1
|
Fodor I, Matsubara S, Osugi T, Shiraishi A, Kawada T, Satake H, Pirger Z. Lack of membrane sex steroid receptors for mediating rapid endocrine responses in molluscan nervous systems. Front Endocrinol (Lausanne) 2024; 15:1458422. [PMID: 39188914 PMCID: PMC11345136 DOI: 10.3389/fendo.2024.1458422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Despite the lack of endogenous synthesis and relevant nuclear receptors, several papers have been published over the decades claiming that the physiology of mollusks is affected by natural and synthetic sex steroids. With scant evidence for the existence of functional steroid nuclear receptors in mollusks, some scientists have speculated that the effects of steroids might be mediated via membrane receptors (i.e. via non-genomic/non-classical actions) - a mechanism that has been well-characterized in vertebrates. However, no study has yet investigated the ligand-binding ability of such receptor candidates in mollusks. The aim of the present study was to further trace the evolution of the endocrine system by investigating the presence of functional membrane sex steroid receptors in a mollusk, the great pond snail (Lymnaea stagnalis). We detected sequences homologous to the known vertebrate membrane sex steroid receptors in the Lymnaea transcriptome and genome data: G protein-coupled estrogen receptor-1 (GPER1); membrane progestin receptors (mPRs); G protein-coupled receptor family C group 6 member A (GPRC6A); and Zrt- and Irt-like protein 9 (ZIP9). Sequence analyses, including conserved domain analysis, phylogenetics, and transmembrane domain prediction, indicated that the mPR and ZIP9 candidates appeared to be homologs, while the GPER1 and GPRC6A candidates seemed to be non-orthologous receptors. All candidates transiently transfected into HEK293MSR cells were found to be localized at the plasma membrane, confirming that they function as membrane receptors. However, the signaling assays revealed that none of the candidates interacted with the main vertebrate steroid ligands. Our findings strongly suggest that functional membrane sex steroid receptors which would be homologous to the vertebrate ones are not present in Lymnaea. Although further experiments are required on other molluscan model species as well, we propose that both classical and non-classical sex steroid signaling for endocrine responses are specific to chordates, confirming that molluscan and vertebrate endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
2
|
Fodor I, Pirger Z. From Dark to Light - An Overview of Over 70 Years of Endocrine Disruption Research on Marine Mollusks. Front Endocrinol (Lausanne) 2022; 13:903575. [PMID: 35872980 PMCID: PMC9301197 DOI: 10.3389/fendo.2022.903575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
|
3
|
Fodor I, Schwarz T, Kiss B, Tapodi A, Schmidt J, Cousins ARO, Katsiadaki I, Scott AP, Pirger Z. Studies on a widely-recognized snail model species ( Lymnaea stagnalis) provide further evidence that vertebrate steroids do not have a hormonal role in the reproduction of mollusks. Front Endocrinol (Lausanne) 2022; 13:981564. [PMID: 36157463 PMCID: PMC9493083 DOI: 10.3389/fendo.2022.981564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17β-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
- *Correspondence: István Fodor,
| | - Tamar Schwarz
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Antal Tapodi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Alex R. O. Cousins
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, United Kingdom
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Alexander P. Scott
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| |
Collapse
|
4
|
Chapman E, Meichanetzoglou A, Boa AN, Hetjens H, Faetsch S, Teuchies J, Höss S, Moore D, Bervoets L, Kay P, Heise S, Walker P, Rotchell JM. The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:876-882. [PMID: 34459949 PMCID: PMC8556174 DOI: 10.1007/s00128-021-03364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Lycopodium clavatum sporopollenin exine capsules (SpECs) are known to both adsorb and absorb chemicals. The aim of the present work was to determine whether oestradiol (E2) is 'bioavailable' to bioindicator species, either pre-adsorbed to, or in the presence of, SpECs. SpEC uptake was confirmed for Daphnia magna and Dreissena bugensis. E2 levels varied among treatments for Caenorhabditis elegans though there was no relationship to SpEC load. E2 was not detected in D. bugensis tissues. Expression changes of general stress and E2-specific genes were measured. For C. elegans, NHR-14 expression suggested that SpECs modulate E2 impacts, but not general health responses. For D. magna, SpECs alone and with E2 changed Vtg1 and general stress responses. For D. bugensis, SpECS were taken up but no E2 or change in gene expression was detected after exposure to E2 and/or SpECs. The present study is the first to investigate SpECs and bound chemical dynamics.
Collapse
Affiliation(s)
- Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK
| | | | - Andrew N Boa
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Hanne Hetjens
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sonja Faetsch
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Johnny Teuchies
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | - Dean Moore
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Lieven Bervoets
- Department of Biology, SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Paul Kay
- School of Geography/water@leeds, University of Leeds, Leeds, LS2 9JT, UK
| | - Susanne Heise
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Paul Walker
- SOCOTEC UK Ltd, Etwall House, Bretby Business Pk, Ashby Road, Burton on Trent, DE15 0YZ, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK.
| |
Collapse
|
5
|
Fodor I, Urbán P, Scott AP, Pirger Z. A critical evaluation of some of the recent so-called 'evidence' for the involvement of vertebrate-type sex steroids in the reproduction of mollusks. Mol Cell Endocrinol 2020; 516:110949. [PMID: 32687858 DOI: 10.1016/j.mce.2020.110949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Many studies on the control of reproduction in mollusks have focused on hormones (and proteins associated with the production and signaling of those hormones) which were originally discovered in humans, in the belief that if they are also present in mollusks, they must have the same role. However, although human sex steroids can be found in mollusks, they are so readily absorbed that their presence is not necessarily evidence of endogenous synthesis. A homolog of the vertebrate nuclear estrogen receptor has been found in mollusks, but it does not bind to estrogens or indeed to any steroid at all. Antibodies against human aromatase show positive immunostaining in mollusks, yet the aromatase gene has not been found in the genome of any invertebrates (let alone mollusks). This review will deal with these and other examples of contradictory evidence for a role of human hormones in invertebrate reproduction.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary.
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624, Pécs, Hungary
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Research (Cefas), Barrack Road, Weymouth, DT4 8UB, UK
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| |
Collapse
|
6
|
Bertin A, Damiens G, Castillo D, Figueroa R, Minier C, Gouin N. Developmental instability is associated with estrogenic endocrine disruption in the Chilean native fish species, Trichomycterus areolatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136638. [PMID: 31982740 DOI: 10.1016/j.scitotenv.2020.136638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Endocrine disrupting compounds (EDCs) are widespread contaminants that alter the normal functioning of the endocrine system. While they cause dysfunctions in essential biological processes, it is unclear whether EDCs also impact developmental stability. In the present study, we investigated the occurrence of estrogenic endocrine disrupting compounds in a small watershed of south-central Chile impacted by anthropogenic activities. Then, we assessed their relationship with internal levels of estrogenic active compounds and fluctuating asymmetry (FA), a proxy of developmental stability in organisms with bilateral symmetry, in a native fish species (Trichomycterus areolatus). Yeast estrogenic screen assays were performed to measure estrogenic activity in river sediments and in male fish tissues collected from 17 sites along the Chillán watershed, and geometric morphometrics used to estimate fluctuating asymmetry based on the shapes of 248 fish skulls. Estrogenic activity was detected both in sediments and male fish tissues at concentrations of up to 1005 ng and 83 ng 17β-estradiol equivalent/kg dw, respectively. No significant correlation was found between the two. However, fish tissue estrogenicity, water temperature and dissolved oxygen explained >80% of the FA population variation. By showing a significant relationship between estrogenic activity and FA of T. areolatus, our results indicate that developmental stability can be altered by estrogenic endocrine disruption, and that FA can be a useful indicator of sub-lethal stress in T. areolatus populations.
