1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
3
|
Zhang H, Sen P, Hamers J, Sittig T, Woestenburg B, Moretti A, Dendorfer A, Merkus D. Retinoic acid modulation guides human-induced pluripotent stem cell differentiation towards left or right ventricle-like cardiomyocytes. Stem Cell Res Ther 2024; 15:184. [PMID: 38902843 PMCID: PMC11191368 DOI: 10.1186/s13287-024-03741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) by traditional methods are a mix of atrial and ventricular CMs and many other non-cardiomyocyte cells. Retinoic acid (RA) plays an important role in regulation of the spatiotemporal development of the embryonic heart. METHODS CMs were derived from hiPSC (hi-PCS-CM) using different concentrations of RA (Control without RA, LRA with 0.05μM and HRA with 0.1 μM) between day 3-6 of the differentiation process. Engineered heart tissues (EHTs) were generated by assembling hiPSC-CM at high cell density in a low collagen hydrogel. RESULTS In the HRA group, hiPSC-CMs exhibited highest expression of contractile proteins MYH6, MYH7 and cTnT. The expression of TBX5, NKX2.5 and CORIN, which are marker genes for left ventricular CMs, was also the highest in the HRA group. In terms of EHT, the HRA group displayed the highest contraction force, the lowest beating frequency, and the highest sensitivity to hypoxia and isoprenaline, which means it was functionally more similar to the left ventricle. RNAsequencing revealed that the heightened contractility of EHT within the HRA group can be attributed to the promotion of augmented extracellular matrix strength by RA. CONCLUSION By interfering with the differentiation process of hiPSC with a specific concentration of RA at a specific time, we were able to successfully induce CMs and EHTs with a phenotype similar to that of the left ventricle or right ventricle.
Collapse
Affiliation(s)
- Hengliang Zhang
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, China
| | - Payel Sen
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Jules Hamers
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Theresa Sittig
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Brent Woestenburg
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
| | - Allessandra Moretti
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Cardiology, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andreas Dendorfer
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Daphne Merkus
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany.
- Division of Experimental Cardiology, Dept of Cardiology, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Butler K, Ahmed S, Jablonski J, Hookway TA. Engineered Cardiac Microtissue Biomanufacturing Using Human Induced Pluripotent Stem Cell Derived Epicardial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593960. [PMID: 38798424 PMCID: PMC11118268 DOI: 10.1101/2024.05.13.593960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epicardial cells are a crucial component in constructing in vitro 3D tissue models of the human heart, contributing to the ECM environment and the resident mesenchymal cell population. Studying the human epicardium and its development from the proepicardial organ is difficult, but induced pluripotent stem cells can provide a source of human epicardial cells for developmental modeling and for biomanufacturing heterotypic cardiac tissues. This study shows that a robust population of epicardial cells (approx. 87.7% WT1+) can be obtained by small molecule modulation of the Wnt signaling pathway. The population maintains WT1 expression and characteristic epithelial morphology over successive passaging, but increases in size and decreases in cell number, suggesting a limit to their expandability in vitro. Further, low passage number epicardial cells formed into more robust 3D microtissues compared to their higher passage counterparts, suggesting that the ideal time frame for use of these epicardial cells for tissue engineering and modeling purposes is early on in their differentiated state. Additionally, the differentiated epicardial cells displayed two distinct morphologic sub populations with a subset of larger, more migratory cells which led expansion of the epicardial cells across various extracellular matrix environments. When incorporated into a mixed 3D co-culture with cardiomyocytes, epicardial cells promoted greater remodeling and migration without impairing cardiomyocyte function. This study provides an important characterization of stem cell-derived epicardial cells, identifying key characteristics that influence their ability to fabricate consistent engineered cardiac tissues.
Collapse
Affiliation(s)
- Kirk Butler
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Saif Ahmed
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Justin Jablonski
- Biomedical Engineering Department, University of Rochester, Rochester, NY14627
| | - Tracy A. Hookway
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| |
Collapse
|
5
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Fernandes I, Funakoshi S, Hamidzada H, Epelman S, Keller G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat Commun 2023; 14:8183. [PMID: 38081833 PMCID: PMC10713677 DOI: 10.1038/s41467-023-43312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiac fibroblasts play an essential role in the development of the heart and are implicated in disease progression in the context of fibrosis and regeneration. Here, we establish a simple organoid culture platform using human pluripotent stem cell-derived epicardial cells and ventricular cardiomyocytes to study the development, maturation, and heterogeneity of cardiac fibroblasts under normal conditions and following treatment with pathological stimuli. We demonstrate that this system models the early interactions between epicardial cells and cardiomyocytes to generate a population of fibroblasts that recapitulates many aspects of fibroblast behavior in vivo, including changes associated with maturation and in response to pathological stimuli associated with cardiac injury. Using single cell transcriptomics, we show that the hPSC-derived organoid fibroblast population displays a high degree of heterogeneity that approximates the heterogeneity of populations in both the normal and diseased human heart. Additionally, we identify a unique subpopulation of fibroblasts possessing reparative features previously characterized in the hearts of model organisms. Taken together, our system recapitulates many aspects of human cardiac fibroblast specification, development, and maturation, providing a platform to investigate the role of these cells in human cardiovascular development and disease.
