1
|
Allegrini B, Mignotet M, Rapetti-Mauss R, Borgese F, Soriani O, Guizouarn H. A new regulation mechanism for KCNN4, the Ca 2+-dependent K + channel, by molecular interactions with the Ca 2+pump PMCA4b. J Biol Chem 2024:108114. [PMID: 39716493 DOI: 10.1016/j.jbc.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
KCNN4, a Ca2+-activated K+ channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago. This Ca2+ induced dehydration is irreversible in human RBC and must be tightly controlled to prevent not only hemolysis but also alterations in RBC rheological properties. In this study, we have investigated the regulation of KCNN4 activity after changes in RBC Ca2+ concentration. Using electrophysiology, immunoprecipitation and proximity ligation assay in HEK293 transfected cells, K562 cells or RBC, we have found that KCNN4 and the Ca2+ pump PMCA4b interact tightly with each other, such that the C-terminal domain of PMCA4b regulates KCNN4 activity, independently of the Ca2+ extrusion activity of the pump. This regulation was not restricted to KCNN4: the small-conductance Ca2+-activated K+ channel KCNN2 was similarly regulated by the calcium pump. We propose a new mechanism that could control KCNN4 activity by a molecular inhibitory interaction with PMCA4b. It is suggested that this mechanism could attenuate erythrocyte dehydration in response to an increase in intracellular Ca2+.
Collapse
Affiliation(s)
- Benoit Allegrini
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Morgane Mignotet
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | | | - Franck Borgese
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Olivier Soriani
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Hélène Guizouarn
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France.
| |
Collapse
|
2
|
Burgardt NI, Melian NA, González Flecha FL. Copper resistance in the cold: Genome analysis and characterisation of a P IB-1 ATPase in Bizionia argentinensis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13278. [PMID: 38943264 PMCID: PMC11213822 DOI: 10.1111/1758-2229.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 07/01/2024]
Abstract
Copper homeostasis is a fundamental process in organisms, characterised by unique pathways that have evolved to meet specific needs while preserving core resistance mechanisms. While these systems are well-documented in model bacteria, information on copper resistance in species adapted to cold environments is scarce. This study investigates the potential genes related to copper homeostasis in the genome of Bizionia argentinensis (JUB59-T), a psychrotolerant bacterium isolated from Antarctic seawater. We identified several genes encoding proteins analogous to those crucial for copper homeostasis, including three sequences of copper-transport P1B-type ATPases. One of these, referred to as BaCopA1, was chosen for cloning and expression in Saccharomyces cerevisiae. BaCopA1 was successfully integrated into yeast membranes and subsequently extracted with detergent. The purified BaCopA1 demonstrated the ability to catalyse ATP hydrolysis at low temperatures. Structural models of various BaCopA1 conformations were generated and compared with mesophilic and thermophilic homologous structures. The significant conservation of critical residues and structural similarity among these proteins suggest a shared reaction mechanism for copper transport. This study is the first to report a psychrotolerant P1B-ATPase that has been expressed and purified in a functional form.
Collapse
Affiliation(s)
- Noelia I. Burgardt
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
- Present address:
Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
| | - Noelia A. Melian
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| |
Collapse
|
3
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Dieudonné T, Kümmerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P. Activation and substrate specificity of the human P4-ATPase ATP8B1. Nat Commun 2023; 14:7492. [PMID: 37980352 PMCID: PMC10657443 DOI: 10.1038/s41467-023-42828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.
