1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00996-z. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Du J, Fang L, Wang Y, Zhao J, Feng Z, Yu Y, Fang D, Huang D, Zhai X, Cheng Y, Min R, Gao F, Liu C. Gelsolin regulates intestinal stem cell regeneration and Th17 cellular function. Cell Commun Signal 2024; 22:524. [PMID: 39472865 PMCID: PMC11520831 DOI: 10.1186/s12964-024-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Intestinal stem cells (ISCs) are responsible for intestinal homeostasis and are important for the regeneration of damaged intestine. We established an ionizing radiation (IR)-induced intestinal injury model and observed that Gelsolin KO mice had increased radiosensitivity. The deletion of Gelsolin aggravated intestinal damage and reduced the number of ISCs after lethal IR. The intestinal organoid experiments showed that Gelsolin deletion inhibited ISCs function after IR. Notably, RNA sequencing and RT-PCR results showed IL-17 signaling pathway was down-regulated and Th17 cells differentiation was inhibited in Gelsolin KO mice. Moreover, recombinant IL-17 A ameliorated IR-induced intestinal injury and promoted ISCs regeneration. To figure out the role of Gelsolin in Th17 cells differentiation, flow cytometry was used and we found that Gelsolin targets Th17 cells functionality via the p-STAT3/RORγt axis. By establishing the co-culture system, we proved that Th17 cells promoted self-renewal and budding abilities in Gelsolin-deficient organoids. Finally, we found that Gelsolin was protective against DSS-induced colitis and that this protective effect was not specific or limited to the IR induced intestinal injury model. Based on these results, we proved Gelsolin maintained the regeneration of ISCs by sustaining Th17 cells functions via the p-STAT3/RORγt axis.
Collapse
Affiliation(s)
- Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Yuedong Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Yike Yu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Daqian Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Rui Min
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| |
Collapse
|
4
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
5
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00980-7. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Harnik Y, Yakubovsky O, Hoefflin R, Novoselsky R, Bahar Halpern K, Barkai T, Korem Kohanim Y, Egozi A, Golani O, Addadi Y, Kedmi M, Keidar Haran T, Levin Y, Savidor A, Keren-Shaul H, Mayer C, Pencovich N, Pery R, Shouval DS, Tirosh I, Nachmany I, Itzkovitz S. A spatial expression atlas of the adult human proximal small intestine. Nature 2024; 632:1101-1109. [PMID: 39112711 DOI: 10.1038/s41586-024-07793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
The mouse small intestine shows profound variability in gene expression along the crypt-villus axis1,2. Whether similar spatial heterogeneity exists in the adult human gut remains unclear. Here we use spatial transcriptomics, spatial proteomics and single-molecule fluorescence in situ hybridization to reconstruct a comprehensive spatial expression atlas of the adult human proximal small intestine. We describe zonated expression and cell type representation for epithelial, mesenchymal and immune cell types. We find that migrating enterocytes switch from lipid droplet assembly and iron uptake at the villus bottom to chylomicron biosynthesis and iron release at the tip. Villus tip cells are pro-immunogenic, recruiting γδ T cells and macrophages to the tip, in contrast to their immunosuppressive roles in mouse. We also show that the human small intestine contains abundant serrated and branched villi that are enriched at the tops of circular folds. Our study presents a detailed resource for understanding the biology of the adult human small intestine.
Collapse
Affiliation(s)
- Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oran Yakubovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roy Novoselsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Barkai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Sheba Medical Center, Ramat Gan, Israel
| | - Yael Korem Kohanim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Keidar Haran
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yishai Levin
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Mayer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Niv Pencovich
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Pery
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Nachmany
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Liaqat I, Hilska I, Saario M, Jakobsson E, Crivaro M, Peränen J, Vaahtomeri K. Spatially targeted chemokine exocytosis guides transmigration at lymphatic endothelial multicellular junctions. EMBO J 2024; 43:3141-3174. [PMID: 38877304 PMCID: PMC11294460 DOI: 10.1038/s44318-024-00129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.