Collapse
Affiliation(s)
- Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Peter Munk Cardiac Centre, University Health Networ, Toronto, ON, M5G1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
7
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
8
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
10
|
Pan Y, Jiang Z, Ye Y, Zhu D, Li N, Yang G, Wang Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann Biomed Eng 2023:10.1007/s10439-023-03173-6. [PMID: 37014581 DOI: 10.1007/s10439-023-03173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) is emerging as a promising cytokine for regenerative medicine and tissue engineering. BMP4 has been shown to promote the regeneration of teeth, periodontal tissue, bone, cartilage, the thymus, hair, neurons, nucleus pulposus, and adipose tissue, as well as the formation of skeletal myotubes and vessels. BMP4 can also contribute to the formation of tissues in the heart, lung, and kidney. However, there are certain deficiencies, including the insufficiency of the mechanism of BMP4 in some fields and an appropriate carrier of BMP4 for clinical use. There has also been a lack of in vivo experiments and orthotopic transplantation studies in some fields. BMP4 has great distance from the clinical application. Therefore, there are many BMP4-related studies waiting to be explored. This review mainly discusses the effects, mechanisms, and applications of BMP4 in regenerative medicine and tissue engineering over the last 10 years in various domains and possible improvements. BMP4 has shown great potential in regenerative medicine and tissue engineering. The research of BMP4 has broad development space and great value.
Collapse
Affiliation(s)
- Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
11
|
van Amerongen RA, Morton LT, Chaudhari UG, Remst DF, Hagedoorn RS, van den Berg CW, Freund C, Falkenburg JF, Heemskerk MH. Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Mol Ther Methods Clin Dev 2023; 28:249-261. [PMID: 36816758 PMCID: PMC9931760 DOI: 10.1016/j.omtm.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.
Collapse
Affiliation(s)
- Rosa A. van Amerongen
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Umesh G. Chaudhari
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Christian Freund
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.
| |
Collapse
|
12
|
Trikalitis VD, Kroese NJJ, Kaya M, Cofiño-Fabres C, Ten Den S, Khalil ISM, Misra S, Koopman BFJM, Passier R, Schwach V, Rouwkema J. Embedded 3D printing of dilute particle suspensions into dense complex tissue fibers using shear thinning xanthan baths. Biofabrication 2022; 15. [PMID: 36347040 DOI: 10.1088/1758-5090/aca124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
In order to fabricate functional organoids and microtissues, a high cell density is generally required. As such, the placement of cell suspensions in molds or microwells to allow for cell concentration by sedimentation is the current standard for the production of organoids and microtissues. Even though molds offer some level of control over the shape of the resulting microtissue, this control is limited as microtissues tend to compact towards a sphere after sedimentation of the cells. 3D bioprinting on the other hand offers complete control over the shape of the resulting structure. Even though the printing of dense cell suspensions in the ink has been reported, extruding dense cellular suspensions is challenging and generally results in high shear stresses on the cells and a poor shape fidelity of the print. As such, additional materials such as hydrogels are added in the bioink to limit shear stresses, and to improve shape fidelity and resolution. The maximum cell concentration that can be incorporated in a hydrogel-based ink before the ink's rheological properties are compromised, is significantly lower than the concentration in a tissue equivalent. Additionally, the hydrogel components often interfere with cellular self-assembly processes. To circumvent these limitations, we report a simple and inexpensive xanthan bath based embedded printing method to 3D print dense functional linear tissues using dilute particle suspensions consisting of cells, spheroids, hydrogel beads, or combinations thereof. Using this method, we demonstrated the self-organization of functional cardiac tissue fibers with a layer of epicardial cells surrounding a body of cardiomyocytes.
Collapse
Affiliation(s)
- Vasileios D Trikalitis
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Niels J J Kroese
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Simone Ten Den
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Bart F J M Koopman
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| |
Collapse
|
13
|
Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid. Nat Commun 2022; 13:6981. [PMID: 36379937 PMCID: PMC9666429 DOI: 10.1038/s41467-022-34730-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The epicardium, the outer epithelial layer that covers the myocardium, derives from a transient organ known as pro-epicardium, crucial during heart organogenesis. The pro-epicardium develops from lateral plate mesoderm progenitors, next to septum transversum mesenchyme, a structure deeply involved in liver embryogenesis. Here we describe a self-organized human multilineage organoid that recreates the co-emergence of pro-epicardium, septum transversum mesenchyme and liver bud. Additionally, we study the impact of WNT, BMP and retinoic acid signaling modulation on multilineage organoid specification. By co-culturing these organoids with cardiomyocyte aggregates, we generated a self-organized heart organoid comprising an epicardium-like layer that fully surrounds a myocardium-like tissue. These heart organoids recapitulate the impact of epicardial cells on promoting cardiomyocyte proliferation and structural and functional maturation. Therefore, the human heart organoids described herein, open the path to advancing knowledge on how myocardium-epicardium interaction progresses during heart organogenesis in healthy or diseased settings.