Collapse
Affiliation(s)
- Thibaud Dieudonné
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Felix Kümmerer
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Juknaviciute Laursen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Charlott Stock
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University, Aarhus, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Pei Z, Lei H, Wu J, Tang W, Wei K, Wang L, Gong F, Yang N, Liu L, Yang Y, Cheng L. Bioactive Vanadium Disulfide Nanostructure with "Dual" Antitumor Effects of Vanadate and Gas for Immune-Checkpoint Blockade-Enhanced Cancer Immunotherapy. ACS NANO 2023; 17:17105-17121. [PMID: 37603593 DOI: 10.1021/acsnano.3c04767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bioactive inorganic nanomaterials and the biological effects of metal ions have attracted extensive attention in tumor therapy in recent years. Vanadium (V), as a typical bioactive metal element, regulates a variety of biological functions. However, its role in antitumor therapy remains to be revealed. Herein, biodegradable vanadium disulfide (VS2) nanosheets (NSs) were prepared as a responsive gas donor and bioactive V source for activating cancer immunotherapy in combination with immune-checkpoint blockade therapy. After PEGylation, VS2-PEG exhibited efficient glutathione (GSH) depletion and GSH-activated hydrogen sulfide (H2S) release. Exogenous H2S caused lysosome escape and reduced adenosine triphosphate (ATP) synthesis in tumor cells by interfering with the mitochondrial membrane potential and inducing acidosis. In addition, VS2-PEG degraded into high-valent vanadate, leading to Na+/K+ ATPase inhibition, potassium efflux, and interleukin (IL)-1β production. Together with further induction of ferroptosis and immunogenic cell death, a strong antitumor immune response was stimulated by reversing the immunosuppressive tumor microenvironment. Moreover, the combined treatment of VS2-PEG and α-PD-1 amplified antitumor therapy, significantly suppressed tumor growth, and further elicited robust immunity to effectively defeat tumors. This work highlights the biological effects of vanadium for application in cancer treatment.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Wei Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Kailu Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Fei Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Nailin Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
6
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Keren-Paz A, Maan H, Karunker I, Olender T, Kapishnikov S, Dersch S, Kartvelishvily E, Wolf SG, Gal A, Graumann PL, Kolodkin-Gal I. The roles of intracellular and extracellular calcium in Bacillus subtilis biofilms. iScience 2022; 25:104308. [PMID: 35663026 PMCID: PMC9160756 DOI: 10.1016/j.isci.2022.104308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, bacteria reside in biofilms– multicellular differentiated communities held together by an extracellular matrix. This work identified a novel subpopulation—mineral-forming cells—that is essential for biofilm formation in Bacillus subtilis biofilms. This subpopulation contains an intracellular calcium-accumulating niche, in which the formation of a calcium carbonate mineral is initiated. As the biofilm colony develops, this mineral grows in a controlled manner, forming a functional macrostructure that serves the entire community. Consistently, biofilm development is prevented by the inhibition of calcium uptake. Our results provide a clear demonstration of the orchestrated production of calcite exoskeleton, critical to morphogenesis in simple prokaryotes. The orchestrated formation of calcite scaffolds supports the morphogenesis of microbial biofilms A novel subpopulation—mineral-forming cells—is essential for biofilm formation This subpopulation contains an intracellular calcium-accumulating niche, supporting the formation of calcium carbonate Intracellular calcium homeostasis and calcium export are associated with a functional biofilm macrostructure
Collapse
Affiliation(s)
- Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sharon G Wolf
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Physiological Role of ATPase for GABA A Receptor Resensitization. Int J Mol Sci 2022; 23:ijms23105320. [PMID: 35628132 PMCID: PMC9141714 DOI: 10.3390/ijms23105320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) mediate primarily inhibitory synaptic transmission in the central nervous system. Following fast-paced activation, which provides the selective flow of mainly chloride (Cl−) and less bicarbonate (HCO3−) ions via the pore, these receptors undergo desensitization that is paradoxically prevented by the process of their recovery, referred to as resensitization. To clarify the mechanism of resensitization, we used the cortical synaptoneurosomes from the rat brain and HEK 293FT cells. Here, we describe the effect of γ-phosphate analogues (γPAs) that mimic various states of ATP hydrolysis on GABAAR-mediated Cl− and HCO3− fluxes in response to the first and repeated application of the agonist. We found that depending on the presence of bicarbonate, opened and desensitized states of the wild or chimeric GABAARs had different sensitivities to γPAs. This study presents the evidence that recovery of neuronal Cl− and HCO3− concentrations after desensitization is accompanied by a change in the intracellular ATP concentration via ATPase performance. The transition between the desensitization and resensitization states was linked to changes in both conformation and phosphorylation. In addition, the chimeric β3 isoform did not exhibit the desensitization of the GABAAR-mediated Cl− influx but only the resensitization. These observations lend a new physiological significance to the β3 subunit in the manifestation of GABAAR resensitization.
