1
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Poirier D. Description of Chemical Synthesis, Nuclear Magnetic Resonance Characterization and Biological Activity of Estrane-Based Inhibitors/Activators of Steroidogenesis. Molecules 2023; 28:molecules28083499. [PMID: 37110733 PMCID: PMC10143840 DOI: 10.3390/molecules28083499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Steroid hormones play a crucial role in several aspects of human life, and steroidogenesis is the process by which hormones are produced from cholesterol using several enzymes that work in concert to obtain the appropriate levels of each hormone at the right time. Unfortunately, many diseases, such as cancer, endometriosis, and osteoporosis as examples, are caused by an increase in the production of certain hormones. For these diseases, the use of an inhibitor to block the activity of an enzyme and, in doing so, the production of a key hormone is a proven therapeutic strategy whose development continues. This account-type article focuses on seven inhibitors (compounds 1-7) and an activator (compound 8) of six enzymes involved in steroidogenesis, namely steroid sulfatase, aldo-keto reductase 1C3, types 1, 2, 3, and 12 of the 17β-hydroxysteroid dehydrogenases. For these steroid derivatives, three topics will be addressed: (1) Their chemical synthesis from the same starting material, estrone, (2) their structural characterization using nuclear magnetic resonance, and (3) their in vitro or in vivo biological activities. These bioactive molecules constitute potential therapeutic or mechanistic tools that could be used to better understand the role of certain hormones in steroidogenesis.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Dohle W, Asiki H, Gruchot W, Foster PA, Sahota HK, Bai R, Christensen KE, Hamel E, Potter BVL. 2-Difluoromethoxy-Substituted Estratriene Sulfamates: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Steroid Sulfatase Inhibition. ChemMedChem 2022; 17:e202200408. [PMID: 36109340 PMCID: PMC9742152 DOI: 10.1002/cmdc.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Indexed: 01/14/2023]
Abstract
2-Difluoromethoxyestratriene derivatives were designed to improve potency and in vivo stability of the drug candidate 2-methoxyestradiol (2ME2). Compound evaluation in vitro against the proliferation of MCF-7 and MDA MB-231 breast cancer cells, as inhibitors of tubulin polymerisation and also steroid sulfatase (STS) both in cell lysates and in whole cells, showed promising activities. In antiproliferative assays 2-difluoromethoxyestradiol was less potent than 2ME2, but its sulfamates were often more potent than their corresponding non-fluorinated analogues. The fluorinated bis-sulfamate is a promising antiproliferative agent in MCF-7 cells (GI50 0.28 μM) vs the known 2-methoxyestradiol-3,17-O,O-bissulfamate (STX140, GI50 0.52 μM), confirming the utility of our approach. Compounds were also evaluated in the NCI 60-cell line panel and the fluorinated bis-sulfamate derivative displayed very good overall activities with a sub-micromolar average GI50 . It was a very potent STS inhibitor in whole JEG-3 cells (IC50 3.7 nM) similar to STX140 (4.2 nM) and additionally interferes with tubulin assembly in vitro and colchicine binding to tubulin. An X-ray study of 2-difluoromethoxy-3-benzyloxyestra-1,3,5(10)-trien-17-one examined conformational aspects of the fluorinated substituent. The known related derivative 2-difluoromethyl-3-sulfamoyloxyestrone was evaluated for STS inhibition in whole JEG-3 cells and showed an excellent IC50 of 55 pM.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Hannah Asiki
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Wojciech Gruchot
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Paul A Foster
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - Havreen K Sahota
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Kirsten E Christensen
- Chemical Crystallography, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|
4
|
Mohamed A, Salah M, Tahoun M, Hawner M, Abdelsamie AS, Frotscher M. Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. J Med Chem 2022; 65:11726-11744. [PMID: 35993890 DOI: 10.1021/acs.jmedchem.2c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Pharmaceutical Organic Chemistry Department, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Manuel Hawner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo 12451, Egypt.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E81, Saarbrücken 66123, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| |
Collapse
|
5
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
6
|
Lespérance M, Roy J, Djiemeny Ngueta A, Maltais R, Poirier D. Synthesis of 16β-derivatives of 3-(2-bromoethyl)-estra-1,3,5(10)-trien-17β-ol as inhibitors of 17β-HSD1 and/or steroid sulfatase for the treatment of estrogen-dependent diseases. Steroids 2021; 172:108856. [PMID: 33945801 DOI: 10.1016/j.steroids.2021.108856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) and steroid sulfatase (STS) are involved in the synthesis of the most potent estrogen in the human body, estradiol (E2). These enzymes are known to play a pivotal role in the progression of estrogen-dependent diseases, such as breast cancer and endometriosis. Therefore, the inhibition of 17β-HSD1 and/or STS represents a promising avenue to modulate the growth of estrogen-dependent tumors or lesions. We recently established the key role of a bromoethyl side chain added at the C3-position of a 16β-carbamoyl-benzyl-E2 nucleus to covalently inhibit 17β-HSD1. To extend the structure-activity relationship study to the C16β-position of this new selective irreversible inhibitor (PBRM), we synthesized a series of analog compounds by changing the nature of the C16β-side chain but keeping the 2-bromoethyl group at position C3. We determined their 17β-HSD1 inhibitions in T-47D cells (transformation of E1 into E2), but we did not obtain a stronger 17β-HSD1 inhibitor than PBRM. Compounds 16 and 17 were found to be more likely to bind to the catalytic site and showed a promising but moderate inhibitory activity with estimated IC50 values of 0.5 and 0.7 µM, respectively (about 10 times higher than PBRM). Interestingly, adding one or two sulfamate groups in the D-ring's surroundings did not significantly decrease compounds' potential to inhibit 17β-HSD1, but clearly improved their potential to inhibit STS. These results open the door to the development of a new family of steroid derivatives with dual (17β-HSD1 and STS) inhibiting actions.