Collapse
|
14
|
Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife 2022; 11:76781. [PMID: 36217819 PMCID: PMC9553210 DOI: 10.7554/elife.76781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Each heartbeat is triggered by the sinoatrial node (SAN), the primary pacemaker of the heart. Studies in animal models have revealed that pacemaker cells share a common progenitor with the (pro)epicardium, and that the pacemaker cardiomyocytes further diversify into ‘transitional’, ‘tail’, and ‘head’ subtypes. However, the underlying molecular mechanisms, especially of human pacemaker cell development, are poorly understood. Here, we performed single cell RNA sequencing (scRNA-seq) and trajectory inference on human induced pluripotent stem cells (hiPSCs) differentiating to SAN-like cardiomyocytes (SANCMs) to construct a roadmap of transcriptional changes and lineage decisions. In differentiated SANCM, we identified distinct clusters that closely resemble different subpopulations of the in vivo SAN. Moreover, the presence of a side population of proepicardial cells suggested their shared ontogeny with SANCM, as also reported in vivo. Our results demonstrate that the divergence of SANCM and proepicardial lineages is determined by WNT signaling. Furthermore, we uncovered roles for TGFβ and WNT signaling in the branching of transitional and head SANCM subtypes, respectively. These findings provide new insights into the molecular processes involved in human pacemaker cell differentiation, opening new avenues for complex disease modeling in vitro and inform approaches for cell therapy-based regeneration of the SAN.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jiuru Li
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
16
|
Maselli D, Matos RS, Johnson RD, Martella D, Caprettini V, Chiappini C, Camelliti P, Campagnolo P. Porcine Organotypic Epicardial Slice Protocol: A Tool for the Study of Epicardium in Cardiovascular Research. Front Cardiovasc Med 2022; 9:920013. [PMID: 35924218 PMCID: PMC9339655 DOI: 10.3389/fcvm.2022.920013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The epicardium has recently gained interest in the cardiovascular field due to its capacity to support heart regeneration after ischemic injury. Models to study the epicardium of large animals in vitro are limited and mainly based on epicardial cell isolation/differentiation from stem cells, followed by 2D cells culture. In this method paper, we describe the procedure to obtain and culture 3D organotypic heart slices presenting an intact epicardium, as a novel model to study the epicardial physiology and activation. Epicardial slices are obtained from porcine hearts using a high-precision vibratome and retain a healthy epicardial layer embedded in its native extracellular environment and connected with other cardiac cells (cardiomyocytes, fibroblasts, vascular cells etc.). Epicardial slices can be cultured for 72 h, providing an ideal model for studying the epicardium physiology or perform pharmacological interventions/gene therapy approaches. We also report on methods to assesses the viability and composition of the epicardial slices, and evaluate their architecture in 3D through tissue decoloration. Finally, we present a potential application for a nanomaterial-based gene transfer method for tracking of epicardial cells within the slice. Crucially, given the similarity in morphology and physiology of porcine heart with its human counterpart, our system provides a platform for translational research while providing a clinically relevant and ethical alternative to the use of small animals in this type of research.
Collapse
Affiliation(s)
- Davide Maselli
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rolando S. Matos
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Robert D. Johnson
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Davide Martella
- London Centre for Nanotechnology, King's College London, London, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Valeria Caprettini
- London Centre for Nanotechnology, King's College London, London, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Ciro Chiappini
- London Centre for Nanotechnology, King's College London, London, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Patrizia Camelliti
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Paola Campagnolo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
17
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
18
|
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat Biomed Eng 2022; 6:327-338. [PMID: 35478227 DOI: 10.1038/s41551-022-00885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.