Collapse
Affiliation(s)
- Sergey A. Menzikov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Correspondence: ; Tel.: +7-(499)-151-1756; Fax: +7-(495)-601-2366
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
| | - Aleksey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Russian Medical Academy of Postdoctoral Education, Federal State Budgetary Educational Institution of Further Professional Education of the Ministry of Healthcare of the Russian Federation, 2/1, Barrykadnaya St., 125993 Moscow, Russia
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
| | - Aslan A. Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Russian Medical Academy of Postdoctoral Education, Federal State Budgetary Educational Institution of Further Professional Education of the Ministry of Healthcare of the Russian Federation, 2/1, Barrykadnaya St., 125993 Moscow, Russia
| |
Collapse
|
9
|
Fedosova NU, Habeck M, Nissen P. Structure and Function of Na,K-ATPase-The Sodium-Potassium Pump. Compr Physiol 2021; 12:2659-2679. [PMID: 34964112 DOI: 10.1002/cphy.c200018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Na,K-ATPase is an ubiquitous enzyme actively transporting Na-ions out of the cell in exchange for K-ions, thereby maintaining their concentration gradients across the cell membrane. Since its discovery more than six decades ago the Na-pump has been studied extensively and its vital physiological role in essentially every cell has been established. This article aims at providing an overview of well-established biochemical properties with a focus on Na,K-ATPase isoforms, its transport mechanism and principle conformations, inhibitors, and insights gained from crystal structures. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
| | - Michael Habeck
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Berrocal M, Cordoba-Granados JJ, Carabineiro SAC, Gutierrez-Merino C, Aureliano M, Mata AM. Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. METALS 2021; 11:1934. [DOI: 10.3390/met11121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma membrane calcium ATPases (PMCA) are key proteins in the maintenance of calcium (Ca2+) homeostasis. Dysregulation of PMCA function is associated with several human pathologies, including neurodegenerative diseases, and, therefore, these proteins are potential drug targets to counteract those diseases. Gold compounds, namely of Au(I), are well-known for their therapeutic use in rheumatoid arthritis and other diseases for centuries. Herein, we report the ability of dichloro(2-pyridinecarboxylate)gold(III) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), and chlorotriphenylphosphinegold(I) (4) compounds to interfere with the Ca2+-ATPase activity of pig brain purified PMCA and with membranes from SH-SY5Y neuroblastoma cell cultures. The Au(III) compound (1) inhibits PMCA activity with the IC50 value of 4.9 µM, while Au(I) compounds (2, 3, and 4) inhibit the protein activity with IC50 values of 2.8, 21, and 0.9 µM, respectively. Regarding the native substrate MgATP, gold compounds 1 and 4 showed a non-competitive type of inhibition, whereas compounds 2 and 3 showed a mixed type of inhibition. All gold complexes showed cytotoxic effects on human neuroblastoma SH-SY5Y cells, although compounds 1 and 3 were more cytotoxic than compounds 2 and 4. In summary, this work shows that both Au (I and III) compounds are high-affinity inhibitors of the Ca2+-ATPase activity in purified PMCA fractions and in membranes from SH-SY5Y human neuroblastoma cells. Additionally, they exert strong cytotoxic effects.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan J. Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), FCT, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana M. Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Shin M, Gomez-Garzon C, Payne SM. Vanadate inhibits Feo-mediated iron transport in Vibrio cholerae. Metallomics 2021; 13:6407528. [PMID: 34673980 DOI: 10.1093/mtomcs/mfab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022]
Abstract
Iron is an essential element for Vibrio cholerae to survive, and Feo, the major bacterial system for ferrous iron transport, is important for growth of this pathogen in low-oxygen environments. To gain insight into its biochemical mechanism, we evaluated the effects of widely used ATPase inhibitors on the ATP hydrolysis activity of the N-terminal domain of V. cholerae FeoB. Our results showed that sodium orthovanadate and sodium azide effectively inhibit the catalytic activity of the N-terminal domain of V. cholerae FeoB. Further, sodium orthovanadate was the more effective inhibitor against V. cholerae ferrous iron transport in vivo. These results contribute to a more comprehensive biochemical understanding of Feo function, and shed light on designing effective inhibitors against bacterial FeoB proteins.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Camilo Gomez-Garzon
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shelley M Payne
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chem Sci 2021; 12:12959-12970. [PMID: 34745526 PMCID: PMC8514002 DOI: 10.1039/d1sc01734a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN- ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester LE1 7RH UK
| | - Sophie E T Kendall-Price
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Rhiannon M Evans
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Stephen B Carr
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Amelia R Brasnett
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Simone Morra