Collapse
Affiliation(s)
- Maxime Lespérance
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V0A6, Canada.
| |
Collapse
|
7
|
A Targeted-Covalent Inhibitor of 17β-HSD1 Blocks Two Estrogen-Biosynthesis Pathways: In Vitro (Metabolism) and In Vivo (Xenograft) Studies in T-47D Breast Cancer Models. Cancers (Basel) 2021; 13:cancers13081841. [PMID: 33924352 PMCID: PMC8069897 DOI: 10.3390/cancers13081841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is responsible for the production of estrogens estradiol (E2) and 5-androsten-3β,17β-diol (5-diol). This enzyme is therefore a target of choice for the treatment of estrogen-dependent diseases such as breast cancer and endometriosis, by blocking estrogen biosynthesis. After we developed the first irreversible and non-estrogenic 17β-HSD1 inhibitor, a molecule named PBRM, our goal was to demonstrate its therapeutic potential. PBRM was able to block the formation of E2 and 5-diol in T-47D human breast cancer cells. When given orally to mice, PBRM was also able to block the tumor growth without any observed toxic effects. Thanks to its irreversible type of inhibition, PBRM retained its anti-tumor growth effect, even after reducing its frequency of administration to only once a week, a clear advantage over reversible inhibitors. These results strongly support the use of PBRM as a new approach in the treatment of breast cancer. Abstract 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays an important role in estrogen-dependent breast tumor growth. In addition to being involved in the production of estradiol (E2), the most potent estrogen in women, 17β-HSD1 is also responsible for the production of 5-androsten-3β,17β-diol (5-diol), a weaker estrogen than E2, but whose importance increases after menopause. 17β-HSD1 is therefore a target of choice for the treatment of estrogen-dependent diseases such as breast cancer and endometriosis. After we developed the first targeted-covalent (irreversible) and non-estrogenic inhibitor of 17β-HSD1, a molecule named PBRM, our goal was to demonstrate its therapeutic potential. Enzymatic assays demonstrated that estrone (E1) and dehydroepiandrosterone (DHEA) were transformed into E2 and 5-diol in T-47D human breast cancer cells, and that PBRM was able to block these transformations. Thereafter, we tested PBRM in a mouse tumor model (cell-derived T-47D xenografts). After treatment of ovariectomized (OVX) mice receiving E1 or DHEA, PBRM given orally was able to reduce the tumor growth at the control (OVX) level without any observed toxic effects. Thanks to its irreversible type of inhibition, PBRM retained its anti-tumor growth effect, even after reducing its frequency of administration to only once a week, a clear advantage over reversible inhibitors.