Collapse
|
19
|
Alam P, Maliken BD, Jones SM, Ivey MJ, Wu Z, Wang Y, Kanisicak O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int J Mol Sci 2021; 22:ijms222313104. [PMID: 34884909 PMCID: PMC8658114 DOI: 10.3390/ijms222313104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Bryan D. Maliken
- Harrington Physician-Scientist Pathway, Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA;
| | - Shannon M. Jones
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
- Correspondence: ; Tel.: +1-513-558-2029; Fax: +1-513-584-3892
| |
Collapse
|
20
|
Sabatier P, Beusch CM, Saei AA, Aoun M, Moruzzi N, Coelho A, Leijten N, Nordenskjöld M, Micke P, Maltseva D, Tonevitsky AG, Millischer V, Carlos Villaescusa J, Kadekar S, Gaetani M, Altynbekova K, Kel A, Berggren PO, Simonson O, Grinnemo KH, Holmdahl R, Rodin S, Zubarev RA. An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation. Nat Commun 2021; 12:6558. [PMID: 34772928 PMCID: PMC8590018 DOI: 10.1038/s41467-021-26879-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Amir A Saei
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Niels Leijten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Magnus Nordenskjöld
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, 171 76, Sweden
| | - Patrick Micke
- Immunology, Genetics and Pathology, Rudbecklaboratoriet, Uppsala University, Uppsala, 751 85, Sweden
| | - Diana Maltseva
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
| | - Alexander G Tonevitsky
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, Moscow, 115088, Russia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - J Carlos Villaescusa
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Stem Cell R&D-TRU, Novo Nordisk A/S, Måløv, Denmark
| | - Sandeep Kadekar
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
| | - Massimiliano Gaetani
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Chemical Proteomics Core Facility, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, 17 177, Sweden
| | | | - Alexander Kel
- geneXplain GmbH, Am Exer 19B, 38302, Wolfenbuettel, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Oscar Simonson
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden.
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden.
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia.
| |
Collapse
|
21
|
Wiesinger A, Boink GJJ, Christoffels VM, Devalla HD. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports 2021; 16:2589-2606. [PMID: 34653403 PMCID: PMC8581056 DOI: 10.1016/j.stemcr.2021.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges. Stem Cell Reports 2021; 16:2049-2057. [PMID: 33338434 PMCID: PMC8452488 DOI: 10.1016/j.stemcr.2020.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human heart (patho)physiology is now widely studied using human pluripotent stem cells, but the immaturity of derivative cardiomyocytes has largely limited disease modeling to conditions associated with mutations in cardiac ion channel genes. Recent advances in tissue engineering and organoids have, however, created new opportunities to study diseases beyond "channelopathies." These synthetic cardiac structures allow quantitative measurement of contraction, force, and other biophysical parameters in three-dimensional configurations, in which the cardiomyocytes in addition become more mature. Multiple cardiac-relevant cell types are also often combined to form organized cardiac tissue mimetic constructs, where cell-cell, cell-extracellular matrix, and paracrine interactions can be mimicked. In this review, we provide an overview of some of the most promising technologies being implemented specifically in personalized heart-on-a-chip models and explore their applications, drawbacks, and potential for future development.
Collapse
Affiliation(s)
- Jeroen M Stein
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, Enschede 7500AE, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Biology, University of Padua, Padua 35131, Italy; Veneto Institute of Molecular Medicine, Padua 35129, Italy.
| |
Collapse
|
23
|
|
24
|
Tan JJ, Guyette JP, Miki K, Xiao L, Kaur G, Wu T, Zhu L, Hansen KJ, Ling KH, Milan DJ, Ott HC. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat Commun 2021; 12:4997. [PMID: 34404774 PMCID: PMC8370973 DOI: 10.1038/s41467-021-24921-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro. The authors form pre-epicardial cells (PECs) from hiPSC-derived lateral plate mesoderm on treating with BMP4, RA and VEGF, and co-culture these PECs with cardiomyocytes, inducing cardiomyocyte aggregation, proliferation and network formation with more mature structures and improved beating/contractility.
Collapse
Affiliation(s)
- Jun Jie Tan
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| | - Jacques P Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Kenji Miki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Center for iPS Cell Research and Applications, Kyoto University, Kyoto, Japan
| | - Ling Xiao
- Harvard Medical School, Boston, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gurbani Kaur
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tong Wu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Liye Zhu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Katrina J Hansen
- Worcester Polytechnic Institute, Dept. of Biomedical Engineering, Worcester, MA, USA
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - David J Milan
- Harvard Medical School, Boston, MA, USA.,Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.,Leducq Foundation, Boston, MA, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Abstract
Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
26
|
Agrin Yes-associated Protein Promotes the Proliferation of Epicardial Cells. J Cardiovasc Pharmacol 2021; 77:94-99. [PMID: 33136763 DOI: 10.1097/fjc.0000000000000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Embryonic epicardial cells make an important contribution to cardiac development. However, their proliferation mechanism is still unclear. Epicardial cells from E12.5 fetal hearts were used in our study. Agrin was used to treat these cells. The expression of Aurora B, Ki67, and pH3 was measured by quantitative reverse transcription-polymerase chain reaction and immunofluorescence. The proportion of cells in G1/S/G2 phase was determined by flow cytometry. The results showed that agrin significantly increased the expression of ki67, pH3, and Aurora B in epicardial cells. Flow cytometry results showed that agrin significantly increased the proportion of epicardial cells in S phase. However, blocking yes-associated protein significantly downregulated the levels of ki67, pH3, and Aurora B and the proportion of epicardial cells in S phase. Thus, our results suggest that agrin may promote the proliferation of epicardial cells by regulating the yes-associated protein activity. This may be useful in exploring heart development mechanisms and preventing congenital heart disease.