Collapse
Affiliation(s)
- Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile.
| | - Gautier Damiens
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
| | - Daniela Castillo
- Programa de doctorado en Energía, Agua y Medio Ambiente, Universidad de La Serena, Benavente 980, La Serena, Chile.
| | - Ricardo Figueroa
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - Christophe Minier
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieu aquatiques, Université du Havre, 25 rue Philippe Lebon, BP1123, 76063 Le Havre cedex, France.
| | - Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile.
| |
Collapse
|
7
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
9
|
Scott AP. Is there any value in measuring vertebrate steroids in invertebrates? Gen Comp Endocrinol 2018; 265:77-82. [PMID: 29625121 DOI: 10.1016/j.ygcen.2018.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 11/28/2022]
Abstract
This brief review questions the belief that just because it is possible to measure vertebrate steroids (such as estradiol-17β, testosterone and progesterone) in the tissues of invertebrates, this necessarily means that they are endogenously derived or are hormones. There is a surprisingly large number of studies, mainly on mollusks, showing that they can readily absorb vertebrate steroids from the environment. They are also able to conjugate these steroids to fatty acids with great efficiency, and subsequently retain them for very long periods (with half-lives measured in weeks rather than days). This, plus the fact that key enzymes that are required for the biosynthesis of vertebrate steroids (e.g. aromatase) do not appear to be present in invertebrates, calls into doubt the claims in many studies on invertebrates that steroid concentrations are functionally linked to reproductive cycles or that invertebrates can be used as biomarker for vertebrate-type endocrine disrupters.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Research (Cefas), Barrack Road, Weymouth DT4 8UB, UK.
| |
Collapse
|
10
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Uptake and metabolism of water-borne progesterone by the mussel, Mytilus spp. (Mollusca). J Steroid Biochem Mol Biol 2018; 178:13-21. [PMID: 29107179 DOI: 10.1016/j.jsbmb.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Previous studies have shown that mussels can pick up 17β-estradiol [E2] and testosterone [T] from water, metabolize them and conjugate them to fatty acids (esterification), leading to their accumulation in tissue. A key requirement for the esterification process is that a steroid must have a 'reactive' hydroxyl group to conjugate to a fatty acid (which in T, and probably E2, is the β-hydroxyl group on carbon 17). Progesterone (P) lacks any hydroxyl groups and theoretically cannot be esterified and hence should not accumulate in mussels in the same way as E2 or T. However, it is already known that mussels have an enzyme that can achieve 5α-reduction of the A ring of T and P and that there is also another reductase that can transform the 3-oxo group of the 5α-reduced A ring of T into a hydroxyl group. We hypothesized that, although intact P cannot be directly esterified, it might nevertheless be transformed into metabolites that can. To test this hypothesis, we investigated the rate and capacity of uptake, metabolism and potential depuration of tritiated P by the common mussel, Mytilus spp. We found that tritiated P was taken up from water at a similar rate to E2 and T (mean clearance rate 49mL-1 animal-1h-1) and that, as found with the other steroids, the rate of uptake could not be saturated by the addition of non-radioactive steroid (even at 7.6μgL-1). We found that up to 66% of the radioactivity that was taken up was present in the ester fraction, suggesting that hydroxylation of the P must indeed have occurred. We then definitively identified two metabolites in the ester fraction: 5α-pregnane-3β,20β-diol and 3β-hydroxy-5α-pregnan-20-one. These same two steroids were also present in the free steroid fraction. Intact P was not detected in either of the fractions. When undergoing depuration (under semi-static conditions), the radioactivity in the ester fractions remained at the same concentration in the animals for at least 10 days. Our findings suggest that the lack of reactive hydroxyl groups on P does not preclude it from being taken up, metabolized and subsequently stored. Many questions remain, not least of which is why, when P seems to be so rapidly metabolized, two previous studies on mussels have reported concentrations of up to 30ngg-1 wet weight of P in their flesh.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
11
|
Mezghani-Chaari S, Machreki-Ajimi M, Hamza-Chaffai A, Minier C. High estradiol exposure disrupts the reproductive cycle of the clam Ruditapes decussatus in a sex-specific way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26670-26680. [PMID: 28956239 DOI: 10.1007/s11356-017-0146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Bivalve species may be susceptible to environmental estrogenic compounds including estradiol (E2). However, they are able to biotransform the hormone quite readily and inactivate its estrogenic action. To study the long-term effects of elevated free E2 tissue levels, we transiently exceeded the biotransformation capacity of the clam Ruditapes decussatus by exposing them with high E2 concentrations (400 ng/L) and subsequently study the consequences on gametogenesis during the following reproductive cycle. Exposure to 400 ngE2/L led to a significant increase in tissue free E2 levels, which reached 10-50 ng E2Eq/gww. No deleterious effect on gonado-somatic index (GSI), condition index (CI), or ability to respond to the stress on stress test could be detected after a month of exposure, suggesting the absence of negative effects on the clam's health. However, a marked increase in gametogenesis could be observed in both sexes during the exposure. Subsequent transplantation of the clams in the field allowed the normal development of the male clams and maturation of the gonads without any detrimental effect observed after 4 months. In contrast, in early July, all female clams formerly exposed to E2 showed lower health status, and only ovaries with atretic oocytes while all control and indigenous females were normal and mature. These results show a sex-specific effect of high E2 exposure and suggest either a direct or indirect role for E2 in R. decussatus' reproduction.
Collapse
Affiliation(s)
- Sawssan Mezghani-Chaari
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France.
| | - Monia Machreki-Ajimi
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France
| |
Collapse
|
12
|
Liu P, Miao J, Song Y, Pan L, Yin P. Effects of 2,2',4,4'-tetrabromodipheny ether (BDE-47) on gonadogenesis of the manila clam Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:178-186. [PMID: 29096091 DOI: 10.1016/j.aquatox.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
The reported adverse effects of Polybrominated diphenyl ether (PBDE) congeners on gonadogenesis in fish may also occur in marine bivalves especially the burrowing species such as manila clam Ruditapes philippinarum. In this study, clams were exposed to BDE-47 for 25days at 0, 0.1 and 1μg/L. By using the water temperature control method, gonadal maturation from resting to ripe stage were observed successively in both the control and the treatment groups during 25days. The results showed that exposure to BDE-47 at concentration below 1μg/L did not delay the gonadogenesis process of the clam R. philippinarum, and no evidence of adverse effects of BDE-47 on clam gonadal histology was observed. However, exposure to 1μg/L BDE-47 caused significant decreases of haemolymph testosterone levels in both female and male clams at day 5 and day 15. The mRNA expression of 3β-HSD in females exposed to BDE-47 was significantly decreased at day 5, while mRNA expression of 17β-HSD and CYP17 was not significantly changed in either sex. Exposure to BDE-47 also resulted in up-regulation of the mRNA expression of vitellogenin (Vtg) in both sexes and spermatogenesis associated protein 4-homolog (SAP4) in males. These results suggest a potential contribution of BDE-47 to reproductive disruption in the manila clams, especially in males. This study demonstrates the promising utility of water temperature control method in conjunction with histological endpoints and biomarkers such as mRNA levels of Vtg in determining the reproductive disturbances caused by EDCs on bivalves.