Collapse
|
8
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
9
|
Maltais R, Ngueta Djiemeny A, Roy J, Barbeau X, Lambert JP, Poirier D. Design and synthesis of dansyl-labeled inhibitors of steroid sulfatase for optical imaging. Bioorg Med Chem 2020; 28:115368. [PMID: 32122754 DOI: 10.1016/j.bmc.2020.115368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Steroid sulfatase (STS) is an important enzyme regulating the conversion of sulfated steroids into their active hydroxylated forms. Notably, the inhibition of STS has been shown to decrease the levels of active estrogens and was translated into clinical trials for the treatment of breast cancer. Based on quantitative structure-activity relationship (QSAR) and molecular modeling studies, we herein report the design of fluorescent inhibitors of STS by adding a dansyl group on an estrane scaffold. Synthesis of 17α-dansylaminomethyl-estradiol (7) and its sulfamoylated analog 8 were achieved from estrone in 5 and 6 steps, respectively. Inhibition assays on HEK-293 cells expressing exogenous STS revealed a high level of inhibition for compound 7 (IC50 = 69 nM), a value close to the QSAR model prediction (IC50 = 46 nM). As an irreversible inhibitor, sulfamate 8 led to an even more potent inhibition in the low nanomolar value (IC50 = 2.1 nM). In addition, we show that the potent STS inhibitor 8 can be employed as an optical imaging tool to investigate intracellular enzyme sub-localization as well as inhibitory behavior. As a result, confocal microscopy analysis confirmed good penetration of the STS fluorescent inhibitor 8 in cells and its localization in the endoplasmic reticulum where STS is localized.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Adrien Ngueta Djiemeny
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Xavier Barbeau
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Hng Y, Lin MH, Lin TS, Liu IC, Lin IC, Lu YL, Chang CN, Chiu PF, Tsai KC, Chen MJ, Liang PH. Design and synthesis of 3-benzylaminocoumarin-7-O-sulfamate derivatives as steroid sulfatase inhibitors. Bioorg Chem 2020; 96:103618. [PMID: 32059152 DOI: 10.1016/j.bioorg.2020.103618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Steroid sulfatase (STS) is a sulfatase enzyme that catalyzes the conversion of sulfated steroid precursors to free steroid. The inhibition of STS could abate estrogenic steroids that stimulate the proliferation and development of breast cancer, and therefore STS is a potential target for adjuvant endocrine therapy. In this study, a series of 3-benzylaminocoumarin-7-O-sulfamate derivatives targeting STS were designed and synthesized. Structure-relationship activities (SAR) analysis revealed that attachment of a benzylamino group at the 3-position of coumarin improved inhibitory activity. Compound 3j was found to have the highest inhibition activity against human placenta isolated STS (IC50 0.13 μM) and MCF-7 cell lines (IC50 1.35 µM). Kinetic studies found compound 3j to be an irreversible inhibitor of STS, with KI and kinact value of 86.9 nM and 158.7 min-1, respectively.
Collapse
Affiliation(s)
- Yue Hng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tzung-Sheng Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chen Liu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeh-Lin Lu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chiao-Nien Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology and Livia Shangyu Wan Scholar, National Taiwan University Hospital, National Taiwan University, College of Medicine, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Genomics Research Center, Academia Sinica, Taipei 128, Taiwan.
| |
Collapse
|
11
|
Poirier D, Roy J, Maltais R, Ayan D. Antisulfatase, Osteogenic, and Anticancer Activities of Steroid Sulfatase Inhibitor EO-33 in Mice. J Med Chem 2019; 62:5512-5521. [DOI: 10.1021/acs.jmedchem.9b00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
12
|
Mohareb RM, Samir EM, Halim PA. Synthesis, and anti-proliferative, Pim-1 kinase inhibitors and molecular docking of thiophenes derived from estrone. Bioorg Chem 2018; 83:402-413. [PMID: 30415021 DOI: 10.1016/j.bioorg.2018.10.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman M Samir
- National Organization for Drug Control & Research, P.O. 29, Cairo, Egypt
| | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Sang X, Han H, Poirier D, Lin SX. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: An underlying mechanism. J Steroid Biochem Mol Biol 2018; 183:80-93. [PMID: 29803725 DOI: 10.1016/j.jsbmb.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
Abstract
Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada.
| |
Collapse
|
14
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
15
|
Nussbaumer P. Challenging medicinal chemistry: ups and downs in a drug discovery project. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
McNamara KM, Guestini F, Sauer T, Touma J, Bukholm IR, Lindstrøm JC, Sasano H, Geisler J. In breast cancer subtypes steroid sulfatase (STS) is associated with less aggressive tumour characteristics. Br J Cancer 2018; 118:1208-1216. [PMID: 29563635 PMCID: PMC5943586 DOI: 10.1038/s41416-018-0034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. METHODS We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. RESULTS Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. CONCLUSIONS Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan.
| | - Fouzia Guestini
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joel Touma
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ida Rashida Bukholm
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jonas C Lindstrøm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
17
|
Meanwell NA. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J Med Chem 2018; 61:5822-5880. [PMID: 29400967 DOI: 10.1021/acs.jmedchem.7b01788] [Citation(s) in RCA: 1433] [Impact Index Per Article: 204.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development P.O. Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
18
|
Salah M, Abdelsamie AS, Frotscher M. First Dual Inhibitors of Steroid Sulfatase (STS) and 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Designed Multiple Ligands as Novel Potential Therapeutics for Estrogen-Dependent Diseases. J Med Chem 2017; 60:4086-4092. [PMID: 28406629 DOI: 10.1021/acs.jmedchem.7b00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
STS and 17β-HSD1 are attractive targets for the treatment of estrogen-dependent diseases like endometriosis and breast cancer. The simultaneous inhibition of both enzymes appears more promising than blockage of either protein alone. We describe a designed multiple ligand approach resulting in highly potent dual inhibitors. The most interesting compound 9 showed nanomolar IC50 values for both proteins, membrane permeability, and no interference with estrogen receptors. It efficiently reversed E1S- and E1-induced T47D cell proliferation.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany.,Chemistry of Natural and Microbial Products Department, National Research Centre , Dokki, 12622 Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
20
|
Yue XH, Tong JQ, Wang ZJ, Zhang J, Liu X, Liu XJ, Cai HY, Qi JS. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats. Horm Behav 2016; 83:83-92. [PMID: 27222435 DOI: 10.1016/j.yhbeh.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is an age-related mental disorder characterized by progressive loss of memory and multiple cognitive impairments. The overproduction and aggregation of Amyloid β protein (Aβ) in the brain, especially in the hippocampus, are closely involved in the memory loss in the patients with AD. Accumulating evidence indicates that the Aβ-induced imbalance of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) in the brain plays an important role in the AD pathogenesis and progression. The level of DHEA is elevated, while DHEAS is dramatically decreased in the AD brain. The present study tried to restore the balance between DHEA and DHEAS by using a non-steroidal sulfatase inhibitor DU-14, which increases endogenous DHEAS through preventing DHEAS converted back into DHEA. We found that: (1) DU-14 effectively attenuated the Aβ1-42-induced cognitive deficits in spatial learning and memory of rats in Morris water maze test; (2) DU-14 prevented Aβ1-42-induced decrease in the cholinergic theta rhythm of hippocampal local field potential (LFP) in the CA1 region; (3) DU-14 protected hippocampal synaptic plasticity against Aβ1-42-induced suppression of long term potentiation (LTP). These results provide evidence for the neuroprotective action of DU-14 against neurotoxic Aβ, suggesting that up-regulation of endogenous DHEAS by DU-14 could be beneficial to the alleviation of Aβ-induced impairments in spatial memory and synaptic plasticity.