Collapse
|
27
|
Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Šalic Š, Novatchkova M, Mendjan S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021; 184:3299-3317.e22. [PMID: 34019794 DOI: 10.1016/j.cell.2021.04.034] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Magdalena Giesshammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Mirjam Penc
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Nastasja Grdseloff
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Christy Meledeth
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Claudia Ctortecka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Šejla Šalic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna Biocenter 1, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
28
|
Soon K, Mourad O, Nunes SS. Engineered human cardiac microtissues: The state-of-the-(he)art. STEM CELLS (DAYTON, OHIO) 2021; 39:1008-1016. [PMID: 33786918 DOI: 10.1002/stem.3376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/05/2021] [Indexed: 11/06/2022]
Abstract
Due to the integration of recent advances in stem cell biology, materials science, and engineering, the field of cardiac tissue engineering has been rapidly progressing toward developing more accurate functional 3D cardiac microtissues from human cell sources. These engineered tissues enable screening of cardiotoxic drugs, disease modeling (eg, by using cells from specific genetic backgrounds or modifying environmental conditions) and can serve as novel drug development platforms. This concise review presents the most recent advances and improvements in cardiac tissue formation, including cardiomyocyte maturation and disease modeling.
Collapse
Affiliation(s)
- Kayla Soon
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Omar Mourad
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Campostrini G, Meraviglia V, Giacomelli E, van Helden RW, Yiangou L, Davis RP, Bellin M, Orlova VV, Mummery CL. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat Protoc 2021; 16:2213-2256. [PMID: 33772245 PMCID: PMC7611409 DOI: 10.1038/s41596-021-00497-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Tissue-like structures from human pluripotent stem cells containing multiple cell types are transforming our ability to model and understand human development and disease. Here we describe a protocol to generate cardiomyocytes (CMs), cardiac fibroblasts (CFs) and cardiac endothelial cells (ECs), the three principal cell types in the heart, from human induced pluripotent stem cells (hiPSCs) and combine them in three-dimensional (3D) cardiac microtissues (MTs). We include details of how to differentiate, isolate, cryopreserve and thaw the component cells and how to construct and analyze the MTs. The protocol supports hiPSC-CM maturation and allows replacement of one or more of the three heart cell types in the MTs with isogenic variants bearing disease mutations. Differentiation of each cell type takes ~30 d, while MT formation and maturation requires another 20 d. No specialist equipment is needed and the method is inexpensive, requiring just 5,000 cells per MT.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruben W.J. van Helden
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Biology, University of Padua, 35121 Padua, Italy,Veneto Institute of Molecular Medicine, 35129 Padua, Italy,Correspondence to , or
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Correspondence to , or
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Applied Stem Cell Technologies, University of Twente, The Netherlands,Correspondence to , or
| |
Collapse
|
30
|
Abstract
The epicardium is a multipotent cell layer that is vital to myocardial development and regeneration. Epicardial cells contribute to cardiac fibroblast and smooth muscle populations of the heart and secrete paracrine factors that promote cardiomyocyte proliferation and angiogenesis. Despite a central role in cardiac biology, the mechanisms by which epicardial cells influence cardiac growth are largely unknown, and robust models of the epicardium are needed. Here, we review our protocol for differentiating induced pluripotent stem cells (iPSCs) into epicardial-like cells through temporal modulation of canonical Wnt signaling. iPSC-derived epicardial cells (iECs) resemble in vivo epicardial cells morphologically and display markers characteristic of the developing epicardium. We also review our protocol for differentiating iECs into fibroblasts and smooth muscle cells through treatment with bFGF and TGF-β1, respectively. iECs provide a platform for studying fundamental epicardial biology and can inform strategies for therapeutic heart regeneration.
Collapse
|
31
|
Jackson AO, Rahman GA, Yin K, Long S. Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy. J Cardiovasc Transl Res 2020; 14:556-572. [PMID: 33258081 DOI: 10.1007/s12265-020-10085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) remains one of the major causes of morbidity and mortality worldwide. Recent studies have shown that stem cells (SCs) including bone marrow mesenchymal stem (BMSC), embryonic bodies (EB), embryonic stem (ESC), human induced pluripotent stem (hiPSC)-derived cardiac cells generation, and transplantation treated myocardial infarction (MI) in vivo and in human. However, the immature phenotypes compromise their clinical application requiring immediate intervention to improve stem-derived cardiac cell (S-CCs) maturation. Recently, an unbiased multi-omic analysis involving genomics, transcriptomics, epigenomics, proteomics, and metabolomics identified specific strategies for the generation of matured S-CCs that may enhance patients' recovery processes upon transplantation. However, these strategies still remain undisclosed. Here, we summarize the recently discovered strategies for the matured S-CC generation. In addition, cardiac patch formation and transplantation that accelerated HF recuperation in clinical trials are discussed. A better understanding of this work may lead to efficient generation of matured S-CCs for regenerative medicine. Graphical abstract.