Collapse
Affiliation(s)
- Peipei Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| | - Ying Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Pengfei Yin
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
13
|
Guercia C, Cianciullo P, Porte C. Analysis of testosterone fatty acid esters in the digestive gland of mussels by liquid chromatography-high resolution mass spectrometry. Steroids 2017; 123:67-72. [PMID: 28502861 DOI: 10.1016/j.steroids.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Several studies have indicated that up to 70% of the total steroids detected in molluscs are in the esterified form and that pollutants, by modifying the esterification of steroids with fatty acids, might act as endocrine disrupters. However, despite the strong physiological significance of this process, there is almost no information on which fatty acids form the steroid esters and how this process is modulated. This study (a) investigates the formation of fatty acid esters of testosterone in digestive gland microsomal fractions of the mussel Mytilus galloprovincialis incubated with either palmitoly-CoA or CoA and ATP, and (b) assesses whether the endocrine disruptor tributyltin (TBT) interferes with the esterification of testosterone. Analysis of testosterone esters was performed by liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). When microsomal fractions were incubated with testosterone and palmitoly-CoA, the formation of testosterone palmitate was detected. However, when microsomes were incubated with CoA and ATP, and no exogenous activated fatty acid was added, the synthesis of 16:0, 16:1, 20:5 and 22:6 testosterone esters was observed. The presence of 100µM TBT in the incubation mixture did not significantly alter the esterification of testosterone. These results evidence the conjugation of testosterone with the most abundant fatty acids in the digestive gland microsomal fraction of mussels.
Collapse
Affiliation(s)
- Cesare Guercia
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | - Cinta Porte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain.
| |
Collapse
|
14
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp. J Steroid Biochem Mol Biol 2017; 171:54-65. [PMID: 28245981 DOI: 10.1016/j.jsbmb.2017.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 01/02/2023]
Abstract
The presence of the vertebrate steroids, testosterone (T) and 17β-estradiol in mollusks is often cited as evidence that they are involved in the control of their reproduction. In this paper, we show that a likely source of T in at least one species, the common mussel (Mytilus spp.), is from uptake from water. When mussels were exposed to waterborne tritiated T ([3H]-T) in a closed container, the radioactivity decreased rapidly and exponentially until, by 24h, approximately 35% remained in the water. The rate of uptake of radiolabel could not be saturated by concentrations as high as 16.5μgL-1 (mean measured) of non-radiolabeled T, showing that the animals have a very high capacity for uptake of T. At least 30% of the applied radioactivity could be extracted from the tissues of the animals with organic solvents and most of this (26% of the total applied radioactivity) was in the fatty acid ester fraction. Following alkaline hydrolysis, reverse phase HPLC and TLC, this fraction was shown to consist predominantly of 5α-dihydrotestosterone and 5α-androstane-3β,17β-diol, while T was a minor component. These steroids were definitively identified in the fatty acid ester fraction by mass spectrometry. Overall, less than 5% of the [3H]-T applied to the system remained untransformed at the end of exposure. After ten days of depuration there was no reduction in the total amount of radioactivity in the tissues, nor any changes in the ratio of the metabolites in the ester fraction. These findings show that any association between T presence and reproductive status or sex is confounded by their significant capacity for uptake, and that T undergoes extensive metabolism in mussels in vivo and therefore may not be representative of the androgenic burden of the animals. Consequently, measurements of T in mussel tissue offer little utility as an indicator of reproductive status or sex.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
15
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17β from water. J Steroid Biochem Mol Biol 2017; 165:407-420. [PMID: 27568213 DOI: 10.1016/j.jsbmb.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Six experiments were carried out to define the optimum conditions for investigating the dynamics of uptake and metabolism of tritiated E2 from water by adult blue mussels, Mytilus spp. Optimum uptake was achieved using 400mL aerated sea water animal-1 and an incubation period of no more than 24h. The pattern of disappearance conformed closest to an inverse hyperbolic curve with the percentage of radiolabel that could be measured in the water reaching an asymptote that was on average 50% of the original. This apparent inability of the animals to absorb all the radiolabel was investigated further. Solvent partition and chromatography revealed that, after 24h, c. 60% of the radiolabel still present in the water was composed of water soluble conjugates, c. 25% was composed of tritiated water and only 15% ran on and around the chromatographic position of E2. The major water soluble constituent was identified by chromatography and mass-spectrometry as 1,3,5(10)-estratriene-3,17β-diol 3-sulfate (estradiol 3-S). The clearance rate of radiolabel was 46.9±1.8mLanimal-1h-1. This was not significantly affected by the addition of as much as 25μgL-1 cold E2 to the water, demonstrating that mussels have a large capacity for E2 uptake. A new procedure involving solvent partition was developed for separating the free, esterified and sulfated forms of E2 present in the flesh of mussels. This involved extracting the soft tissue with organic solvents and then treating a portion of dried extract with a combination of heptane (dissolved fatty acid esters of E2) and 80% ethanol (dissolved free and sulfated E2). The latter fraction was further partitioned between water (sulfate) and diethyl ether (free steroid). This procedure was much cheaper and less time-consuming than chromatography. Approximately 80% of the radioactivity that was taken up by the animals was present in the form of ester. Moreover, E2 was the only steroid identified after saponification of these esters. Of the remaining radioactivity, c. 10% was in the form of unidentified free steroids and c. 10% was estradiol 3-S. In order to determine how rapidly mussels were able to depurate tritiated E2 and its metabolites, two experiments were carried out. Animals from the first experiment purged up to 63% of radioactivity in 20days under flow-through conditions; whereas animals from the second experiment released only 16% of radioactivity in 10days under semi-static conditions. The ratios of the different forms of E2 did not change substantially during the course of depuration.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
16
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Mechanistic insights into induction of vitellogenin gene expression by estrogens in Sydney rock oysters, Saccostrea glomerata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:146-158. [PMID: 26963518 DOI: 10.1016/j.aquatox.2016.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Marine molluscs, such as oysters, respond to estrogenic compounds with the induction of the egg yolk protein precursor, vitellogenin (Vtg), availing a biomarker for estrogenic pollution. Despite this application, the precise molecular mechanism through which estrogens exert their action to induce molluscan vitellogenesis is unknown. As a first step to address this question, we cloned a gene encoding Vtg from the Sydney rock oyster Saccostrea glomerata (sgVtg). Using primers designed from a partial sgVtg cDNA sequence available in Genbank, a full-length sgVtg cDNA of 8498bp was obtained by 5'- and 3'-RACE. The open reading frame (ORF) of sgVtg was determined to be 7980bp, which is substantially longer than the orthologs of other oyster species. Its deduced protein sequence shares the highest homology at the N- and C-terminal regions with other molluscan Vtgs. The full-length genomic DNA sequence of sgVtg was obtained by genomic PCR and genome walking targeting the gene body and flanking regions, respectively. The genomic sequence spans 20kb and consists of 30 exons and 29 introns. Computer analysis identified three closely spaced half-estrogen responsive elements (EREs) in the promoter region and a 210-bp CpG island 62bp downstream of the transcription start site. Upregulation of sgVtg mRNA expression was observed in the ovaries following in vitro (explants) and in vivo (tank) exposure to 17β-estradiol (E2). Notably, treatment with an estrogen receptor (ER) antagonist in vitro abolished the upregulation, suggesting a requirement for an estrogen-dependent receptor for transcriptional activation. DNA methylation of the 5' CpG island was analysed using bisulfite genomic sequencing of the in vivo exposed ovaries. The CpG island was found to be hypomethylated (with 0-3% methylcytosines) in both control and E2-exposed oysters. However, no significant differential methylation or any correlation between methylation and sgVtg expression levels was observed. Overall, the results support the possible involvement of an ERE-containing promoter and an estrogen-activated receptor in estrogen signalling in marine molluscs.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