Collapse
Affiliation(s)
- Xing-Hua Yue
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China; Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300100, PR China
| | - Jia-Qing Tong
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xu Liu
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300100, PR China
| | - Xiao-Jie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hong-Yan Cai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
21
|
Ouellet C, Maltais R, Ouellet É, Barbeau X, Lagüe P, Poirier D. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem 2016; 119:169-82. [PMID: 27155470 DOI: 10.1016/j.ejmech.2016.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments.
Collapse
Affiliation(s)
- Charles Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Étienne Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Xavier Barbeau
- Département de chimie, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Patrick Lagüe
- Département de biochimie microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
22
|
Shah R, Singh J, Singh D, Jaggi AS, Singh N. Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review. Eur J Med Chem 2016; 114:170-90. [PMID: 26974384 DOI: 10.1016/j.ejmech.2016.02.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Steroid sulfatase (STS) plays a momentous role in the conversion of sulfated steroids, which are biologically inactive, into biologically active un-sulfated steroid hormones, which support the development and growth of a number of hormone-dependent cancers, including breast cancer. Therefore, inhibitors of STS are supposed to be potential drugs for the treatment of breast and other steroid-dependent cancers. The present review concentrates on broad chemical classification of steroid sulfatase inhibitors. The inhibitors reviewed are classified into four main categories: Steroid sulfamate based inhibitors; Steroid non-sulfamate based inhibitors; Non-steroidal sulfamate based inhibitors; Non-steroidal non-sulfamate based inhibitors. A succinct overview of current treatment of cancer, estradiol precursors, STS enzyme and its role in breast cancer is herein described.
Collapse
Affiliation(s)
- Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| |
Collapse
|
23
|
Rižner TL. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases. Front Pharmacol 2016; 7:30. [PMID: 26924986 PMCID: PMC4757672 DOI: 10.3389/fphar.2016.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023] Open
Abstract
Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
24
|
Fournier D, Ciobanu L, Poirier D. A Sequential Dual Cleavage of the Arylsulfamate Linker to Provide Both Sulfamate and Phenol Derivatives. CHEMISTRY JOURNAL OF MOLDOVA 2015. [DOI: 10.19261/cjm.2015.10(2).09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
26
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
27
|
Savchenko RG, Kostyleva SA, Odinokov VN. Reductive Amination ofω-Oxoecdysteroids in the Synthesis of Dimeric Ecdysteroids. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Luque-Ramírez M, Escobar-Morreale HF. Targets to treat androgen excess in polycystic ovary syndrome. Expert Opin Ther Targets 2015; 19:1545-60. [DOI: 10.1517/14728222.2015.1075511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015; 153:160-9. [PMID: 25843211 DOI: 10.1016/j.jsbmb.2015.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Estrogen sulfamate derivatives were the first irreversible active-site-directed inhibitors of steroid sulfatase (STS), an emerging drug target for endocrine therapy of hormone dependent diseases that catalyzes inter alia the hydrolysis of estrone sulfate to estrone. In recent years this has stimulated clinical investigation of the estradiol derivative both as an oral prodrug and its currently ongoing exploration in endometriosis. 2-Substituted steroid sulfamate derivatives show considerable potential as multi-targeting agents for hormone-independent disease, but are also potent STS inhibitors. The steroidal template has spawned nonsteroidal STS inhibitors one of which, Irosustat, has been evaluated clinically in breast cancer, endometrial cancer and prostate cancer and there is potential for innovative dual-targeting approaches. This review surveys the role of estrogen sulfamates, their analogues and current status.