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Adam J Healy
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Department of Engineering Sciences, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
13
|
Hu D, Xu H, Zhang W, Xu X, Xiao B, Shi X, Zhou Z, Slater NKH, Shen Y, Tang J. Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. Biomaterials 2021; 277:121130. [PMID: 34534862 DOI: 10.1016/j.biomaterials.2021.121130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/26/2023]
Abstract
Conventional photothermal therapy (PTT) is insufficient to induce a strong and potent anti-tumor immune response. Herein, we present a vanadyl nanocomplex, which simultaneously serves as a photothermal agent (PTA) and an immunogenic cell death (ICD) inducer to enhance the anti-tumor immunity of PTT. The vanadyl nanocomplex (STVN) is constructed via facile one-step coordination assembly under ambient conditions. STVN not only has a strong and stable photothermal effect under near-infrared (NIR) irradiation, but also can cause severe endoplasmic reticulum (ER) stress by itself, leading to ICD and activating the systemic immune responses. In the absence of any adjuvants, NIR-irradiated STVN almost completely ablates primary tumors and simultaneously inhibits distant tumors in mice bearing bilateral melanoma. Meanwhile, the intratumorally injected STVN combined with NIR effectively suppressed melanoma lung metastasis as well as tumor recurrence, displaying that local STVN-mediated PTT could trigger a systemic anti-tumor immunity. Therefore, STVN, as a novel immunogenicity-enhanced PTA, affords a "one stone two birds" strategy for improved photothermia-induced cancer immunotherapy.
Collapse
Affiliation(s)
- Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China; Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Wei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaodan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xueying Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
14
|
Displacement of the Na +/K + pump's transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci U S A 2021; 118:2019317118. [PMID: 33597302 DOI: 10.1073/pnas.2019317118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular survival requires the ion gradients built by the Na+/K+ pump, an ATPase that alternates between two major conformations (E1 and E2). Here we use state-specific engineered-disulfide cross-linking to demonstrate that transmembrane segment 2 (M2) of the pump's α-subunit moves in directions that are inconsistent with distances observed in existing crystal structures of the Na+/K+ pump in E1 and E2. We characterize this movement with voltage-clamp fluorometry in single-cysteine mutants. Most mutants in the M1-M2 loop produced state-dependent fluorescence changes upon labeling with tetramethylrhodamine-6-maleimide (TMRM), which were due to quenching by multiple endogenous tryptophans. To avoid complications arising from multiple potential quenchers, we analyzed quenching of TMRM conjugated to R977C (in the static M9-M10 loop) by tryptophans introduced, one at a time, in M1-M2. This approach showed that tryptophans introduced in M2 quench TMRM only in E2, with D126W and L130W on the same helix producing the largest fluorescence changes. These observations indicate that M2 moves outward as Na+ is deoccluded from the E1 conformation, a mechanism consistent with cross-linking results and with proposals for other P-type 2 ATPases.
Collapse
|
15
|
Holzheu P, Krebs M, Larasati C, Schumacher K, Kummer U. An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1541-1556. [PMID: 33780094 DOI: 10.1111/tpj.15251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.
Collapse
Affiliation(s)
- Pascal Holzheu
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Catharina Larasati
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Karin Schumacher
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| |
Collapse
|
16
|
Leijten NM, Bakker P, Spaink HP, den Hertog J, Lemeer S. Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism. Mol Cell Proteomics 2021; 20:100033. [PMID: 33594990 PMCID: PMC7950114 DOI: 10.1074/mcp.ra120.002273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Thermal proteome profiling (TPP) allows for the unbiased detection of drug-target protein engagements in vivo. Traditionally, 1 cell type is used for TPP studies, with the risk of missing important differentially expressed target proteins. The use of whole organisms would circumvent this problem. Zebrafish embryos are amenable to such an approach. Here, we used TPP on whole zebrafish embryo lysate to identify protein targets of napabucasin, a compound that may affect signal transducer and activator of transcription 3 (Stat3) signaling through an ill-understood mechanism. In zebrafish embryos, napabucasin induced developmental defects consistent with inhibition of Stat3 signaling. TPP profiling showed no distinct shift in Stat3 upon napabucasin treatment, but effects were detected on the oxidoreductase, Pora, which might explain effects on Stat3 signaling. Interestingly, thermal stability of several aldehyde dehydrogenases was affected. Moreover, napabucasin activated aldehyde dehydrogenase enzymatic activity in vitro. Aldehyde dehydrogenases have crucial roles in retinoic acid metabolism, and functionally, we validated napabucasin-mediated activation of the retinoic acid pathway in zebrafish in vivo. We conclude that TPP profiling in whole zebrafish embryo lysate is feasible and facilitates direct correlation of in vivo effects of small molecule drugs with their protein targets.