Collapse
Affiliation(s)
- Inam Liaqat
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Ida Hilska
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Maria Saario
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emma Jakobsson
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Marko Crivaro
- Light Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
10
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
12
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
14
|
Petkova M, Ferby I, Mäkinen T. Lymphatic malformations: mechanistic insights and evolving therapeutic frontiers. J Clin Invest 2024; 134:e172844. [PMID: 38488007 PMCID: PMC10940090 DOI: 10.1172/jci172844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ingvar Ferby
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Ge J, Shao H, Ding H, Huang Y, Wu X, Sun J, Que J. Single Cell Analysis of Lung Lymphatic Endothelial Cells and Lymphatic Responses during Influenza Infection. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10003. [PMID: 38529320 PMCID: PMC10962217 DOI: 10.35534/jrbtm.2024.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tissue lymphatic vessels network plays critical roles in immune surveillance and tissue homeostasis in response to pathogen invasion, but how lymphatic system per se is remolded during infection is less understood. Here, we observed that influenza infection induces a significant increase of lymphatic vessel numbers in the lung, accompanied with extensive proliferation of lymphatic endothelial cells (LECs). Single-cell RNA sequencing illustrated the heterogeneity of LECs, identifying a novel PD-L1+ subpopulation that is present during viral infection but not at steady state. Specific deletion of Pd-l1 in LECs elevated the expansion of lymphatic vessel numbers during viral infection. Together these findings elucidate a dramatic expansion of lung lymphatic network in response to viral infection, and reveal a PD-L1+ LEC subpopulation that potentially modulates lymphatic vessel remolding.
Collapse
Affiliation(s)
- Jian Ge
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxia Shao
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85724 USA
| | - Yuefeng Huang
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jianwen Que
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Abud HE, Amarasinghe SL, Micati D, Jardé T. Stromal Niche Signals That Orchestrate Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2024; 17:679-685. [PMID: 38342301 PMCID: PMC10957453 DOI: 10.1016/j.jcmgh.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Stromal cell populations have a central role in providing signals that support the maintenance, differentiation, and function of the intestinal epithelium. The behavior and fate of epithelial cells is directed by the spatial organization of stromal cells that either sustain stem and progenitor cell identity or drive differentiation. A combination of single-cell analyses, mouse models, and organoid coculture assays have provided insight into the diversity of signals delivered by stromal cells. Signaling gradients are established and fine-tuned by the expression of signaling agonists and antagonists along the crypt-villus axis. On epithelial injury, there are disruptions to the abundance and organization of stromal populations. There are also distinct changes in the signals originating from these cells that impact remodeling of the epithelium. How these signals coordinate to mediate epithelial repair or sustain tissue injury in inflammatory bowel diseases is beginning to emerge. Understanding of these processes may lead to opportunities to target stromal cell populations as a strategy to modify disease states.
Collapse
Affiliation(s)
- Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Shanika L Amarasinghe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Meadows V, Gao N. New Kids on the Block: Immature Myeloid Cells in Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:499-500. [PMID: 38052416 PMCID: PMC10884553 DOI: 10.1016/j.jcmgh.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey; Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey; Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
21
|
Schumacher MA. The emerging roles of deep crypt secretory cells in colonic physiology. Am J Physiol Gastrointest Liver Physiol 2023; 325:G493-G500. [PMID: 37697924 PMCID: PMC10887841 DOI: 10.1152/ajpgi.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Deep crypt secretory (DCS) cells are a population of epithelial cells located at the colonic crypt base that share some similarities to Paneth and goblet cells. They were initially defined as c-Kit expressing cells, though subsequent work showed that they are more specifically marked by Reg4 in the murine colon. The best-understood function of DCS cells at present is supporting the stem cell niche by generating Notch and EGF ligands. However, as these cells also express immunoregulatory (e.g., Ccl6) and host defense (e.g., Retnlb) genes, it is likely they have additional functions in maintaining colonic health outside of maintenance of the stem niche. Recent advances in single-cell transcriptomic profiling hint at additional epithelial and immune roles that may exist for these cells and have aided in elucidating their developmental lineage. This review highlights the emerging evidence supporting a crucial role for DCS cells in intestinal physiology, the current understanding of how these cells are regulated, and their potential role(s) in colonic disease.
