1
|
Cai D, Li QQ, Mohammed Z, Chou WC, Huang J, Kong M, Xie Y, Yu Y, Hu G, Qi J, Zhou Y, Tan W, Lin L, Qiu R, Dong G, Zeng XW. Fetal Glucocorticoid Mediates the Association between Prenatal Per- and Polyfluoroalkyl Substance Exposure and Neonatal Growth Index: Evidence from a Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11420-11429. [PMID: 37494580 DOI: 10.1021/acs.est.2c08831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Glucocorticoid plays a key role in the growth and organ maturation of fetus. However, the effect of glucocorticoid on the association between per- and polyfluoroalkyl substance (PFAS) exposure and fetal growth is still unknown. We detected cord cortisol (active glucocorticoid in human) and 34 PFAS concentrations in the maternal serum samples, which were collected from 202 mother-fetus pairs in the Maoming Birth Cohort from 2015 to 2018. The mediation effect of cord cortisol on the association between maternal PFAS and the neonatal growth index (NGI) was estimated. We found that higher PFAS concentrations were associated with lower NGI in terms of ponderal index, birth weight (BW), head circumference (HC), and its z-scores (BWZ and HCZ) (P < 0.05). Fetal cortisol could mediate 12.6-27.3% of the associations between PFAS and NGI. Specifically, cord cortisol mediated the association between branched perfluorooctane sulfonate (branched PFOS) and HCZ by 20.4% and between perfluorooctanoate (PFOA) and HCZ by 27.3%. Our findings provide the first epidemiological data evincing that fetal cortisol could mediate the association between prenatal PFAS exposure and fetal growth. Further investigations are recommended to elucidate the interactions among cord cortisol, PFAS, and fetal growth.
Collapse
Affiliation(s)
- Dan Cai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zeeshan Mohammed
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32611, United States
| | - Jinbo Huang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Minli Kong
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lizi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Ji B, Lei J, Xu T, Zhao M, Cai H, Qiu J, Gao Q. Effects of prenatal hypoxia on placental glucocorticoid barrier: mechanistic insight from experiments in rats. Reprod Toxicol 2022; 110:78-84. [DOI: 10.1016/j.reprotox.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
|
3
|
Del Gobbo GF, Yin Y, Choufani S, Butcher EA, Wei J, Rajcan-Separovic E, Bos H, von Dadelszen P, Weksberg R, Robinson WP, Yuen RKC. Genomic imbalances in the placenta are associated with poor fetal growth. Mol Med 2021; 27:3. [PMID: 33413077 PMCID: PMC7792164 DOI: 10.1186/s10020-020-00253-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Background Fetal growth restriction (FGR) is associated with increased risks for complications before, during, and after birth, in addition to risk of disease through to adulthood. Although placental insufficiency, failure to supply the fetus with adequate nutrients, underlies most cases of FGR, its causes are diverse and not fully understood. One of the few diagnosable causes of placental insufficiency in ongoing pregnancies is the presence of large chromosomal imbalances such as trisomy confined to the placenta; however, the impact of smaller copy number variants (CNVs) has not yet been adequately addressed. In this study, we confirm the importance of placental aneuploidy, and assess the potential contribution of CNVs to fetal growth. Methods We used molecular-cytogenetic approaches to identify aneuploidy in placentas from 101 infants born small-for-gestational age (SGA), typically used as a surrogate for FGR, and from 173 non-SGA controls from uncomplicated pregnancies. We confirmed aneuploidies and assessed mosaicism by microsatellite genotyping. We then profiled CNVs using high-resolution microarrays in a subset of 53 SGA and 61 control euploid placentas, and compared the load, impact, gene enrichment and clinical relevance of CNVs between groups. Candidate CNVs were confirmed using quantitative PCR. Results Aneuploidy was over tenfold more frequent in SGA-associated placentas compared to controls (11.9% vs. 1.1%; p = 0.0002, OR = 11.4, 95% CI 2.5–107.4), was confined to the placenta, and typically involved autosomes, whereas only sex chromosome abnormalities were observed in controls. We found no significant difference in CNV load or number of placental-expressed or imprinted genes in CNVs between SGA and controls, however, a rare and likely clinically-relevant germline CNV was identified in 5.7% of SGA cases. These CNVs involved candidate genes INHBB, HSD11B2, CTCF, and CSMD3. Conclusions We conclude that placental genomic imbalances at the cytogenetic and submicroscopic level may underlie up to ~ 18% of SGA cases in our population. This work contributes to the understanding of the underlying causes of placental insufficiency and FGR, which is important for counselling and prediction of long term outcomes for affected cases.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Yue Yin
- Genetics and Genome Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada
| | - Emma A Butcher
- Genetics and Genome Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada
| | - Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 2B5, Canada
| | - Hayley Bos
- Department of Perinatology, Victoria General Hospital, 1 Hospital Way, Victoria, V8Z 6R5, Canada.,Department of Obstetrics & Gynecology, University of British Columbia, Suite 930, 1125 Howe St, Vancouver, BC, V6Z 2K8, Canada
| | - Peter von Dadelszen
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, SE1 7EU, UK
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Suite 940, 525 University Avenue, Toronto, ON, M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada.