17
|
Ricciardi KL, Poynton HC, Duphily BJ, Blalock BJ, Robinson WE. Bioconcentration and depuration of (14)C-labeled 17α-ethinyl estradiol and 4-nonylphenol in individual organs of the marine bivalve Mytilus edulis L. . ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:863-873. [PMID: 26126666 DOI: 10.1002/etc.3137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting compounds (EDCs), including 17α-ethinyl estradiol (EE2) and 4-nonylphenol (4-NP), enter coastal environments primarily in effluents of wastewater treatment facilities and have become ubiquitous in marine surface waters, sediments, and biota. Although EE2 and 4-NP have been detected in marine shellfish, the kinetics of bioconcentration and their tissue distribution have not been thoroughly investigated. The authors performed bioconcentration and depuration experiments in the blue mussel, Mytilus edulis, with 3.37 nM EE2 (0.999 μg/L) and 454 nM 4-NP (100.138 µg/L). Mussels and seawater were sampled throughout a 38-d exposure and a 35-d depuration period, and 6 tissues were individually assayed. Uptake of EE2 and 4-NP was curvilinear throughout exposure and followed a similar uptake pattern: digestive gland > gill ≥ remaining viscera > gonad > adductor > plasma. Depuration varied, however, with half-lives ranging from 2.7 d (plasma) to 92 d (gill) for EE2 and 15 d (plasma) to 57 d (gill) for 4-NP. An innovative modeling approach, with 3 coupled mathematical models, was developed to differentiate the unique roles of the gill and plasma in distributing the EDCs to internal tissues. Plasma appears pivotal in regulating EDC uptake and depuration within the whole mussel.
Collapse
Affiliation(s)
- Karen L Ricciardi
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Helen C Poynton
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian J Duphily
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Bonnie J Blalock
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - William E Robinson
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Mezghani-Chaari S, Machreki-Ajmi M, Tremolet G, Kellner K, Geffard A, Minier C, Hamza-Chaffai A. The endocrine-disrupting effect and other physiological responses of municipal effluent on the clam Ruditapes decussatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19716-19728. [PMID: 26278908 DOI: 10.1007/s11356-015-5199-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
In order to document the potential endocrine disrupting and toxic effect of the municipal wastewater effluents discharged into the Sfax coastal area (South of Tunisia), specimens of clam R. decussatus were collected from a reference site and were in vivo exposed to treated sewage effluent for 30 days. To this end, estrogenic and androgenic activities were measured in the gills to assess potential accumulation and regulation of active compounds. After effluent exposure androgenic activity in organic extracts increased up to fivefold compared to controls and remained elevated, while estrogenic activity was not significantly affected by exposure. As a consequence, remarkable disruptions in the gametogenesis activity, glycogen content, and Vitellogenin-like protein levels in male clams were observed. A parallel analysis of heavy metals in clam tissues was determined. A significant uptake of Ni, Zn, and Pb in soft tissues of exposed clams was observed. The significant increase of malondialdehyde (MDA) concentrations as a function of exposure time implies that clams have been exposed to an oxidative stress probably due to the presence of high metal concentrations in sewage effluent. Correlation analysis has revealed a statistically significant and positive relationship between MDA levels and metal concentrations in clams' tissues. The acetylcholinesterase activity was not significantly affected by exposure. Altogether, these results showed that a short-term exposure to a mixture of chemical compounds released by the Sfax wastewater treatment plant induce adverse physiological and reproductive effects in R. decussatus. Further studies are underway in order to evaluate its long-term impacts on aquatic wildlife in the gulf of Gabes area.
Collapse
Affiliation(s)
- Sawssan Mezghani-Chaari
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
- Normandie Université, UMR-I-02 SEBIO, BP 540, 76058, Le Havre, France.
| | - Monia Machreki-Ajmi
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Gauthier Tremolet
- Normandie Université, UMR-I-02 SEBIO, BP 540, 76058, Le Havre, France
| | - Kristell Kellner
- CNRS INEE-FRE3484 BioMEA, Université de Caen Basse-Normandie, 14032, Caen-Cedex, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, Campus Moulin de la Housse, B.P. 1039, 51687, REIMS cedex, France
| | - Christophe Minier
- Normandie Université, UMR-I-02 SEBIO, BP 540, 76058, Le Havre, France
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| |
Collapse
|
19
|
Alvarez-Muñoz D, Indiveri P, Rostkowski P, Horwood J, Greer E, Minier C, Pope N, Langston WJ, Hill EM. Widespread contamination of coastal sediments in the Transmanche Channel with anti-androgenic compounds. MARINE POLLUTION BULLETIN 2015; 95:590-597. [PMID: 25496695 DOI: 10.1016/j.marpolbul.2014.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/12/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.
Collapse
Affiliation(s)
- Diana Alvarez-Muñoz
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Paolo Indiveri
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Pawel Rostkowski
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Julia Horwood
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Emily Greer
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Christophe Minier
- Laboratory of Ecotoxicology, UPRES EA-3222, UFR de Sciences et Techniques, Université du Havre, 25 rue Philippe Lebon, BP 540, 76058 Le Havre Cedex, France
| | - Nick Pope
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - William J Langston
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Elizabeth M Hill
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
20
|
Choi MH, Chung BC. Bringing GC-MS profiling of steroids into clinical applications. MASS SPECTROMETRY REVIEWS 2015; 34:219-236. [PMID: 24965919 DOI: 10.1002/mas.21436] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/05/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Abnormalities of steroid biosynthesis and excretion are responsible for the development and prevention of endocrine disorders, such as metabolic syndromes, cancers, and neurodegenerative diseases. Due to their biochemical roles in endocrine system, qualitative and quantitative analysis of steroid hormones in various biological specimens is needed to elucidate their altered expression. Mass spectrometry (MS)-based steroid profiling can reveal the states of metabolites in biological systems and provide comprehensive insights by allowing comparisons between metabolites present in cells, tissues, or organisms. In addition, the activities of many enzymes related to steroid metabolism often lead to hormonal imbalances that have serious consequences, and which are responsible for the progress of hormone-dependent diseases. In contrast to immunoaffinity-based enzyme assays, MS-based methods are more reproducible in quantification. In particular, high-resolution gas chromatographic (GC) separation of steroids with similar chemical structures can be achieved to provide rapid and reproducible results with excellent purification. GC-MS profiling therefore has been widely used for steroid analysis, and offers the basis for techniques that can be applied to large-scale clinical studies. Recent advances in analytical technologies combined with inter-disciplinary strategies, such as physiology and bioinformatics, will help in understanding the biochemical roles of steroid hormones. Therefore, comprehensive analytical protocols in steroid analysis for different research purposes may contribute to the elucidation of complex metabolic processes relevant to steroid function in many endocrine disorders, and in the identification of diagnostic biomarkers.