Collapse
Affiliation(s)
- Michael A Schumacher
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| |
Collapse
|
22
|
Subileau M, Vittet D. Ontogenesis of the Mouse Ocular Surface Lymphatic Vascular Network. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 38054922 DOI: 10.1167/iovs.64.15.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Ocular lymphatic vessels play major physiological role in eye homeostasis and their dysfunction can contribute to the progression of several eye diseases. In this study, we characterized their spatiotemporal development and the cellular mechanisms occurring during their ontogenesis in the mouse eye. Methods Whole mount immunofluorescent staining and imaging by standard or lightsheet fluorescence microscopy were performed on late embryonic and early postnatal eye mouse samples. Results We observed that the ocular surface lymphatic vascular network develops at the early postnatal stages (between P0 and P5) from two nascent trunks arising at the nasal side on both sides of the nictitating membrane. These nascent vessels further branch and encircle the whole eye surface by sprouting lymphangiogenesis. In addition, we got evidence for the existence of a transient lymphvasculogenesis process generating lymphatic vessel fragments that will mostly formed the corneolimbal lymphatic vasculature which further connect to the conjunctival lymphatic network. Our results also support that CD206-positive macrophages can transdifferentiate and then integrate into the lymphatic neovessels. Conclusions Several complementary cellular processes participate in the development of the lymphatic ocular surface vasculature. This knowledge paves the way for the design of new therapeutic strategies to interfere with ocular lymphatic vessel formation when needed.
Collapse
Affiliation(s)
- Mariela Subileau
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| | - Daniel Vittet
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| |
Collapse
|
23
|
Wang YJ, Zheng Y, Cong L, Wang P, Zhao L, Xing L, Liu J, Xu H, Li N, Zhao Y, Shi Q, Liang Q. Lymphatic platelet thrombosis limits bone repair by precluding lymphatic transporting DAMPs. RESEARCH SQUARE 2023:rs.3.rs-3474507. [PMID: 38014223 PMCID: PMC10680927 DOI: 10.21203/rs.3.rs-3474507/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lymphatic vessels (LVs) interdigitated with blood vessels, travel and form an extensive transport network in the musculoskeletal system. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, by near infrared indocyanine green lymphatic imaging (NIR-ICG), we examined lymphatic draining function at the tibial fracture sites and found lymphatic drainage insufficiency (LDI) occurred as early as two weeks after fracture. Sufficient lymphatic drainage facilitates fracture healing. In addition, we identified that lymphatic platelet thrombosis (LPT) blocks the draining lymphoid sinus and LVs, caused LDI and then inhibited fracture healing, which can be rescued by a pharmacological approach. Moreover, unblocked lymphatic drainage decreased neutrophils and increased M2-like macrophages of hematoma niche to support osteoblast (OB) survival and bone marrow-derived mesenchymal stem cell (BMSC) proliferation via transporting damage-associated molecular patterns (DAMPs). These findings demonstrate that LPT limits bone regeneration by blocking lymphatic drainage from transporting DAMPs. Together, these findings represent a novel way forward in the treatment of bone repair.