Collapse
Affiliation(s)
- Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
30
|
Mostafa YA, Kralt B, Rao PP, Taylor SD. A-ring substituted 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol as highly potent reversible inhibitors of steroid sulfatase. Bioorg Med Chem 2015. [DOI: 10.1016/j.bmc.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Morozkina SN, Gluzdikov IA, Drozdov AS, Selivanov SI, Kovalev RA, Filatov MV, Shavva AG. Synthesis and some biological properties of sulfamates derived from 8α-analogs of steroidal estrogens. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Yang B, Sun Z, Liu C, Cui Y, Guo Z, Ren Y, Lu Z, Knapp S. O-(Aminosulfonylation) of phenols and an example of slow hydrolytic release. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen Comp Endocrinol 2014; 206:213-26. [PMID: 25072892 DOI: 10.1016/j.ygcen.2014.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023]
Abstract
Androgen-induced masculinization of female aquatic biota poses concerns for natural population stability. This research evaluated the effects of a twelve day exposure of fadrozole hydrochloride on the metabolism and reproductive status of the unionid mussel Lampsilis fasciola. Although this compound is not considered to be widespread in the aquatic environment, it was selected as a model aromatase (enzyme that converts testosterone to estradiol) inhibitor. Adult mussels were exposed to a control and 3 concentrations of fadrozole (2μg/L, 20μg/L, and 50μg/L), and samples of gill tissue were taken on days 4 and 12 for metabolomics analysis. Gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Daily observed mussel behavior included female mantle display, foot protrusion, siphoning, and larval (glochidia) releases. Glochidia mortality was significantly higher in the 20μg/L treatment. Fewer conglutinate (packets of glochidia) releases were observed in the 50μg/L treatment, and mortality was highly correlated to release numbers. Foot protrusion was significantly higher in females in nearly all treatments, including the control, during the first 4days of observations. However, this sex difference was observed only in the 50μg/L treatment during the last 8days. Generally, metabolites were significantly altered in female gill tissue in the 2μg/L treatment whereas males were mostly affected only at the highest (50μg/L) treatment. Both sexes also revealed significant reductions in fadrozole-induced metabolic effects in gill tissue sampled after 12days compared to tissue sampled after 4days, indicating time-dependent mechanisms of disruptions in metabolic pathways and homeostatic processes to compensate for such disruptions.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, 901 South Avenue, Missouri State University, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
34
|
Mohareb RM, Al-Omran F, Azzam RA. Heterocyclic ring extension of estrone: synthesis and cytotoxicity of fused pyran, pyrimidine and thiazole derivatives. Steroids 2014; 84:46-56. [PMID: 24686206 DOI: 10.1016/j.steroids.2014.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/21/2014] [Accepted: 03/15/2014] [Indexed: 01/03/2023]
Abstract
The one pot reaction of estrone with the aromatic aldehydes 2a-c and either of malononitrile or ethyl cyanoacetate afforded the fused pyran derivatives 4a-f. On the other hand, carrying the same reaction using thiourea instead of the cyanomethylene reagent gave the fused pyrimidine derivatives 6a-c. The latter compounds reacted with phenacyl bromide to give the thiazolo[3,2-a]pyrimidine derivatives 8a-c. The reaction of the title compound with bromine gave the monobromo derivative 13 which in turn reacted with either thiourea or cyanothioacetamide to give the thiazole derivatives 14 and 16, respectively. The cytotoxicity of the newly synthesized products was evaluated against six human cancer and normal cell lines where the results showed that compounds 4c, 4f, 6b, 8b, 8c, 10, 13, 16, 18c and 19c exhibited optimal cytotoxic effect against the cancer cell lines, with IC50's in the nM range.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R., Egypt.
| | - Fatima Al-Omran
- Department of Chemistry, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Rasha A Azzam
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A.R., Egypt
| |
Collapse
|
35
|
Pohl O, Bestel E, Gotteland JP. Synergistic effects of E2MATE and norethindrone acetate on steroid sulfatase inhibition: a randomized phase I proof-of-principle clinical study in women of reproductive age. Reprod Sci 2014; 21:1256-65. [PMID: 24604234 DOI: 10.1177/1933719114522526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of a progestin such as norethindrone acetate (NETA) reducing the ovarian estrogen production with a steroid sulfatase (STS) inhibitor (STS-I) decreasing the local estrogen production could result in a new treatment option for endometriosis. The study reported was a randomized, double-blind, and placebo-controlled study to investigate the pharmacodynamics, pharmacokinetics, and safety of the STS-I PGL2001 (E2MATE) and NETA. A total of 24 healthy women of reproductive age were treated with weekly doses of PGL2001 or daily doses of NETA or a combination of both compounds for 4 weeks. Four weeks of treatment with PGL2001 or PGL2001 + NETA reduced the STS activity in the endometrium by 91% (±3%) and 96% (±4%), respectively, and comparable values were observed 1 month after the treatment was stopped. The combined treatment of PGL2001 + NETA led to significantly higher STS inhibition at both times (P < .01 and P < .05, respectively). This study showed that administration of PGL2001 alone at 4 mg/week or combined with NETA to healthy women of reproductive age led to STS inhibition and changes in functional STS biomarkers in the endometrium, resulting in synergistic effects of PGL2001 and NETA on STS activity.