Collapse
Affiliation(s)
- Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | | |
Collapse
|
21
|
Lindqvist D, Jensen S, Asplund L. Lipid-soluble conjugates of hydroxylated polybrominated diphenyl ethers in blue mussels from the Baltic Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:954-961. [PMID: 23842863 DOI: 10.1007/s11356-013-1962-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) of proposed natural origin have been detected throughout the food web of the Baltic Sea. Some OH-PBDEs have been shown to disrupt oxidative phosphorylation and the thyroid hormone system in exposed organisms. This paper describes an investigation into the fate of OH-PBDEs in the Baltic Sea's predominant specie, the blue mussel. The main focus was on the conjugation of OH-PBDEs with lipophilic moieties (e.g., fatty acids) and the potential role this transformation mechanism may have in heavily exposed mussels in nature. Analytical methods were developed to accurately determine the concentrations of these conjugates in blue mussels collected on different occasions during the summer in a coastal area of the Baltic proper. The measured concentrations of conjugated OH-PBDEs were compared to those of the unconjugated parent compounds, and it was found that in some cases, the levels of the conjugated derivatives can be equal or even higher than the levels of the unconjugated OH-PBDEs. This is, to our knowledge, the first study on lipid-soluble OH-PBDE conjugates, and the first study to investigate the occurrence of such conjugates of halogenated phenolic compounds in environmentally exposed mussels. The mussels were also found to contain hydrolysable water-soluble derivatives of OH-PBDEs (such as e.g., glucuronic acid and/or sulfate conjugates etc.). These were tentatively determined to be of lower concentration (by up to an order of magnitude) than that of the OH-PBDEs which were conjugated with lipophilic moieties.
Collapse
Affiliation(s)
- Dennis Lindqvist
- Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91, Stockholm, Sweden,
| | | | | |
Collapse
|
22
|
Giusti A, Joaquim-Justo C. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:187-98. [PMID: 24004916 DOI: 10.1016/j.cbpc.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | | |
Collapse
|
23
|
Giusti A, Ducrot V, Joaquim-Justo C, Lagadic L. Testosterone levels and fecundity in the hermaphroditic aquatic snail Lymnaea stagnalis exposed to testosterone and endocrine disruptors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1740-1745. [PMID: 23564527 DOI: 10.1002/etc.2234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Endocrine disruptors are known to alter endogenous free and esterified levels of androgenic and estrogenic steroid hormones in aquatic mollusks. The origin of steroids in these animals, however, remains controversial. In the present study, free and esterified testosterone concentrations were measured in the hermaphroditic aquatic gastropod Lymnaea stagnalis exposed to molecules known for their androgenic (testosterone and tributyltin), anti-androgenic (cyproterone-acetate), and estrogenic (chlordecone) properties, by reference to their mode of action in vertebrates. In parallel, snail oviposition and fecundity were followed over a 21-d exposure period. Testosterone exposure resulted in increased esterified testosterone levels, whereas free testosterone concentrations remained stable. In contrast, cyproterone-acetate significantly increased the free form of testosterone with no changes in the esterified form, whereas chlordecone showed a tendency to reduce (though not significantly) esterified testosterone concentrations without changing free testosterone levels. Finally, tributyltin did not alter testosterone homeostasis. The production of egg clutches and eggs was significantly reduced only in the snails exposed to the highest concentrations of chlordecone (19.6 µg/L) and tributyltin (94.2 ng Sn/L). Overall, the present study demonstrates that uptake of testosterone from the exposure medium occurs in L. stagnalis. Moreover, it shows that cyproterone-acetate and, to a lesser extent, chlordecone can alter endogenous testosterone levels in this freshwater snail. However, the relationship between hormonal changes and snail reproduction has not been established. Environ Toxicol Chem 2013;32:1740-1745. © 2013 SETAC.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| | | | | | | |
Collapse
|
24
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 2012; 77:1450-68. [PMID: 22960651 DOI: 10.1016/j.steroids.2012.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
25
|
Cubero-Leon E, Minier C, Rotchell JM, Hill EM. Metabolomic analysis of sex specific metabolites in gonads of the mussel, Mytilus edulis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:212-9. [DOI: 10.1016/j.cbd.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 12/24/2022]
|
26
|
Bachelot M, Li Z, Munaron D, Le Gall P, Casellas C, Fenet H, Gomez E. Organic UV filter concentrations in marine mussels from French coastal regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 420:273-279. [PMID: 22330425 DOI: 10.1016/j.scitotenv.2011.12.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The accumulation of EHMC, OCT and OD-PABA, three common UV filter compounds, was investigated in marine mussels. Wild Mytilus edulis and Mytilus galloprovincialis were sampled in ten sites along the French Atlantic and Mediterranean coasts from June to November. In mussel tissues, 100% of the samples had quantifiable EHMC concentrations ranging from 3 to 256ngg(-1) dry weight, while 55% of the samples had detectable OCT concentrations ranging from under 2 to 7 112ngg(-1) dry weight. These concentrations significantly increased with the rising air temperature in summer, the recreational pressure and the geomorphological structure of the sampling sites (its lack of openness to the wide). This is the first study to report bioaccumulation of UV filters in marine mussels, thus highlighting the need for further monitoring and assessment.
Collapse
|
27
|
Cubero-Leon E, Puinean AM, Labadie P, Ciocan C, Itoh N, Kishida M, Osada M, Minier C, Hill EM, Rotchell JM. Two CYP3A-like genes in the marine mussel Mytilus edulis: mRNA expression modulation following short-term exposure to endocrine disruptors. MARINE ENVIRONMENTAL RESEARCH 2012; 74:32-39. [PMID: 22189070 DOI: 10.1016/j.marenvres.2011.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Members of the vertebrate CYP3A subfamily are involved in the metabolism of steroids and a wide range of xenobiotics. In this study two CYP3A-like mRNAs have been isolated from the mussel (Mytilus edulis), and their seasonal expression profile and modulation by estrogens examined. Sexual dimorphism of CYP3A-like mRNA expression was not observed in mussel gonads of individuals collected throughout a year. Nevertheless, natural variation in gonadal CYP3A-like mRNA expression was observed, with highest levels of CYP3A isoform1 and lowest levels of CYP3A isoform2 mRNA during the maturation and spawning season. Exposure to a 10% sewage treatment works extract did not result in any significant changes in mRNA expression of CYP3A-like. In contrast, exposure to E2 (200 ng/L) and TBT (100 ng/L) significantly down-regulated the expression of CYP3A-like isoform1 but not CYP3A-like isoform2 suggesting differential regulation.