Collapse
|
24
|
Jiang Z, Waterbury QT, Malagola E, Fu N, Kim W, Ochiai Y, Wu F, Guha C, Shawber CJ, Yan KS, Wang TC. Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:321-346. [PMID: 37898454 PMCID: PMC10821484 DOI: 10.1016/j.jcmgh.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND & AIMS The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Na Fu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Feijing Wu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Columbia Center for Human Development, Columbia University, New York, NY, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
25
|
Tan C, Norden PR, Yu W, Liu T, Ujiie N, Lee SK, Yan X, Dyakiv Y, Aoto K, Ortega S, De Plaen IG, Sampath V, Kume T. Endothelial FOXC1 and FOXC2 promote intestinal regeneration after ischemia-reperfusion injury. EMBO Rep 2023; 24:e56030. [PMID: 37154714 PMCID: PMC10328078 DOI: 10.15252/embr.202256030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Intestinal ischemia underlies several clinical conditions and can result in the loss of the intestinal mucosal barrier. Ischemia-induced damage to the intestinal epithelium is repaired by stimulation of intestinal stem cells (ISCs), and paracrine signaling from the vascular niche regulates intestinal regeneration. Here, we identify FOXC1 and FOXC2 as essential regulators of paracrine signaling in intestinal regeneration after ischemia-reperfusion (I/R) injury. Vascular endothelial cell (EC)- and lymphatic EC (LEC)-specific deletions of Foxc1, Foxc2, or both in mice worsen I/R-induced intestinal damage by causing defects in vascular regrowth, expression of chemokine CXCL12 and Wnt activator R-spondin 3 (RSPO3) in blood ECs (BECs) and LECs, respectively, and activation of Wnt signaling in ISCs. Both FOXC1 and FOXC2 directly bind to regulatory elements of the CXCL12 and RSPO3 loci in BECs and LECs, respectively. Treatment with CXCL12 and RSPO3 rescues the I/R-induced intestinal damage in EC- and LEC-Foxc mutant mice, respectively. This study provides evidence that FOXC1 and FOXC2 are required for intestinal regeneration by stimulating paracrine CXCL12 and Wnt signaling.
Collapse
Affiliation(s)
- Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Pieter R Norden
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Wei Yu
- Division of Neonatology, Department of PediatricsChildren's Mercy HospitalKansas CityMOUSA
| | - Ting Liu
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Naoto Ujiie
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Sun Kyong Lee
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Xiaocai Yan
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Yaryna Dyakiv
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Kazushi Aoto
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Sagrario Ortega
- Mouse Genome Editing Unit, Biotechnology ProgramSpanish National Cancer Research CentreMadridSpain
| | - Isabelle G De Plaen
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Venkatesh Sampath
- Division of Neonatology, Department of PediatricsChildren's Mercy HospitalKansas CityMOUSA
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
26
|
Singh R, He X, Park AK, Hardison RC, Zhu X, Li Q. RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544126. [PMID: 37333291 PMCID: PMC10274808 DOI: 10.1101/2023.06.07.544126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Spatial transcriptomics (ST) profiles gene expression in intact tissues. However, ST data measured at each spatial location may represent gene expression of multiple cell types, making it difficult to identify cell-type-specific transcriptional variation across spatial contexts. Existing cell-type deconvolutions of ST data often require single-cell transcriptomic references, which can be limited by availability, completeness and platform effect of such references. We present RETROFIT, a reference-free Bayesian method that produces sparse and interpretable solutions to deconvolve cell types underlying each location independent of single-cell transcriptomic references. Results from synthetic and real ST datasets acquired by Slide-seq and Visium platforms demonstrate that RETROFIT outperforms existing reference-based and reference-free methods in estimating cell-type composition and reconstructing gene expression. Applying RETROFIT to human intestinal development ST data reveals spatiotemporal patterns of cellular composition and transcriptional specificity. RETROFIT is available at https://bioconductor.org/packages/release/bioc/html/retrofit.html.
Collapse
Affiliation(s)
- Roopali Singh
- The Pennsylvania State University, University Park, PA 16802
| | - Xi He
- The Pennsylvania State University, University Park, PA 16802
| | | | | | - Xiang Zhu
- The Pennsylvania State University, University Park, PA 16802
| | - Qunhua Li
- The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
27
|
Abstract
In recent years, the lymphatic system has received increasing attention due to the fast-growing number of findings about its diverse novel functional roles in health and disease. It is well documented that the lymphatic vasculature plays major roles in the maintenance of tissue-fluid balance, the immune response, and in lipid absorption. However, recent studies have identified an additional growing number of novel and sometimes unexpected functional roles of the lymphatic vasculature in normal and pathological conditions in different organs. Among those, cardiac lymphatics have been shown to play important roles in heart development, ischemic cardiac disease, and cardiac disorders. In this review, we will discuss some of those novel functional roles of cardiac lymphatics, as well as the therapeutic potential of targeting lymphatics for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
28
|
Kraiczy J, McCarthy N, Malagola E, Tie G, Madha S, Boffelli D, Wagner DE, Wang TC, Shivdasani RA. Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche. Cell Stem Cell 2023; 30:433-449.e8. [PMID: 37028407 PMCID: PMC10134073 DOI: 10.1016/j.stem.2023.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 04/09/2023]
Abstract
Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81+ PDGFRAlo trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81- PDGFRAlo mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81- CD55hi cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRAhi myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRAlo cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.