Collapse
Affiliation(s)
- Oliver Pohl
- PregLem SA, Product and Clinical Development, Chemin du Pré-Fleuri 3, Geneva, Switzerland
| | - Elke Bestel
- PregLem SA, Product and Clinical Development, Chemin du Pré-Fleuri 3, Geneva, Switzerland
| | - Jean-Pierre Gotteland
- PregLem SA, Product and Clinical Development, Chemin du Pré-Fleuri 3, Geneva, Switzerland
| |
Collapse
|
36
|
Kajita D, Nakamura M, Matsumoto Y, Makishima M, Hashimoto Y. Design and synthesis of silicon-containing steroid sulfatase inhibitors possessing pro-estrogen antagonistic character. Bioorg Med Chem 2014; 22:2244-52. [PMID: 24630694 DOI: 10.1016/j.bmc.2014.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 11/26/2022]
Abstract
Steroid sulfatase (STS) is a potential target for treatment of postmenopausal hormone-dependent breast cancer. Several steroidal STS inhibitors have been reported, but steroidal compounds are difficult to optimize and may interact with other targets. On the other hand, we have shown that diphenylmethane (DPM) derivatives act as estrogen receptor (ER) agonists and antagonists. Here, we aimed to design and synthesize non-steroidal DPM-type STS inhibitors that would also serve as pro-estrogen antagonists, releasing a metabolite with ERα-antagonistic activity upon hydrolysis by STS. We synthesized a series of compounds and evaluated their biological activities by means of STS-inhibitory activity assay and ER reporter gene assay. Among them, silicon-containing compound 16a showed strong STS-inhibitory activity (IC50=0.17μM). Further, its putative metabolite (12a) exhibited potent ERα-antagonistic activity (IC50=29.7nM).
Collapse
Affiliation(s)
- Daisuke Kajita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaharu Nakamura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yotaro Matsumoto
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
37
|
Jiang M, He J, Kucera H, Gaikwad NW, Zhang B, Xu M, O'Doherty RM, Selcer KW, Xie W. Hepatic overexpression of steroid sulfatase ameliorates mouse models of obesity and type 2 diabetes through sex-specific mechanisms. J Biol Chem 2014; 289:8086-97. [PMID: 24497646 DOI: 10.1074/jbc.m113.535914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The steroid sulfatase (STS)-mediated desulfation is a critical metabolic mechanism that regulates the chemical and functional homeostasis of endogenous and exogenous molecules. In this report, we first showed that the liver expression of Sts was induced in both the high fat diet (HFD) and ob/ob models of obesity and type 2 diabetes and during the fed to fasting transition. In defining the functional relevance of STS induction in metabolic disease, we showed that overexpression of STS in the liver of transgenic mice alleviated HFD and ob/ob models of obesity and type 2 diabetes, including reduced body weight, improved insulin sensitivity, and decreased hepatic steatosis and inflammation. Interestingly, STS exerted its metabolic benefit through sex-specific mechanisms. In female mice, STS may have increased hepatic estrogen activity by converting biologically inactive estrogen sulfates to active estrogens and consequently improved the metabolic functions, whereas ovariectomy abolished this protective effect. In contrast, the metabolic benefit of STS in males may have been accounted for by the male-specific decrease of inflammation in white adipose tissue and skeletal muscle as well as a pattern of skeletal muscle gene expression that favors energy expenditure. The metabolic benefit in male STS transgenic mice was retained after castration. Treatment with the STS substrate estrone sulfate also improved metabolic functions in both the HFD and ob/ob models. Our results have uncovered a novel function of STS in energy metabolism and type 2 diabetes. Liver-specific STS induction or estrogen/estrogen sulfate delivery may represent a novel approach to manage metabolic syndrome.
Collapse
Affiliation(s)
- Mengxi Jiang
- From the Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Richter N, Simon RC, Kroutil W, Ward JM, Hailes HC. Synthesis of pharmaceutically relevant 17-α-amino steroids using an ω-transaminase. Chem Commun (Camb) 2014; 50:6098-100. [DOI: 10.1039/c3cc49080g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and stereoselective biocatalytic route for the synthesis of 17α-amino steroids has been developed.