| | - Ryan K C Yuen
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay St, Toronto, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| |
Collapse
|
4
|
Shi XT, Zhu HL, Xiong YW, Liu WB, Zhou GX, Cao XL, Yi SJ, Dai LM, Zhang C, Gao L, Xu DX, Wang H. Cadmium down-regulates 11β-HSD2 expression and elevates active glucocorticoid level via PERK/p-eIF2α pathway in placental trophoblasts. CHEMOSPHERE 2020; 254:126785. [PMID: 32334250 DOI: 10.1016/j.chemosphere.2020.126785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Fetal overexposure to active glucocorticoid (GC) is the major cause for fetal growth restriction (FGR). This study investigated the influences of cadmium (Cd) exposure on active GC and its mechanism in placental trophoblasts. Pregnant mice were exposed to CdCl2 (4.5 mg/kg, i.p.). Human JEG-3 cells were treated with CdCl2 (0-20 μM). Prenatal Cd exposure significantly increased active GC level in amniotic fluid and placenta. Similarly, Cd treatment also elevated active GC level in medium. Expectedly, the expression of 11β-HSD2 protein was markedly downregulated in Cd-exposed placental trophoblasts. We further found that Cd activated the PERK/p-eIF2α signaling pathway in placental trophoblasts. Mechanistically, PERK siRNA pretreatment completely blocked PERK/p-eIF2α signaling, and thereby restoring Cd-downregulated 11β-HSD2 protein expression in human placental trophoblasts. We further found that N-acetylcysteine, a well-known antioxidant, obviously reversed Cd-downregulated 11β-HSD2 protein expression by inhibiting p-PERK/p-eIF2α signaling in placental trophoblasts. Overall, our data suggest that Cd activates the PERK/p-eIF2α signaling, down-regulates the protein expression of 11β-HSD2, and thereby elevating active GC level in placental trophoblast.
Collapse
Affiliation(s)
- Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
5
|
Abstract
Worldwide obesity is increasing at an alarming rate in children and adolescents, with the consequent emergence of co-morbidities. Moreover, the maternal environment during pregnancy plays an important role in obesity, contributing to transgenerational transmission of the same and metabolic dysfunction. White adipose tissue represents a prime target of metabolic programming induced by maternal milieu. In this article, we review adipose tissue physiology and development, as well as maternal influences during the perinatal period that may lead to obesity in early postnatal life and adulthood. First, we describe the adipose tissue cell composition, distribution and hormonal action, together with the evidence of hormonal factors participating in fetal/postnatal programming. Subsequently, we describe the critical periods of adipose tissue development and the relationship of gestational and early postnatal life with healthy fetal adipose tissue expansion. Furthermore, we discuss the evidence showing that adipose tissue is an important target for nutritional, hormonal and epigenetic signals to modulate fetal growth. Finally, we describe nutritional, hormonal, epigenetic and microbiome changes observed in maternal obesity, and whether their disruption alters fetal growth and adiposity. The presented evidence supports the developmental origins of health and disease concept, which proposes that the homeostatic system is affected during gestational and postnatal development, impeding the ability to regulate body weight after birth, thereby resulting in adult obesity. Consequently, we anticipate that promoting a healthy early-life programming of adipose tissue and increasing the knowledge of the mechanisms by which maternal factors affect the health of future generations may offer novel strategies for explaining and addressing worldwide health problems such as obesity.