Collapse
Affiliation(s)
- Ampadu O Jackson
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.,International College, University of South China, Hengyang, 421001, Hunan Province, China.,Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Ganiyu A Rahman
- Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
32
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
33
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
34
|
Qiao X, van der Zanden SY, Wander DPA, Borràs DM, Song JY, Li X, van Duikeren S, van Gils N, Rutten A, van Herwaarden T, van Tellingen O, Giacomelli E, Bellin M, Orlova V, Tertoolen LGJ, Gerhardt S, Akkermans JJ, Bakker JM, Zuur CL, Pang B, Smits AM, Mummery CL, Smit L, Arens R, Li J, Overkleeft HS, Neefjes J. Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proc Natl Acad Sci U S A 2020; 117:15182-15192. [PMID: 32554494 DOI: 10.1073/pnas.1922072117/suppl_file/pnas.1922072117.sm04.mp4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.
Collapse
Affiliation(s)
- Xiaohang Qiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Dennis P A Wander
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Daniel M Borràs
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Xiaoyang Li
- Department of Hematology, Shanghai Institute of Hematology, National Research Center for Translational Medicine, RuiJin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Suzanne van Duikeren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Noortje van Gils
- Department of Hematology, Vrije Universiteit Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Arjo Rutten
- Department of Hematology, Vrije Universiteit Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tessa van Herwaarden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Olaf van Tellingen
- Division of Diagnostic Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Valeria Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Sophie Gerhardt
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jeroen M Bakker
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Charlotte L Zuur
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Baoxu Pang
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Linda Smit
- Department of Hematology, Vrije Universiteit Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Junmin Li
- Department of Hematology, Shanghai Institute of Hematology, National Research Center for Translational Medicine, RuiJin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China;
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
| |
Collapse
|
35
|
Mononen MM, Leung CY, Xu J, Chien KR. Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage. Stem Cells 2020; 38:1267-1278. [PMID: 32497389 DOI: 10.1002/stem.3236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/01/2020] [Indexed: 11/11/2022]
Abstract
A family of multipotent heart progenitors plays a central role in the generation of diverse myogenic and nonmyogenic lineages in the heart. Cardiac progenitors in particular play a significant role in lineages involved in disease, and have also emerged to be a strong therapeutic candidate. Based on this premise, we aimed to deeply characterize the progenitor stage of cardiac differentiation at a single-cell resolution. Integrated comparison with an embryonic 5-week human heart transcriptomic dataset validated lineage identities with their late stage in vitro counterparts, highlighting the relevance of an in vitro differentiation for progenitors that are developmentally too early to be accessed in vivo. We utilized trajectory mapping to elucidate progenitor lineage branching points, which are supported by RNA velocity. Nonmyogenic populations, including cardiac fibroblast-like cells and endoderm, were found, and we identified TGFBI as a candidate marker for human cardiac fibroblasts in vivo and in vitro. Both myogenic and nonmyogenic populations express ISL1, and its loss redirected myogenic progenitors into a neural-like fate. Our study provides important insights into processes during early heart development.
Collapse
Affiliation(s)
- Mimmi M Mononen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Chuen Yan Leung
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Kenneth R Chien
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
36
|
Abstract
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.
Collapse
|
37
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
38
|
Schwach V, Passier R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 2020; 7:3566-3580. [PMID: 31338495 DOI: 10.1039/c8bm01348a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) generally have an immature fetal-like phenotype when directly compared to isolated CMs from human hearts, despite significant advance in differentiation of human pluripotent stem cells (hPSCs) to multiple cardiac lineages. Therefore, hPSC-CMs may not accurately mimic all facets of healthy and diseased human adult CMs. During embryonic development, the cardiac extracellular matrix (ECM) experiences a gradual assembly of matrix proteins that transits along the maturation of CMs. Mimicking these dynamic stages may contribute to hPSC-CMs maturation in vitro. Thus, in this review, we describe the progressive build-up of the cardiac ECM during embryonic development, the ECM of the adult human heart and the application of natural and synthetic biomaterials for cardiac tissue engineering with hPSC-CMs.
Collapse
Affiliation(s)
- Verena Schwach
- Dept of Applied Stem Cell Technologies, TechMed Centre, University of Twente, The Netherlands.
| | | |
Collapse
|
39
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
40
|
Gambardella L, McManus SA, Moignard V, Sebukhan D, Delaune A, Andrews S, Bernard WG, Morrison MA, Riley PR, Göttgens B, Gambardella Le Novère N, Sinha S. BNC1 regulates cell heterogeneity in human pluripotent stem cell-derived epicardium. Development 2019; 146:dev174441. [PMID: 31767620 PMCID: PMC6955213 DOI: 10.1242/dev.174441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.
