal crosstalk, and how novel approaches in organoid technologies enable identification and characterisation of cell-autonomous repair responses within epithelial cells. Transitioning from the single-cell level to tissue scale, we discuss clonal selection following regeneration and associated pathological repurcussions such as cancer and chronic inflammatory diseases.
Collapse
|
39
|
Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, Kim D, Hao C, Zentner GE, O'Hagan HM. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 2021; 81:3791-3805. [PMID: 34035083 DOI: 10.1158/0008-5472.can-20-3562] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tim Lai
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana.,Department of Mathematics, Indiana University, Bloomington, Indiana
| | - Thomas D Huntington
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Christopher A Ladaika
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
40
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
41
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
42
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
43
|
Sheahan BJ, Freeman AN, Keeley TM, Samuelson LC, Roper J, Hasapis S, Lee CL, Dekaney CM. Epithelial Regeneration After Doxorubicin Arises Primarily From Early Progeny of Active Intestinal Stem Cells. Cell Mol Gastroenterol Hepatol 2021; 12:119-140. [PMID: 33571711 PMCID: PMC8082264 DOI: 10.1016/j.jcmgh.2021.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS aISCs (aISCs) are sensitive to acute insults including chemotherapy and irradiation. Regeneration after aISC depletion has primarily been explored in irradiation (IR). However, the cellular origin of epithelial regeneration after doxorubicin (DXR), a common chemotherapeutic, is poorly understood. METHODS We monitored DXR's effect on aISCs by enumerating Lgr5-eGFP+ and Olfm4+ crypts, cleaved caspase-3 (CASP3+) immunofluorescence, and time-lapse organoid imaging. Lineage tracing from previously identified regenerative cell populations (Bmi1+, Hopx+, Dll1+, and Defa6+) was performed with DXR damage. Lineage tracing from aISCs was compared with lineage tracing from early progeny cells (transit-amplifying cells arising from aISCs 1 day predamage) in the context of DXR and IR. We compared stem cell and DNA damage response (DDR) transcripts in isolated aISCs and early progeny cells 6 and 24 hours after DXR. RESULTS Epithelial regeneration after DXR primarily arose from early progeny cells generated by aISCs. Early progeny cells upregulated stem cell gene expression and lacked apoptosis induction (6 hours DXR: 2.5% of CASP3+ cells, p<0.0001). aISCs downregulated stem cell gene expression and underwent rapid apoptosis (6 hours DXR: 63.4% of CASP3+ cells). There was minimal regenerative contribution from Bmi1+, Hopx+, Dll1+, and Defa6+-expressing populations. In homeostasis, 48.4% of early progeny cells were BrdU+, and expressed low levels of DDR transcripts. CONCLUSIONS We show that DXR effectively depleted aISCs in the small intestine and subsequent epithelial regeneration depended on nonquiescent early progeny cells of aISCs. The chemoresistant phenotype of the early progeny cells may rely on a dampened DDR in contrast to aISCs' robust DDR, which facilitates expeditious apoptosis.
Collapse
Affiliation(s)
- Breanna J. Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Ally N. Freeman
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Stephanie Hasapis
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University, Durham, North Carolina,Department of Pathology, Duke University, Durham, North Carolina
| | - Christopher M. Dekaney
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,Correspondence Address requests for correspondence to: Christopher M. Dekaney, PhD, 1060 William Moore Drive, Campus Box 8401, Raleigh, North Carolina 27607.
| |
Collapse
|
44
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
45
|
Qu M, Xiong L, Lyu Y, Zhang X, Shen J, Guan J, Chai P, Lin Z, Nie B, Li C, Xu J, Deng H. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res 2021; 31:259-271. [PMID: 33420425 PMCID: PMC8027647 DOI: 10.1038/s41422-020-00453-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
The capacity of 3D organoids to mimic physiological tissue organization and functionality has provided an invaluable tool to model development and disease in vitro. However, conventional organoid cultures primarily represent the homeostasis of self-organizing stem cells and their derivatives. Here, we established a novel intestinal organoid culture system composed of 8 components, mainly including VPA, EPZ6438, LDN193189, and R-Spondin 1 conditioned medium, which mimics the gut epithelium regeneration that produces hyperplastic crypts following injury; therefore, these organoids were designated hyperplastic intestinal organoids (Hyper-organoids). Single-cell RNA sequencing identified different regenerative stem cell populations in our Hyper-organoids that shared molecular features with in vivo injury-responsive Lgr5+ stem cells or Clu+ revival stem cells. Further analysis revealed that VPA and EPZ6438 were indispensable for epigenome reprogramming and regeneration in Hyper-organoids, which functioned through epigenetically regulating YAP signaling. Furthermore, VPA and EPZ6438 synergistically promoted regenerative response in gut upon damage in vivo. In summary, our results demonstrated a new in vitro organoid model to study epithelial regeneration, highlighting the importance of epigenetic reprogramming that pioneers tissue repair.
Collapse
Affiliation(s)
- Molong Qu
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Liang Xiong
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Xiannian Zhang
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Jie Shen
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Jingyang Guan
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Peiyuan Chai
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhongqing Lin
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, 100000, China
| | - Boyao Nie
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, 100000, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Jun Xu
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
| | - Hongkui Deng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China. .,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
46
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
47
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
48
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
49
|
Ali FR, Marcos D, Chernukhin I, Woods LM, Parkinson LM, Wylie LA, Papkovskaia TD, Davies JD, Carroll JS, Philpott A. Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Mol Cancer Res 2020; 18:1759-1766. [PMID: 33046535 PMCID: PMC7614603 DOI: 10.1158/1541-7786.mcr-20-0693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Pediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (MYC). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types. Using functional mutational approaches, we find that preventing CDK-dependent phosphorylation of ASCL1 in neuroblastoma cells drives coordinated suppression of the MYC-driven core circuit supporting neuroblast identity and proliferation, while simultaneously activating an enduring gene program driving mitotic exit and neuronal differentiation. IMPLICATIONS: These findings indicate that targeting phosphorylation of ASCL1 may offer a new approach to development of differentiation therapies in neuroblastoma. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/12/1759/F1.large.jpg.
Collapse
Affiliation(s)
- Fahad R Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lydia M Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Luke A Wylie
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - John D Davies
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
50
|
Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. CELL REGENERATION 2020; 9:14. [PMID: 32869114 PMCID: PMC7459029 DOI: 10.1186/s13619-020-00053-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium possesses a great capacity of self-renewal under normal homeostatic conditions and of regeneration upon damages. The renewal and regenerative processes are driven by intestinal stem cells (ISCs), which reside at the base of crypts and are marked by Lgr5. As Lgr5+ ISCs undergo fast cycling and are vulnerable to damages, there must be other types of cells that can replenish the lost Lgr5+ ISCs and then regenerate the damage epithelium. In addition to Lgr5+ ISCs, quiescent ISCs at the + 4 position in the crypt have been proposed to convert to Lgr5+ ISCs during regeneration. However, this “reserve stem cell” model still remains controversial. Different from the traditional view of a hierarchical organization of the intestinal epithelium, recent works support the dynamic “dedifferentiation” model, in which various cell types within the epithelium can de-differentiate to revert to the stem cell state and then regenerate the epithelium upon tissue injury. Here, we provide an overview of the cell identity and features of two distinct models and discuss the possible mechanisms underlying the intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|