Collapse
Affiliation(s)
- Elena Cubero-Leon
- Department of Biology and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
David A, Fenet H, Escande A, Munaron D, Rosain D, Maillot-Maréchal E, Aït-Aïssa S, Casellas C, Gomez E. In vitro biomonitoring of contamination by estrogenic compounds in coastal environments: comments on the use of M. galloprovincialis. ENVIRONMENTAL TOXICOLOGY 2012; 27:74-82. [PMID: 20549642 DOI: 10.1002/tox.20613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/06/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
The use of mussel extracts in in vitro bioassays which express the estrogen receptor could provide valuable information on the bioavailability of endocrine disruptors in coastal environments. The aim of this study was to assess the temporal variability of the estrogenic responses in bioassays in Mytilus galloprovincialis. A 6-month in situ experiment was conducted in order to follow the estrogenic activity on MELN cell line during the reproduction stages of mussels. Estradiol equivalents (EEQ) determined in mussels using the MELN cell lines ranged from 0.79 to 3.72 ng/g dry weight (d.w.) in males, from 0.42 to 2.33 ng/g d.w. in females and from 3.41 to 4.2 d.w. in undifferentiated bivalves. We observed an increase in EEQ values during the spawning stage for males, not for female. The maximal EEQ values were observed at the indifferent stage. We discuss these results in regards to the actual knowledge on mussels' reproductive cycle and to the possible impact of xeno-estrogens. Variations of E2 levels in mussels must be taken into account for further studies on xeno-estrogens monitoring using hER reporter cell-lines bioassays.
Collapse
Affiliation(s)
- Arthur David
- Hydrosciences Montpellier, Université Montpellier, Montpellier Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Identification of reproduction-specific genes associated with maturation and estrogen exposure in a marine bivalve Mytilus edulis. PLoS One 2011; 6:e22326. [PMID: 21818309 PMCID: PMC3144882 DOI: 10.1371/journal.pone.0022326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/26/2011] [Indexed: 11/26/2022] Open
Abstract
Background While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure.
Collapse
|
30
|
Vihma V, Tikkanen MJ. Fatty acid esters of steroids: synthesis and metabolism in lipoproteins and adipose tissue. J Steroid Biochem Mol Biol 2011; 124:65-76. [PMID: 21277977 DOI: 10.1016/j.jsbmb.2011.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
At the end of the last century ideas concerning the physiological role of the steroid fatty acid ester family were emerging. Estrogens, fatty acylated at C-17 hydroxyl group and incorporated in lipoproteins were proposed to provide antioxidative protection to these particles. A large number of studies involving non-estrogenic adrenal steroids, and their fatty acylated forms, demonstrated their lipoprotein-mediated transport into cells and subsequent intracellular activation, suggesting a novel transport mechanism for lipophilic steroid derivatives. After these important advances the main focus of interest has shifted away from C-19 and C-21 steroids to fatty acylated estrogens. However, interest in their lipoprotein-mediated transport has decreased because only minute amounts of these derivatives were detected in circulating lipoproteins, and their antioxidative activity remained unconfirmed under physiological circumstances. It now appears that the overwhelming majority of estradiol in postmenopausal women resides in adipose tissue, most of it in esterified form. This is poorly reflected in plasma levels which are very low. Recent data suggest that estrogen fatty acid esters probably represent a storage form. The future focus of investigation is likely to be on firstly, the enzymatic mechanisms regulating the esterification and de-esterification of estradiol and other steroids residing in adipose tissue and secondly, on the role of insulin and other hormones in the regulation of these enzymatic mechanisms. Thirdly, as a large proportion of fatty acid esterified C-19 and C-21 non-estrogenic steroids is transported in lipoproteins and as they are important precursors of androgens and estrogens, this field should be investigated further.
Collapse
Affiliation(s)
- Veera Vihma
- Institute of Clinical Medicine, Department of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | |
Collapse
|
31
|
Rossignoli AE, Fernández D, Regueiro J, Mariño C, Blanco J. Esterification of okadaic acid in the mussel Mytilus galloprovincialis. Toxicon 2011; 57:712-20. [PMID: 21329714 DOI: 10.1016/j.toxicon.2011.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Okadaic acid and other toxins of the diarrheic shellfish poisoning (DSP) group are transformed mainly to their acyl-derivatives in bivalves. Some recent studies suggest that bacteria present in the bivalve gut could contribute substantially to the acylation of the toxins. By feeding microcapsules containing okadaic acid to mussels we have shown unequivocally that the ingested okadaic acid is nearly completely transformed to its fatty acid esters (acyl-derivatives). Treating mussels with antibiotics did not have any significant effect on the acylation of the supplied okadaic acid, suggesting that bacteria do not play any significant role in this process. The microsomal and mitochondrial subcellular fractions of the cells of the digestive gland have been shown to have contain enzymes that are able to transfer a fatty acid molecule from Coenzyme A to okadaic acid (so, that have Acyl-CoA:OA acyltransferase activity). This activity was related to that of the enzyme Cytochrome C reductase (NADPH), a marker of endoplasmic reticulum, suggesting that this organelle is the main responsible for the acylation process. Acylation of DSP toxins seems to be a key step in the depuration of these toxins from mussels, as these compounds are found in feces as acyl-derivatives. This is probably true for most bivalves. The proportion of acyl-derivatives accumulated can point to the key process of the depuration: acylation or excretion of acylated derivatives. In the mussels Mytilus galloprovincialis, Mytilus edulis and in Donax trunculus, the first process seems to be the most important, but in most bivalve species it seems to be the second one. Other aspects of the relationship between depuration and acylation are also discussed.
Collapse
Affiliation(s)
- Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón, s/n. Apdo. 13, 36620 Vilanova de Arousa (Pontevedra), Spain
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Ciocan CM, Cubero-Leon E, Puinean AM, Hill EM, Minier C, Osada M, Fenlon K, Rotchell JM. Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2977-2984. [PMID: 20615598 DOI: 10.1016/j.envpol.2010.05.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/24/2010] [Accepted: 05/30/2010] [Indexed: 05/29/2023]
Abstract
Mytilus edulis were exposed to 17beta-estradiol (E2) and the synthetic estrogens ethinyl estradiol (EE2) and estradiol benzoate (EB) for 10 days. Two exposures were performed to determine their effect on vitellogenin (VTG) and estrogen receptor 2 (ER2) mRNA expression at different stages of the reproductive cycle. Significant natural variation was not observed in VTG mRNA expression, though ER2 mRNA expression displayed significantly lower values during January, February and July compared with other times of the year. A significant increase in VTG and ER2 mRNA expression was observed in mussels exposed to estrogens at the early stage of gametogenesis. In contrast, mature mussels displayed no statistically significant change in the VTG or ER2 mRNA expression. The data presented suggests that the reproductive physiology of molluscs, in terms of VTG and ER2 mRNA expression, may be susceptible to damage by environmental estrogens at certain points in their gametogenesis process.