Collapse
Affiliation(s)
- Niels M Leijten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Petra Bakker
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Herman P Spaink
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Institute Biology Leiden, Leiden University, Leiden, the Netherlands.
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Barbot T, Beswick V, Montigny C, Quiniou É, Jamin N, Mouawad L. Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations. Front Mol Biosci 2021; 7:606254. [PMID: 33614704 PMCID: PMC7890198 DOI: 10.3389/fmolb.2020.606254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
SERCA1a is an ATPase calcium pump that transports Ca2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca2+ transport rate, but its mechanism of action is still not well-understood. To decipher this mechanism, we have performed normal mode analysis in the all-atom model, with the SERCA1a-SLN complex, or the isolated SERCA1a, embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation at the atomic level for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304, and E309 in TM4, at the entrance of the Ca2+ binding sites, which would decrease the affinity for Ca2+. Unexpectedly, SLN has also an effect on the ATP binding site more than 35 Å away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351DKTG354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca2+ low-affinity E2-like state in the presence of SLN and toward a Ca2+ high-affinity E1-like state in the absence of SLN. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight into the conformational transition between the E2 and E1 states.
Collapse
Affiliation(s)
- Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Physics Department, Evry-Val-d'Essonne University, Paris-Saclay University, Evry, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Éric Quiniou
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Liliane Mouawad
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| |
Collapse
|
18
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
19
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Hu D, Li D, Liu X, Zhou Z, Tang J, Shen Y. Vanadium-based nanomaterials for cancer diagnosis and treatment. ACTA ACUST UNITED AC 2020; 16:014101. [PMID: 33355313 DOI: 10.1088/1748-605x/abb523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past few decades, various vanadium compounds have displayed potential in cancer treatment. However, fast clearness in the body and possible toxicity of vanadium compounds has hindered their further development. Vanadium-based nanomaterials not only overcome these limitations, but take advantage of the internal properties of vanadium in photics and magnetics, which enable them as a multimodal platform for cancer diagnosis and treatment. In this paper, we first introduced the basic biological and pharmacological functions of vanadium compounds in treating cancer. Then, the synthesis routes of three vanadium-based nanomaterials were discussed, including vanadium oxides, 2D vanadium sulfides, carbides and nitrides: VmXn (X = S, C, N) and water-insoluble vanadium salts. Finally, we highlighted the applications of these vanadium-based nanomaterials as tumor therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Equal contributor
| | | | | | | | | | | |
Collapse
|
21
|
El Omari K, Mohamad N, Bountra K, Duman R, Romano M, Schlegel K, Kwong HS, Mykhaylyk V, Olesen C, Moller JV, Bublitz M, Beis K, Wagner A. Experimental phasing with vanadium and application to nucleotide-binding membrane proteins. IUCRJ 2020; 7:1092-1101. [PMID: 33209320 PMCID: PMC7642786 DOI: 10.1107/s2052252520012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported. Vanadate is a transition-state mimic of phosphoryl-transfer reactions and it has the advantage of binding specifically to the active site of numerous enzymes catalyzing this reaction. The applicability of vanadium phasing has been validated by determining the structures of three different protein-vanadium complexes, two of which are integral membrane proteins: the rabbit sarcoplasmic reticulum Ca2+-ATPase, the antibacterial peptide ATP-binding cassette transporter McjD from Escherichia coli and the soluble enzyme RNAse A from Bos taurus. Vanadium phasing was successful even at low resolution and despite severe anisotropy in the data. This method is principally applicable to a large number of proteins, representing six of the seven Enzyme Commission classes. It relies exclusively on the specific chemistry of the protein and it does not require any modifications, making it a very powerful addition to the phasing toolkit. In addition to the phasing power of this technique, the protein-vanadium complexes also provide detailed insights into the reaction mechanisms of the studied proteins.