Collapse
Affiliation(s)
- Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dario Boffelli
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel E Wagner
- Department of Obstetrics, Gynecology and Reproductive Science and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Liu C, Li J. The physiological functions of lymphangiocrine signals. Trends Endocrinol Metab 2023; 34:319-320. [PMID: 37019802 DOI: 10.1016/j.tem.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
It has been demonstrated that the lymphatic system plays important roles in tissue development and the progress of diseases. Recent studies identified that lymphatic endothelial cells can secret many proteins with diverse functions. This article highlights the physiological significances of these lymphangiocrine signals in different tissues.
Collapse
Affiliation(s)
- Cenxi Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jin Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Jiang Z, Waterbury QT, Fu N, Kim W, Malagola E, Guha C, Shawber CJ, Yan KS, Wang TC. Immature myeloid cells are indispensable for intestinal regeneration post irradiation injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530500. [PMID: 36909592 PMCID: PMC10002743 DOI: 10.1101/2023.02.28.530500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. Following injury to the intestine, multiple different cell populations cooperate to drive regeneration of the mucosa. Immature myeloid cells (IMCs), marked by histidine decarboxylase ( Hdc ), participate in regeneration of multiple organs such as the colon and central nervous system. Here, we found that IMCs infiltrate the injured intestine and promote epithelial regeneration and modulate LEC activity. IMCs produce prostaglandin E2 (PGE2), which promotes LEC lymphangiogenesis and upregulation of pro-regenerative factors including RSPO3. Moreover, we found that IMC recruitment into the intestine is driven by invading microbial signals. Accordingly, antibiotic eradication of the intestinal microbiome prior to WB-IR inhibits IMC recruitment, and consequently, intestinal recovery. We propose that IMCs play a critical role in intestinal repair and implicate gut microbes as mediators of intestinal regeneration.
Collapse
|
31
|
Stromal regulation of the intestinal barrier. Mucosal Immunol 2023; 16:221-231. [PMID: 36708806 DOI: 10.1016/j.mucimm.2023.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The intestinal barrier is a complex structure that allows the absorption of nutrients while ensuring protection against intestinal pathogens and balanced immunity. The development and maintenance of a functional intestinal barrier is a multifactorial process that is only partially understood. Here we review novel findings on the emerging role of mesenchymal cells in this process using insights gained from lineage tracing approaches, Cre-based gene deletion, and single-cell transcriptomics. The current evidence points toward a key organizer role for distinct mesenchymal lineages in intestinal development and homeostasis, regulating both epithelial and immune components of the intestinal barrier. We further discuss recent findings on functional mesenchymal heterogeneity and implications for intestinal regeneration and inflammatory intestinal pathologies.