Collapse
Affiliation(s)
- Nina Richter
- Department of Chemistry
- University College London
- London, UK
- ACIB GmbH
- c/o Department of Chemistry
| | | | - Wolfgang Kroutil
- ACIB GmbH
- c/o Department of Chemistry
- University of Graz
- 8010 Graz, Austria
- Department of Chemistry
| | - John M. Ward
- Department of Biochemical Engineering
- University College London
- London, UK
| | | |
Collapse
|
39
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|
40
|
Nassiri-Koopaei N, Mogharabi M, Amini M, Shafiee A, Faramarzi MA. Fungal transformation of methyltestosterone by the soil ascomycete Acremonium strictum to some hydroxy derivatives of 17-methylsteroid. Chem Nat Compd 2013. [DOI: 10.1007/s10600-013-0703-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Sung CH, Im HJ, Park N, Kwon Y, Shin S, Ye DJ, Cho NH, Park YS, Choi HK, Kim D, Chun YJ. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II. Toxicol Lett 2013; 223:109-15. [PMID: 24055520 DOI: 10.1016/j.toxlet.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022]
Abstract
Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis.
Collapse
Affiliation(s)
- Chul-Hoon Sung
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mostafa YA, Taylor SD. Steroid derivatives as inhibitors of steroid sulfatase. J Steroid Biochem Mol Biol 2013; 137:183-98. [PMID: 23391659 DOI: 10.1016/j.jsbmb.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Sulfated steroids function as a storage reservoir of biologically active steroid hormones. The sulfated steroids themselves are biologically inactive and only become active in vivo when they are converted into their desulfated (unconjugated) form by the enzyme steroid sulfatase (STS). Inhibitors of STS are considered to be potential therapeutics for the treatment of steroid-dependent cancers such as breast, prostate and endometrial cancer. The present review summarizes steroid derivatives as inhibitors of STS covering the literature from the early years of STS inhibitor development to October of 2012. A brief discussion of the function, structure and mechanism of STS and its role in estrogen receptor-positive (ER+) hormone-dependent breast cancer is also presented. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Yaser A Mostafa
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | |
Collapse
|
43
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
44
|
Farhane S, Fournier MA, Poirier D. Chemical synthesis, characterisation and biological evaluation of lactonic-estradiol derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2013; 137:322-31. [PMID: 23685015 DOI: 10.1016/j.jsbmb.2013.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/17/2022]
Abstract
To control estradiol (E2) formation, we are interested in synthesizing inhibitors of 17β-hydroxyteroid dehydrogenase type 1 (17β-HSD1). Since the results of docking experiments have shown that E2-lactone derivatives substituted in position 19 or 20 (E-ring) could generate interactions with the active site of the enzyme, we carried out their chemical synthesis. After having prepared the 16β,17β-γ-lactone-E2 in four steps starting from estrone (E1), we introduced the molecular diversity by adding a hydroxymethyl, a methylcarboxylate, a carboxy or an allyl group. The allyl derivative was used as a key intermediate to generate a hydroxyethyl side chain in α or β position. Two lactols were also obtained from two hydroxyalkyl lactones. Enzymatic assays revealed that lactone and lactol derivatives weakly inhibited 17β-HSD1 in homogenized HEK-293 cells overexpressing 17β-HSD1 (34-60% at 1 μM) and in intact T-47D cells expressing 17β-HSD1 (10-40% at 10 μM). This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Siham Farhane
- Laboratory of Medicinal Chemistry, CHU de Québec (CHUL) - Research Center and Laval University, Québec (Québec), G1V 4G2, Canada
| | | | | |
Collapse
|
45
|
Roy J, Lefebvre J, Maltais R, Poirier D. Inhibition of dehydroepiandosterone sulfate action in androgen-sensitive tissues by EM-1913, an inhibitor of steroid sulfatase. Mol Cell Endocrinol 2013; 376:148-55. [PMID: 23806558 DOI: 10.1016/j.mce.2013.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022]
Abstract
Steroid sulfatase (STS) plays an important role in the formation of estrogens and androgens by allowing the conversion of inactive circulating sulfated steroids into active hormones. These steroids support the development and growth of a number of hormone-dependent cancers, including prostate cancer. Here, we tested a non-estrogenic and non-androgenic inhibitor of steroid STS, namely EM-1913, with special attention to its potential use in the treatment of prostate cancer. After determining the required dosage of dehydroepiandrosterone sulfate (DHEAS) needed to stimulate the ventral prostate and seminal vesicles in castrated rats, we measured that EM-1913 partially (26%) and almost entirely blocked (81%) the stimulating effect of DHEAS on ventral prostates and seminal vesicles, respectively. In addition, the homogenization of these two tissues allowed us to confirm that they were completely deprived of STS activity following a treatment with EM-1913. This effect is also reflected in blood, since the plasma level of DHEAS was increased in animals treated with EM-1913, whereas the levels of dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT), two DHEAS metabolites, meanwhile decreased. From these results, we concluded that STS inhibitor EM-1913 is a good candidate for additional preclinical studies.