Collapse
Affiliation(s)
- Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Nada Mohamad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Kiran Bountra
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Maria Romano
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Via Mezzocannone 16, 80134 Napoli, Italy
| | - Katja Schlegel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Hok-Sau Kwong
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 8, DK-8000 Aarhus, Denmark
| | - Jesper Vuust Moller
- Department of Biomedicine, Aarhus University, Ole Worms Allé 8, DK-8000 Aarhus, Denmark
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Konstantinos Beis
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
22
|
Sweet ME, Zhang X, Erdjument-Bromage H, Dubey V, Khandelia H, Neubert TA, Pedersen BP, Stokes DL. Serine phosphorylation regulates the P-type potassium pump KdpFABC. eLife 2020; 9:55480. [PMID: 32955430 PMCID: PMC7535926 DOI: 10.7554/elife.55480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down-regulation when K+ levels are restored has not been described. Here, we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.
Collapse
Affiliation(s)
- Marie E Sweet
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Xihui Zhang
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Hediye Erdjument-Bromage
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Vikas Dubey
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Thomas A Neubert
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Bjørn P Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| |
Collapse
|
23
|
Fonseca C, Fraqueza G, Carabineiro SAC, Aureliano M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. INORGANICS 2020; 8:49. [DOI: 10.3390/inorganics8090049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapeutic applications of gold are well-known for many centuries. The most used gold compounds contain Au(I). Herein, we report, for the first time, the ability of four Au(I) and Au(III) complexes, namely dichloro (2-pyridinecarboxylate) Au(III) (abbreviated as 1), chlorotrimethylphosphine Au(I) (2), 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene Au(I) chloride (3), and chlorotriphenylphosphine Au(I) (4), to affect the sarcoplasmic reticulum (SR) Ca2+-ATPase activity. The tested gold compounds strongly inhibit the Ca2+-ATPase activity with different effects, being Au(I) compounds 2 and 4 the strongest, with half maximal inhibitory concentration (IC50) values of 0.8 and 0.9 µM, respectively. For Au(III) compound 1 and Au(I) compound 3, higher IC50 values are found (4.5 µM and 16.3 µM, respectively). The type of enzymatic inhibition is also different, with gold compounds 1 and 2 showing a non-competitive inhibition regarding the native substrate MgATP, whereas for Au compounds 3 and 4, a mixed type of inhibition is observed. Our data reveal, for the first time, Au(I) compounds with powerful inhibitory capacity towards SR Ca2+ATPase function. These results also show, unprecedently, that Au (III) and Au(I) compounds can act as P-type ATPase inhibitors, unveiling a potential application of these complexes.
Collapse
Affiliation(s)
| | - Gil Fraqueza
- CCMar, ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | | |
Collapse
|
24
|
Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proc Natl Acad Sci U S A 2020; 117:20920-20925. [PMID: 32788371 PMCID: PMC7456130 DOI: 10.1073/pnas.2005626117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
People for centuries are puzzled how living creatures like plants sense their environment. Plants employ electrical signals to communicate a cue-dependent local status between plants cells and organs. As a first response to biotic and abiotic stresses, the membrane potential of plant cells depolarizes. Recovery from the depolarized state, repolarization, was proposed to involve ion channels and pumps. Here, we established channelrhodopsin (ChR2)-based optogenetics in plants and learned that the plant plasma membrane H+-ATPase represents the major driver of membrane potential repolarization control during plant electrical signaling, rather than voltage-dependent ion channels. In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H+-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H+ pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.