Collapse
Affiliation(s)
- Laure Gambardella
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Sophie A McManus
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Victoria Moignard
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | | | | | - William G Bernard
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Maura A Morrison
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | - Sanjay Sinha
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| |
Collapse
|
41
|
D'Antonio-Chronowska A, Donovan MKR, Young Greenwald WW, Nguyen JP, Fujita K, Hashem S, Matsui H, Soncin F, Parast M, Ward MC, Coulet F, Smith EN, Adler E, D'Antonio M, Frazer KA. Association of Human iPSC Gene Signatures and X Chromosome Dosage with Two Distinct Cardiac Differentiation Trajectories. Stem Cell Reports 2019; 13:924-938. [PMID: 31668852 PMCID: PMC6895695 DOI: 10.1016/j.stemcr.2019.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors (clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and EPDC-fated iPSCs, we discovered that 91 signature genes and X chromosome dosage differences are associated with these two distinct cardiac developmental trajectories. In an independent set of 39 iPSCs differentiated into CMs, we confirmed that sex and transcriptional differences affect cardiac-fate outcome. Our study provides novel insights into how iPSC transcriptional and X chromosome gene dosage differences influence their response to differentiation stimuli and, hence, cardiac cell fate. Cellular heterogeneity across iPSC-CVPCs due to varying fractions of CMs and EPDCs iPSC non-genetic factors (clone and passage) associated with cardiac cell fate Expression levels of signature genes in iPSCs associated with cardiac lineage fate iPSC donor sex plays a role in cardiac lineage fate
Collapse
Affiliation(s)
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | | | - Jennifer Phuong Nguyen
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Sherin Hashem
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | - Mana Parast
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Michelle C Ward
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Florence Coulet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Erin N Smith
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Eric Adler
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Matteo D'Antonio
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kelly A Frazer
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
43
|
Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, Schmuck EG, Raval AN, da Rocha AM, Herron TJ, Jalife J, Thomson JA, Kamp TJ. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 2019; 10:2238. [PMID: 31110246 PMCID: PMC6527555 DOI: 10.1038/s41467-019-09831-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/02/2019] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibroblasts (CFs) play critical roles in heart development, homeostasis, and disease. The limited availability of human CFs from native heart impedes investigations of CF biology and their role in disease. Human pluripotent stem cells (hPSCs) provide a highly renewable and genetically defined cell source, but efficient methods to generate CFs from hPSCs have not been described. Here, we show differentiation of hPSCs using sequential modulation of Wnt and FGF signaling to generate second heart field progenitors that efficiently give rise to hPSC-CFs. The hPSC-CFs resemble native heart CFs in cell morphology, proliferation, gene expression, fibroblast marker expression, production of extracellular matrix and myofibroblast transformation induced by TGFβ1 and angiotensin II. Furthermore, hPSC-CFs exhibit a more embryonic phenotype when compared to fetal and adult primary human CFs. Co-culture of hPSC-CFs with hPSC-derived cardiomyocytes distinctly alters the electrophysiological properties of the cardiomyocytes compared to co-culture with dermal fibroblasts. The hPSC-CFs provide a powerful cell source for research, drug discovery, precision medicine, and therapeutic applications in cardiac regeneration. Cardiac fibroblasts (CFs) play critical roles in heart development, homeostasis, and disease. Here the authors efficiently differentiate human pluripotent stem cells through second heart field progenitors to CFs that exhibit features and functional properties similar to native CFs.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Ran Tao
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Katherine F Campbell
- Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI, 48109, USA
| | - Juliana L Carvalho
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, 70790, Distrito Federal, Brazil
| | - Edward C Ruiz
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gina C Kim
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric G Schmuck
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amish N Raval
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - André Monteiro da Rocha
- Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI, 48109, USA
| | - Todd J Herron
- Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI, 48109, USA
| | - José Jalife
- Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Fundación Nacional Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 328029, Madrid, Spain
| | - James A Thomson
- Regenerative Biology Division, Morgridge Institute for Research, Madison, WI, 53715, USA.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
44
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
45
|
Niderla-BieliŃska J, Jankowska-Steifer E, Flaht-Zabost A, Gula G, Czarnowska E, Ratajska A. Proepicardium: Current Understanding of its Structure, Induction, and Fate. Anat Rec (Hoboken) 2018; 302:893-903. [PMID: 30421563 DOI: 10.1002/ar.24028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022]
Abstract