Collapse
|
32
|
Imada S, Shin H, Khawaled S, Meckelmann SW, Whittaker CA, Corrêa RO, Pradhan D, Calibasi-Kocal G, Melo LMN, Allies G, Wittenhofer P, Schmitz OJ, Roper J, Vinolo MAR, Cheng CW, Tasdogan A, Yilmaz ÖH. Post-fast refeeding enhances intestinal stem cell-mediated regeneration and tumourigenesis through mTORC1-dependent polyamine synthesis. RESEARCH SQUARE 2023:rs.3.rs-2320717. [PMID: 36711807 PMCID: PMC9882602 DOI: 10.21203/rs.3.rs-2320717/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For more than a century, fasting regimens have improved health, lifespan, and tissue regeneration in diverse organisms, including humans. However, how fasting and post-fast refeeding impact adult stem cells and tumour formation has yet to be explored in depth. Here, we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation: Post-fast refeeding augments the regenerative capacity of Lgr5+ intestinal stem cells (ISCs), and loss of the tumour suppressor Apc in ISCs under post-fast refeeding leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum (AL) fed states. This demonstrates that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust induction of mTORC1 in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production, or protein synthesis abrogates the regenerative or tumourigenic effects of post-fast refeeding. Thus, fast-refeeding cycles must be carefully considered when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst not only in stem cell-driven regeneration but also in tumourigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Sven W. Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Charles A. Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA 02139, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA 02139, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, NC 27710, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
33
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
34
|
Ocular Lymphatic and Glymphatic Systems: Implications for Retinal Health and Disease. Int J Mol Sci 2022; 23:ijms231710139. [PMID: 36077535 PMCID: PMC9456449 DOI: 10.3390/ijms231710139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Clearance of ocular fluid and metabolic waste is a critical function of the eye in health and disease. The eye has distinct fluid outflow pathways in both the anterior and posterior segments. Although the anterior outflow pathway is well characterized, little is known about posterior outflow routes. Recent studies suggest that lymphatic and glymphatic systems play an important role in the clearance of fluid and waste products from the posterior segment of the eye. The lymphatic system is a vascular network that runs parallel to the blood circulatory system. It plays an essential role in maintenance of fluid homeostasis and immune surveillance in the body. Recent studies have reported lymphatics in the cornea (under pathological conditions), ciliary body, choroid, and optic nerve meninges. The evidence of lymphatics in optic nerve meninges is, however, limited. An alternative lymphatic system termed the glymphatic system was recently discovered in the rodent eye and brain. This system is a glial cell-based perivascular network responsible for the clearance of interstitial fluid and metabolic waste. In this review, we will discuss our current knowledge of ocular lymphatic and glymphatic systems and their role in retinal degenerative diseases.
Collapse
|
35
|
Antanaviciute A, Kusumbe A, Simmons A. Lymphatic endothelia stakeout cryptic stem cells. Cell Stem Cell 2022; 29:1292-1293. [PMID: 36055189 DOI: 10.1016/j.stem.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A trio of studies in this issue of Cell Stem Cell catalogs the anatomical and functional relationship of intestinal lymphatics with epithelial stem cells, defining an important niche role for the lymphatic endothelium.
Collapse
Affiliation(s)
- Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Anjali Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
36
|
Goto N, Goto S, Imada S, Hosseini S, Deshpande V, Yilmaz ÖH. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 2022; 29:1246-1261.e6. [PMID: 35931033 PMCID: PMC9720889 DOI: 10.1016/j.stem.2022.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 01/19/2023]
Abstract
Lgr5+ intestinal stem cells (ISCs) depend on niche factors for their proper function. However, the source of these ISC niche factors and how they support ISCs in vivo remain controversial. Here, we report that ISCs depend on lymphatic endothelial cells (LECs) and RSPO3+GREM1+ fibroblasts (RGFs). In the intestine and colon, LECs are surrounded by RGFs and are located near ISCs at the crypt base. Both LECs and RGFs provide the critical ISC niche factor RSPO3 to support ISCs, where RSPO3 loss in both cell types drastically compromises ISC numbers, villi length, and repair after injury. In response to injury, LEC and RGF numbers expand and produce greater amounts of RSPO3 and other growth/angiocrine factors to foster intestinal repair. We propose that LECs represent a novel niche component for ISCs, which together with RGFs serve as the major in vivo RSPO3 source for ISCs in homeostasis and injury-mediated regeneration.
Collapse
Affiliation(s)
- Norihiro Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Correspondence:
(N.G.), (Ö.H.Y.)
| | - Saori Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA,Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA,Lead contact,Correspondence:
(N.G.), (Ö.H.Y.)
| |
Collapse
|