Collapse
Affiliation(s)
- Corina M Ciocan
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gust M, Buronfosse T, Geffard O, Mons R, Queau H, Mouthon J, Garric J. In situ biomonitoring of freshwater quality using the New Zealand mudsnail Potamopyrgus antipodarum (Gray) exposed to waste water treatment plant (WWTP) effluent discharges. WATER RESEARCH 2010; 44:4517-28. [PMID: 20591464 DOI: 10.1016/j.watres.2010.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 05/22/2023]
Abstract
Mollusk species have been shown to be sensitive to various endocrine disrupting compounds (EDC) at environmentally relevant concentrations. Waste water treatment plant (WWTP) effluents are a major source of potential or known EDC in the aquatic environment. The aim of this study was to develop an in situ exposure method using the New Zealand mudsnail Potamopyrgus antipodarum (Molluska, Hydrobiidea) to assess the impact of water quality on the life traits of this species, by focusing on its reproduction. The impact of three WWTP discharges on three different receiving rivers was studied. The effects of WWTP effluent on adult survival, weight, reproduction and vertebrate-like sex-steroid levels in snails were monitored for three to four weeks. Although the physicochemical and hydrological parameters varied greatly between the rivers, the caging experiments allowed us to detect significant impairment of the life traits of snails when exposed downstream of the WWTPs discharge. While adult survival was not affected by exposure, reproduction was significantly impacted downstream from the WWTP effluent discharges (60-70% decrease of embryos without shells after three to four weeks exposure) independently of the river. Modulations of steroid levels proved to be an informative parameter with an increase of testosterone downstream of the discharges, and increases and decreases of 17beta-estradiol levels according to site. The endpoints used proved to be an adapted method for field exposures and allowed the discrimination between upstream and downstream sites.
Collapse
Affiliation(s)
- Marion Gust
- Cemagref, UR MALY, Laboratoire d'écotoxicologie, 3b quai Chauveau, 69009 Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Verheyden K, Noppe H, Zorn H, Van Immerseel F, Vanden Bussche J, Wille K, Bekaert K, Janssen CR, De Brabander HF, Vanhaecke L. Endogenous boldenone-formation in cattle: alternative invertebrate organisms to elucidate the enzymatic pathway and the potential role of edible fungi on cattle's feed. J Steroid Biochem Mol Biol 2010; 119:161-70. [PMID: 20197090 DOI: 10.1016/j.jsbmb.2010.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/15/2022]
Abstract
Although beta-boldenone (bBol) used to be a marker of illegal steroid administration in calves, its endogenous formation has recently been demonstrated in these vertebrates. However, research on the pathway leading to bBol remains scarce. This study shows the usefulness of in vivo invertebrate models as alternatives to vertebrate animal experiments, using Neomysis integer and Lucilia sericata. In accordance with vertebrates, androstenedione (AED) was the main metabolite of beta-testosterone (bT) produced by these invertebrates, and bBol was also frequently detected. Moreover, in vitro experiments using feed-borne fungi and microsomes were useful to perform the pathway from bT to bBol. Even the conversion of phytosterols into steroids was shown in vitro. Both in vivo and in vitro, the conversion of bT into bBol could be demonstrated in this study. Metabolism of phytosterols by feed-borne fungi may be of particular importance to explain the endogenous bBol-formation by cattle. To the best of our knowledge, it is the first time the latter pathway is described in literature.
Collapse
Affiliation(s)
- K Verheyden
- Ghent University, Faculty of Veterinary Medicine, Research Group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM. Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2716-2721. [PMID: 19497651 DOI: 10.1016/j.envpol.2009.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17beta-estradiol and 17alpha-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses.
Collapse
Affiliation(s)
- C Liscio
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | | | | | | | | |
Collapse
|
37
|
Saravanabhavan G, Helleur R, Hellou J. GC-MS/MS measurement of natural and synthetic estrogens in receiving waters and mussels close to a raw sewage ocean outfall. CHEMOSPHERE 2009; 76:1156-1162. [PMID: 19435639 DOI: 10.1016/j.chemosphere.2009.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
In recent times, there has been an increased concern over the appearance of human estrogens in marine ecosystem and their effects on the marine habitat. Discharge of raw sewage has been identified as one of the most important sources of human estrogens in the marine environment. Therefore, we have developed a gas chromatography-(ion-trap) mass spectrometry/mass spectrometry method for the analysis of natural estrogens estrone (E1), and 17beta-estradiol (E2) and synthetic estrogens 17alpha-ethynylestradiol (EE2) and diethylstilbestrol (DES) in sewage effluents, seawater and mussels. Recovery of target analytes from mussels (n=3) was above 60% with RSD ranging from 8% to 13%. For aqueous samples (n=3) recoveries were above 80% with RSD ranging from 3% to 7%. Method detection limits for the target analytes ranged from 0.1ngg(-1) to 1.0ng/g for mussel sample analysis and from 0.5ngL(-1) to 1.2ngL(-1) for water sample analysis. The usefulness of the method was demonstrated by analyzing environmental samples from St. John's and Halifax, Canada, where raw sewage is directly discharged into the harbors. Estrone and 17 beta-estradiol were found at 1.5ngL(-1) and 1.8ngL(-1) in seawater samples collected from St. John's harbor, while trace amounts of estrone was measured in some mussels collected from Halifax harbor.
Collapse
|
38
|
David A, Fenet H, Gomez E. Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. MARINE POLLUTION BULLETIN 2009; 58:953-60. [PMID: 19476957 DOI: 10.1016/j.marpolbul.2009.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/15/2009] [Accepted: 04/24/2009] [Indexed: 05/04/2023]
Abstract
The presence of alkylphenols (APs) in coastal and marine ecosystems is not as well-documented as it is in freshwater ecosystems. This paper reviews reported concentrations of alkylphenol ethoxylates (APEOs) and APs in seawater, sediments and organisms of marine environments such as estuaries, coastal lagoons, bights, harbours or deep sea in order to study their distribution. Overall contamination of marine aquatic compartments by APs and APEOs has been observed, while coastal areas in the vicinity of wastewater discharges are more impacted than deep sea environments, but to a lesser extent than freshwater sites. Sediments act as sinks for APs and APEOs, especially around wastewater discharge sites. Reported AP concentrations in marine organisms are higher in bivalves and gastropods than in fishes. As nonylphenols and octylphenols are estrogenomimetic, biological responses induced in marine organisms are discussed. Finally, we describe the cell bioassay approach for the biodetection of APs.
Collapse
Affiliation(s)
- Arthur David
- UMR 5569 - Hydrosciences Montpellier, Université Montpellier I, 15 Avenue Charles Flahault, B.P. 14491-34093, Montpellier, France
| | | | | |
Collapse
|
39
|
Lyssimachou A, Navarro JC, Bachmann J, Porte C. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1714-1720. [PMID: 19162385 DOI: 10.1016/j.envpol.2008.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/21/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
40
|
Jung HJ, Lee WY, Chung BC, Choi MH. Mass spectrometric profiling of saturated fatty acid esters of steroids separated by high-temperature gas chromatography. J Chromatogr A 2008; 1216:1463-8. [PMID: 19144339 DOI: 10.1016/j.chroma.2008.12.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
An efficient analytical method for simultaneous determination of 12 SFEs in serum is described. The method involves solid-phase extraction to isolate of SFEs from interfering species, especially cholesteryl esters, conversion to trimethylsilyl (TMS) ether derivatives for the direct analysis by gas chromatography-mass spectrometry (GC-MS) using a high temperature MXT-1 (Silcosteel-treated stainless steel) capillary column. All SFEs as their TMS derivatives were well separated with excellent peak shapes within 12 min. Overall recoveries ranged from 88% to 119%, with a detection limits for SFEs ranged from 2 to 30 microg L(-1). The linearity as correlation coefficient was higher than 0.99 except for pregnenolone-3-arachidate (r(2)=0.98) in the concentration range of 5-3000 microg L(-1). Ten serum samples obtained from volunteers were also analyzed and quantitatively determined of DHEA-3-palmitate and pregnenolone-3-stearate in 1.8-1195.8 microg L(-1) concentration. The devised high temperature GC-MS method could be useful for identification of SFEs in biological specimens including serum.