The proepicardium (PE) is a transitory extracardiac embryonic structure which plays a crucial role in cardiac morphogenesis and delivers various cell lineages to the developing heart. The PE arises from the lateral plate mesoderm (LPM) and is present in all vertebrate species. During development, mesothelial cells of the PE reach the naked myocardium either as free-floating aggregates in the form of vesicles or via a tissue bridge; subsequently, they attach to the myocardium and, finally, form the third layer of a mature heart-the epicardium. After undergoing epithelial-to-mesenchymal transition (EMT) some of the epicardial cells migrate into the myocardial wall and differentiate into fibroblasts, smooth muscle cells, and possibly other cell types. Despite many recent findings, the molecular pathways that control not only proepicardial induction and differentiation but also epicardial formation and epicardial cell fate are poorly understood. Knowledge about these events is essential because molecular mechanisms that occur during embryonic development have been shown to be reactivated in pathological conditions, for example, after myocardial infarction, during hypertensive heart disease or other cardiovascular diseases. Therefore, in this review we intended to summarize the current knowledge about PE formation and structure, as well as proepicardial cell fate in animals commonly used as models for studies on heart development. Anat Rec, 302:893-903, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Gula
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.,The Postgraduate School of Molecular Medicine (SMM), Warsaw, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
47
|
Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells Int 2018; 2018:1429351. [PMID: 30254679 PMCID: PMC6142731 DOI: 10.1155/2018/1429351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) hold great potential for the treatment of various degenerative diseases. Pluripotent hESCs have a great ability to undergo unlimited self-renewal in culture and to differentiate into all cell types in the body. The journey of hESC research is not that smooth, as it has faced several challenges which are limited to not only tumor formation and immunorejection but also social, ethical, and political aspects. The isolation of hESCs from the human embryo is considered highly objectionable as it requires the destruction of the human embryo. The issue was debated and discussed in both public and government platforms, which led to banning of hESC research in many countries around the world. The banning has negatively affected the progress of hESC research as many federal governments around the world stopped research funding. Afterward, some countries lifted the ban and allowed the funding in hESC research, but the damage has already been done on the progress of research. Under these unfavorable conditions, still some progress was made to isolate, culture, and characterize hESCs using different strategies. In this review, we have summarized various strategies used to successfully isolate, culture, and characterize hESCs. Finally, hESCs hold a great promise for clinical applications with proper strategies to minimize the teratoma formation and immunorejection and better cell transplantation strategies.
Collapse
|
48
|
Chen T, Zhu H, Wang Y, Zhao P, Chen J, Sun J, Zhang X, Zhu G. Apoptosis of bone marrow mesenchymal stromal/stem cells via the MAPK and endoplasmic reticulum stress signaling pathways. Am J Transl Res 2018; 10:2555-2566. [PMID: 30210692 PMCID: PMC6129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Therapy for myocardial regeneration using bone marrow stromal cells (BM-MSCs) has been applied to improve the cardiac function of subjects with acute myocardial infarction. However, the study of this therapy has encountered a bottleneck because BM-MSCs are prone to apoptosis in ischemic and anoxic environments. The goal of this study was to investigate the expression of mitogen activated protein kinase (MAPK) (p-38, JNK and ERK) and endoplasmic reticulum stress protein (caspase-12 and CHOP) during BM-MSC apoptosis. In a BM-MSC model of hypoxia and serum deprivation (H/SD), we observed the morphology and apoptotic rate of BM-MSCs for 24 h and found that the nuclear shrinkage and apoptosis rate increased gradually and reached a maximum apoptosis rate at the 6 h time point. Then, with the prolongation of the hypoxia time, the number of nuclear shrinkage cells and the apoptosis rate gradually decreased. The expression levels of p-38, JNK, ERK, procaspase-12, caspase-12 and CHOP increased at each H/SD time point. In addition, compared with the H/SD 6 h group, the nuclear shrinkage and apoptosis rate were decreased in the SB202190 and SP600125 groups but increased in the PD98059 group. Further, the expression of caspase-12 in the SB202190 group decreased, while the expression of procaspase-12 increased, compared with the H/SD 6 h group. Overall, our findings suggested that p-38, JNK, CHOP and caspase-12 play important roles in promoting the apoptosis of BM-MSCs, while ERK is contrary to other signals. Moreover, the apoptosis of BM-MSCs was induced by H/SD via the p-38-caspase-12 signaling pathway.
Collapse
Affiliation(s)
- Tielong Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Houyong Zhu
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Yu Wang
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Pengjie Zhao
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Jingyu Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Jing Sun
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Xiudong Zhang
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| | - Guangli Zhu
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou, China
| |
Collapse
|
49
|
Simões FC, Riley PR. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development 2018; 145:145/7/dev155994. [DOI: 10.1242/dev.155994] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The epicardium plays a key role during cardiac development, homeostasis and repair, and has thus emerged as a potential target in the treatment of cardiovascular disease. However, therapeutically manipulating the epicardium and epicardium-derived cells (EPDCs) requires insights into their developmental origin and the mechanisms driving their activation, recruitment and contribution to both the embryonic and adult injured heart. In recent years, studies of various model systems have provided us with a deeper understanding of the microenvironment in which EPDCs reside and emerge into, of the crosstalk between the multitude of cardiovascular cell types that influence the epicardium, and of the genetic programmes that orchestrate epicardial cell behaviour. Here, we review these discoveries and discuss how technological advances could further enhance our knowledge of epicardium-based repair mechanisms and ultimately influence potential therapeutic outcomes in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Filipa C. Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|