Collapse
|
6
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
7
|
Jayasuriya NA, Hughes AE, Sovio U, Cook E, Charnock-Jones DS, Smith GCS. A Lower Maternal Cortisol-to-Cortisone Ratio Precedes Clinical Diagnosis of Preterm and Term Preeclampsia by Many Weeks. J Clin Endocrinol Metab 2019; 104:2355-2366. [PMID: 30768664 PMCID: PMC6500797 DOI: 10.1210/jc.2018-02312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
Abstract
CONTEXT Previous studies have shown reduced placental levels of 11-β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in preeclampsia (PE). However, it is unknown if the maternal cortisol-to-cortisone ratio is predictive of placental complications of pregnancy. OBJECTIVE To determine the relationship between the maternal serum cortisol-to-cortisone ratio at different stages of pregnancy and the risk of PE or fetal growth restriction (FGR). DESIGN Women from the Pregnancy Outcome Prediction Study experiencing PE (n = 194) or FGR (n = 185), plus a random sample of healthy controls (n = 279), were studied. Steroids were measured at ∼12, ∼20, ∼28, and ∼36 weeks of gestational age (wkGA). Separate analyses were performed for outcomes with term or preterm delivery. Associations were modeled using logistic regression. RESULTS At 28 wkGA, the cortisol-to-cortisone ratio was negatively associated (OR per 1 SD increase, 95% CI)] with preterm PE (OR 0.33, 95% CI 0.19 to 0.57), term PE (OR 0.61, 95% CI 0.49 to 0.76), and preterm FGR (OR 0.50, 95% CI 0.29 to 0.85). At 36 wkGA, the cortisol-to-cortisone ratio was negatively associated with term PE (OR 0.42, 95% CI 0.32 to 0.55) but not term FGR (OR 1.07, 95% CI 0.87 to 1.31). Associations were not materially affected by adjustment for maternal characteristics. CONCLUSIONS A lower maternal serum cortisol-to-cortisone ratio precedes clinical manifestation of PE and preterm FGR by many weeks, despite previous reports of reduced levels of placental 11βHSD2 in these conditions. Our observations implicate enhanced maternal 11βHSD2 activity or reduced 11βHSD type 1 activity in the pathophysiology of PE.
Collapse
Affiliation(s)
- Nimesh A Jayasuriya
- University of Glasgow School of Medicine, Glasgow, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alice E Hughes
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ulla Sovio
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Emma Cook
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - D Stephen Charnock-Jones
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon C S Smith
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Correspondence and Reprint Requests: Gordon C. S. Smith, DSc, FMedSci, Department of Obstetrics and Gynaecology, University of Cambridge, Rosie Hospital, Cambridge, CB2 0SW, United Kingdom. E-mail:
| |
Collapse
|
8
|
Zhu P, Wang W, Zuo R, Sun K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol Life Sci 2019; 76:13-26. [PMID: 30225585 PMCID: PMC11105584 DOI: 10.1007/s00018-018-2918-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be responsible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy.
Collapse
Affiliation(s)
- Ping Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Department of Obstetrics and Gynecology, No. 401 Hospital, Qingdao, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
10
|
Wu S, Huang Y, Li S, Wen H, Zhang M, Li J, Li Y, Shao C, He F. DNA methylation levels and expression patterns of Smyd1a and Smyd1b genes during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 223:16-22. [DOI: 10.1016/j.cbpb.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
|
11
|
Provenzi L, Guida E, Montirosso R. Preterm behavioral epigenetics: A systematic review. Neurosci Biobehav Rev 2017; 84:262-271. [PMID: 28867654 DOI: 10.1016/j.neubiorev.2017.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
Behavioral epigenetics is revealing new pathways that lead individuals from early adversity exposures to later-in-life detrimental outcomes. Preterm birth constitutes one of the major adverse events in human development. Preterm infants are hospitalized in the Neonatal Intensive Care Unit (NICU) where they are exposed to life-saving yet pain-inducing procedures and to protective care. The application of behavioral epigenetics to the field of preterm studies (i.e., Preterm Behavioral Epigenetics, PBE) is rapidly growing and holds promises to provide valid insights for research and clinical activity. Here, the evidence of the epigenetic correlates of prenatal adversities, NICU-related environment and development of preterm infants is systematically reviewed. The findings suggest that a number of prenatal adverse (e.g., maternal depression and stress) and post-natal (e.g., NICU-related pain-related stress) events affect the developmental trajectories of preterm infants and children via epigenetic alterations of imprinted and stress-related genes. Nonetheless, the potential epigenetic vestiges of early care and protective interventions in NICU have not been investigated yet and this represents a fascinating challenge for future PBE research.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy.
| | - Elena Guida
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Rosario Montirosso
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| |
Collapse
|