Collapse
Affiliation(s)
- Hyun-Jin Jung
- Life Sciences Division, Korea Institute of Science and Technology, 39-1 Hawolkok-dong, Seongbuk-ku, Seoul 136-791, South Korea
| | | | | | | |
Collapse
|
41
|
Andrew MN, Dunstan RH, O'Connor WA, Van Zwieten L, Nixon B, MacFarlane GR. Effects of 4-nonylphenol and 17alpha-ethynylestradiol exposure in the Sydney rock oyster, Saccostrea glomerata: Vitellogenin induction and gonadal development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 88:39-47. [PMID: 18453011 DOI: 10.1016/j.aquatox.2008.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 05/26/2023]
Abstract
Adult Saccostrea glomerata were exposed to environmentally relevant concentrations of 4-nonylphenol (1microg/L and 100microg/L) and 17alpha-ethynylestradiol (5ng/L and 50ng/L) in seawater over 8 weeks. Exposures were performed to assess effects on vitellogenin induction and gonadal development during reproductive conditioning. Chronic direct estrogenicity within gonadal tissue was assessed via an estrogen receptor-mediated, chemical-activated luciferase reporter gene-expression assay (ER-CALUX). Estradiol equivalents (EEQ) were greatest in the 100microg/L 4-nonylphenol exposure (28.7+/-2.3ng/g tissue EEQ) while 17alpha-ethynylestradiol at concentrations of 50ng/L were 2.2+/-1.5ng/g tissue EEQ. Results suggest 4-nonylphenol may be accumulated in tissue and is partly resistant to biotransformation; maintaining its potential for chronic estrogenic action, while 17alpha-ethynylestradiol, although exhibiting greater estrogenic potency on biological endpoints possibly exerts its estrogenic action before being rapidly metabolised and/or excreted. A novel methodology was developed to assess vitellogenin using high-performance liquid chromatography (HPLC). Exposure to both 17alpha-ethynylestradiol (50ng/L) and 4-nonylphenol (100microg/L) produced increases in vitellogenin for females, whereas males exhibited increases in vitellogenin when exposed to 50ng/L 17alpha-ethynylestradiol only. Females exhibited greater vitellogenin responses than males at 50ng/L 17alpha-ethynylestradiol only. Histological examination of gonads revealed a number of individuals exhibiting intersex (ovotestis) in 50ng/L 17alpha-ethynylestradiol exposures. Male individuals in 1microg/L and 100microg/L 4-nonylphenol exposures and 5ng/L 17alpha-ethynylestradiol were at earlier stages of spermatogenic development than corresponding controls.
Collapse
Affiliation(s)
- M N Andrew
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Ketata I, Denier X, Hamza-Chaffai A, Minier C. Endocrine-related reproductive effects in molluscs. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:261-70. [PMID: 18282745 DOI: 10.1016/j.cbpc.2007.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/04/2007] [Accepted: 11/26/2007] [Indexed: 01/25/2023]
Abstract
Research on endocrine disruption has been a major topic of the past decade. Although most studies concentrated on vertebrate species, invertebrates are now gaining more attention. In particular, data on molluscs is increasing. One of the best-documented and more relevant examples of endocrine disruption is the imposex phenomenon affecting some gastropod species. But the increasing interest is also due to the fact that molluscs, especially bivalves, are good bioindicators used for decades in environmental studies and that progress have been made in the understanding of the physiology and endocrinology of some mollusc species. Recent results suggest that molluscs can be adversely affected by compounds that alter their reproduction and that vertebrate-type sex-steroids metabolism or mechanism of action could be involved in these effects. Nevertheless, the endocrine system of molluscs appears to be dissimilar in many aspects to those of vertebrates and sex-steroids might not have the same importance in all mollusc species. This diversity constitutes an important opportunity to examine and understand new and alternative mechanisms for endocrine disruption.
Collapse
Affiliation(s)
- Imen Ketata
- Ecotoxicologie Marine, UR 09-03, Université de Sfax, IPEIS, BP 805, 3018 Sfax, Tunisia
| | | | | | | |
Collapse
|
43
|
Janer G, Navarro JC, Porte C. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:368-74. [PMID: 17544855 DOI: 10.1016/j.cbpc.2007.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.
Collapse
Affiliation(s)
- Gemma Janer
- Environmental Chemistry Department, IIQAB-CSIC, C/Jordi Girona 18, 08034 Barcelona, Spain.
| | | | | |
Collapse
|
44
|
Peck MR, Labadie P, Minier C, Hill EM. Profiles of environmental and endogenous estrogens in the zebra mussel Dreissena polymorpha. CHEMOSPHERE 2007; 69:1-8. [PMID: 17582461 DOI: 10.1016/j.chemosphere.2007.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/03/2007] [Accepted: 04/29/2007] [Indexed: 05/15/2023]
Abstract
Contamination of freshwater environments by estrogenic compounds has led to concern over potential impacts on invertebrate species. The uptake of the environmental estrogen 17beta-estradiol (E2) by the freshwater bivalve Dreissena polymorpha and the nature of estrogenic substances in tissues of D. polymorpha mussels collected from four freshwater sites were investigated. Exposure of mussels to [(14)C]-E2 (7.5 ngl(-1), 13 days) revealed that the estrogen bioconcentrated 840+/-58 (males) and 580+/-77 (females) fold (mean+/-95% confidence limits) and was metabolised in tissues to a persistent lipophilic ester. Estrogenic activity, measured using a recombinant human estrogen receptor transcription screen (YES), was detected in tissue extracts of all mussels sampled from freshwater sites. At two reference sites the estrogenic activities of mussel tissues were <1ng E2 equivalents g(-1) wet weight tissue (ng EEQ g(-1) ww) which increased to 7.4-45.7ng EEQg(-1) ww for both free and esterified estrogens extracted from hydrolysed tissue extracts. In mussels collected from two contaminated river sites, estrogenic activity was 0.2-6.7ng EEQ g(-1) ww (free estrogens) and 25.6-316.2ng EEQ g(-1) ww for total estrogens. Fractionation of the tissue extracts revealed that E2 (as the ester) was the predominant estrogen detected in both sexes of D. polymorpha, however, the xenoestrogen nonylphenol (NP) was also detected in mussels sampled from contaminated rivers. The detection of endogenous esterified E2 and the potential for accumulation of exogenous E2 and NP in D. polymorpha tissues suggests that this bivalve could be susceptible to exposure to estrogenic contaminants in the aquatic environment.
Collapse
Affiliation(s)
- M R Peck
- Centre for Environmental Research, JMS Building, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | | | | | | |
Collapse
|