Collapse
|
25
|
Samart N, Althumairy D, Zhang D, Roess DA, Crans DC. Initiation of a novel mode of membrane signaling: Vanadium facilitated signal transduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Ectopic GABA A receptor β3 subunit determines Cl - / HCO 3 - -ATPase and chloride transport in HEK 293FT cells. FEBS J 2020; 288:699-712. [PMID: 32383536 DOI: 10.1111/febs.15359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023]
Abstract
Neuronal intracellular chloride concentration ([Cl- ]i ) is a crucial determinant of transmission mediated by the γ-aminobutyric acid type A receptor (GABAA R), which subserves synaptic and extrasynaptic inhibition as well as excitation. The Cl- ion is the main carrier of charge through the GABAA R; however, bicarbonate ions ( HCO 3 - ) flowing in the opposite direction can also contribute to the net current. The direction of Cl- and HCO 3 - fluxes is determined by the underlying electrochemical gradient, which is controlled by Cl- transporters and channels. Accumulating evidence suggests that active mechanisms of chloride transport across the GABAA R pore can underlie the regulation of [Cl- ]i . Measurement of Cl- / HCO 3 - -ATPase activity and Cl- transport in HEK 293FT cells expressing homomeric or heteromeric GABAA R ensembles (α2, β3, or γ2) with fluorescent dye for chloride demonstrated that receptor subtypes containing the β3 subunit show enzymatic activity and participate in GABA-mediated or ATP-dependent Cl- transport. GABA-mediated flow of Cl- ions into and out of the cells occurred for a short time period but then rapidly declined. However, Cl- ion flux was stabilized for a long time period in the presence of HCO 3 - ions. The reconstituted β3 subunit isoform, purified as a fusion protein, confirmed that β3 is critical for ATPase; however, only the triplet variant showed the full receptor function. The high sensitivity of the enzyme to γ-phosphate inhibitors led us to postulate that the β3 subunit is catalytic. Our discovery of a GABAA R type that requires ATP consumption for chloride movement provides new insight into the molecular mechanisms of inhibitory signaling.
Collapse
Affiliation(s)
| | | | - Aleksey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| | - Sergey G Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| |
Collapse
|
27
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
28
|
Wang X, Chang CH, Jiang J, Liu X, Li J, Liu Q, Liao YP, Li L, Nel AE, Xia T. Mechanistic Differences in Cell Death Responses to Metal-Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000528. [PMID: 32337854 PMCID: PMC7263057 DOI: 10.1002/smll.202000528] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/18/2023]
Abstract
The mononuclear phagocyte system in the liver is a frequent target for nanoparticles (NPs). A toxicological profiling of metal-based NPs is performed in Kupffer cell (KC) and hepatocyte cell lines. Sixteen NPs are provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences to study the toxicological effects in KUP5 (KC) and Hepa 1-6 cells. Five NPs (Ag, CuO, ZnO, SiO2 , and V2 O5 ) exhibit cytotoxicity in both cell types, while SiO2 and V2 O5 induce IL-1β production in KC. Ag, CuO, and ZnO induced caspase 3 generated apoptosis in both cell types is accompanied by ion shedding and generation of mitochondrial reactive oxygen species (ROS) in both cell types. However, the cell death response to SiO2 in KC differs by inducing pyroptosis as a result of potassium efflux, caspase 1 activation, NLRP3 inflammasome assembly, IL-1β release, and cleavage of gasdermin-D. This releases pore-performing peptide fragments responsible for pyroptotic cell swelling. Interestingly, although V2 O5 induces IL-1β release and delays caspase 1 activation by vanadium ion interference in membrane Na+ /K+ adenosine triphosphate (ATP)ase activity, the major cell death mechanism in KC (and Hepa 1-6) is caspase 3 mediated apoptosis. These findings improve the understanding of the mechanisms of metal-based engineered nanomaterial (ENM) toxicity in liver cells toward comprehensive safety evaluation.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Chong Hyun Chang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Jinhong Jiang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Qi Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Linjiang Li
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| |
Collapse
|
29
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
30
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Maya-Hoyos M, Rosales C, Novoa-Aponte L, Castillo E, Soto CY. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 2019; 5:e02852. [PMID: 31788573 PMCID: PMC6879984 DOI: 10.1016/j.heliyon.2019.e02852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Among the 12 P-type ATPases encoded by the genome of Mycobacterium tuberculosis (Mtb), CtpF responds to the greatest number of stress conditions, including oxidative stress, hypoxia, and infection. CtpF is the mycobacterial homolog of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) of higher eukaryotes. Its expression is regulated by the global regulator of latency, DosR. However, the role that CtpF plays in the mycobacterial plasma membrane remains unknown. In this study, different functional analyses showed that CtpF is associated with calcium pumping from mycobacterial cells. Specifically, Mtb CtpF expression in Mycobacterium smegmatis cells prevents Ca2+ accumulation compared with wild type (WT) cells. In addition, plasma membrane vesicles from recombinant membranes, in which the direction of ion transport is inverted, accumulate more Ca2+ compared with vesicles obtained from the WT strain. This findings support the hypothesis that CtpF contributes to calcium efflux from mycobacterial cells. Accordingly, Mtb cells defective in ctpF (MtbΔctpF) accumulate more Ca2+ compared with WT cells, while the Ca2+-dependent ATPase activity is significantly lower in the mutant cells. Interestingly, the deletion of ctpF in Mtb impairs the tolerance of the bacteria to oxidative and nitrosative stress. Overall, our results indicate that CtpF is associated with calcium pumping from mycobacterial cells and the response to oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Y. Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
32
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
33
|
Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, Nissen P. Membrane-protein crystals for neutron diffraction. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1208-1218. [PMID: 30605135 DOI: 10.1107/s2059798318012561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Abstract
Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1. The challenges encountered at the various steps in the process from crystal nucleation and growth to crystal mounting are explored, and it is demonstrated that NMX-compatible membrane-protein crystals can indeed be obtained.