Collapse
Affiliation(s)
- Jenny Roy
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center Endocrinology and Nephrology Unit and Faculty of Medicine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Carrilho RM, Pereira MM, Moreno MJS, Takács A, Kollár L. A new facile synthesis of steroid dimers containing 17,17′-dicarboxamide spacers. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Xu Y, Yang X, Wang Z, Li M, Ning Y, Chen S, Yin L, Li X. Estrogen sulfotransferase (SULT1E1) regulates inflammatory response and lipid metabolism of human endothelial cells via PPARγ. Mol Cell Endocrinol 2013; 369:140-9. [PMID: 23384540 DOI: 10.1016/j.mce.2013.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/22/2022]
Abstract
Estrogen sulfotransferase (SULT1E1) is a phase II drug-metabolizing enzyme known to catalyze sulfoconjugation of estrogens. 17β-estradiol (E2) plays a pivotal role in attenuating endothelial dysfunction. E2 can be further sulfated to estradiol sulfate (E2S) using SULT1E1. To date, there are no reports of expression and function of SULT1E1 in the endothelium. We identified that SULT1E1 is highly expressed in human umbilical vein endothelial cells (HUVECs) using immunofluorescence microscopy and Western immunoblot analyses. A synthesized siRNA targeting SULT1E1 was used to successfully suppress SULT1E1 expression and inhibit estrogen sulfation in HUVECs. This led to functional depletion, as confirmed by a SULT1E1 enzyme activity assay in vitro and by an in vivo estrogen sulfation assay. Knock-down of SULT1E1 in HUVECs resulted in regulation of genes involved in inflammation and lipid metabolism. Interestingly, this regulation was attenuated by PPARγ siRNA and by exposure to the PPARγ antagonist GW9662. Compared with cell response in the absence of estrogen, the effects of SULT1E1 interference on the inflammatory response and lipid metabolism related genes in the presence of 80nM estrogen were completely opposite. When exogenous estrogen was applied, cell responses depended on the ratio of E2 to E2S, due to the activity of SULT1E1, and the different regulation of these processes. It is suggested that E2 sulfation catalyzed by SULT1E1 plays an important role in modulating endothelial cell function.
Collapse
Affiliation(s)
- Yali Xu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ouellet É, Maltais R, Ouellet C, Poirier D. Investigation of a tetrahydroisoquinoline scaffold as dual-action steroid sulfatase inhibitors generated by parallel solid-phase synthesis. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md20354a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Abstract
INTRODUCTION Steroid sulfatase (STS) converts sulfated hormones to free hormones of importance in hormone-dependent diseases such as breast cancer and endometriosis. Carbohydrate sulfatases degrade complex carbohydrates as part of normal cellular turnover; certain lysosomal storage disorders (LSDs) involve defective processing of sulfated glycosaminoglycans by mutant sulfatases. AREAS COVERED Aryl sulfamates have been developed as STS inhibitors, and STX64 and PGL2001 are under evaluation in Phase I and II clinical trials for treatment of endometrial and metastatic breast and prostate cancers and endometriosis. Dual-acting compounds have emerged that are aromatase inhibitors (AIs), selective estrogen receptor antagonists, or inhibitors of microtubule polymerization. Sulfamidase inhibitors as pharmacological chaperones to assist maturation of folding-defective mutants for the treatment of Sanfilippo type A disease are under investigation. Coverage: The patent literature after the mid-1990s. EXPERT OPINION The failure of STX64 in a Phase II monotherapy clinical trial should not dissuade further investigations in multidrug regimens, particularly in combination with AIs. The recent development of dual-acting compounds may enhance the potential for success in the clinic. Further investigations into aryl sulfamates are required to clarify the molecular mechanism of action; additionally, new reversible sulfatase inhibition concepts are needed for the development of pharmacological chaperones for sulfatase LSDs.
Collapse
Affiliation(s)
- Spencer J Williams
- University of Melbourne, School of Chemistry and Bio21 Molecular Science, Parkville, Victoria, Australia.
| |
Collapse
|
50
|
Haccard O, Dupré A, Liere P, Pianos A, Eychenne B, Jessus C, Ozon R. Naturally occurring steroids in Xenopus oocyte during meiotic maturation. Unexpected presence and role of steroid sulfates. Mol Cell Endocrinol 2012; 362:110-9. [PMID: 22687883 DOI: 10.1016/j.mce.2012.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
In the ovary, oocytes are surrounded by follicle cells and arrested in prophase of meiosis I. Although steroidogenic activity of follicle cells is involved in oogenesis regulation, clear qualitative and quantitative data about the steroid content of follicles are missing. We measured steroid levels of Xenopus oocytes and follicles by gas chromatography-mass spectrometry. We show that dehydroepiandrosterone sulfate is the main steroid present in oocytes. Lower levels of free steroids are also detected, e.g., androgens, whereas progesterone is almost undetectable. We propose that sulfatation is a protective mechanism against local variations of active steroids that could be deleterious for follicle-enclosed oocytes. Steroid levels were measured after LH stimulation, responsible for the release by follicle cells of a steroid signal triggering oocyte meiosis resumption. Oocyte levels of androgens rise slowly during meiosis re-entry whereas progesterone increases abruptly to micromolar concentration, therefore representing the main physiological mediator of meiosis resumption in Xenopus oocyte.
Collapse
Affiliation(s)
- Olivier Haccard
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|