Collapse
Affiliation(s)
- Thomas Lykke Møller Sørensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Samuel John Hjorth-Jensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Esko Oksanen
- European Spallation Source ERIC, PO Box 176, 22100 Lund, Sweden
| | | | - Claus Olesen
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Jesper Vuust Møller
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM, Zima AV, Robia SL. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. J Biol Chem 2018; 293:10843-10856. [PMID: 29764938 PMCID: PMC6052202 DOI: 10.1074/jbc.ra118.002472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
The conformational changes of a calcium transport ATPase were investigated with molecular dynamics (MD) simulations as well as fluorescence resonance energy transfer (FRET) measurements to determine the significance of a discrete structural element for regulation of the conformational dynamics of the transport cycle. Previous MD simulations indicated that a loop in the cytosolic domain of the SERCA calcium transporter facilitates an open-to-closed structural transition. To investigate the significance of this structural element, we performed additional MD simulations and new biophysical measurements of SERCA structure and function. Rationally designed in silico mutations of three acidic residues of the loop decreased SERCA domain-domain contacts and increased domain-domain separation distances. Principal component analysis of MD simulations suggested decreased sampling of compact conformations upon N-loop mutagenesis. Deficits in headpiece structural dynamics were also detected by measuring intramolecular FRET of a Cer-YFP-SERCA construct (2-color SERCA). Compared with WT, the mutated 2-color SERCA shows a partial FRET response to calcium, whereas retaining full responsiveness to the inhibitor thapsigargin. Functional measurements showed that the mutated transporter still hydrolyzes ATP and transports calcium, but that maximal enzyme activity is reduced while maintaining similar calcium affinity. In live cells, calcium elevations resulted in concomitant FRET changes as the population of WT 2-color SERCA molecules redistributed among intermediates of the transport cycle. Our results provide novel insights on how the population of SERCA pumps responds to dynamic changes in intracellular calcium.
Collapse
Affiliation(s)
- Olga N Raguimova
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Elisa Bovo
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Siddharth Bhayani
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Joseph M Autry
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Aleksey V Zima
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| |
Collapse
|
35
|
Ottilie S, Goldgof GM, Cheung AL, Walker JL, Vigil E, Allen KE, Antonova-Koch Y, Slayman CW, Suzuki Y, Durrant JD. Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies. J Cheminform 2018; 10:6. [PMID: 29464421 PMCID: PMC5820243 DOI: 10.1186/s13321-018-0261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/10/2018] [Indexed: 01/07/2023] Open
Abstract
Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially effective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structurally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target.![]()
Collapse
Affiliation(s)
- Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gregory M Goldgof
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Andrea L Cheung
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer L Walker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Edgar Vigil
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kenneth E Allen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yevgeniya Antonova-Koch
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carolyn W Slayman
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
36
|
Horn M, Kroef V, Allmeroth K, Schuller N, Miethe S, Peifer M, Penninger JM, Elling U, Denzel MS. Unbiased compound-protein interface mapping and prediction of chemoresistance loci through forward genetics in haploid stem cells. Oncotarget 2018. [PMID: 29515774 PMCID: PMC5839405 DOI: 10.18632/oncotarget.24305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Forward genetic screens in haploid mammalian cells have recently emerged as powerful tools for the discovery and investigation of recessive traits. Use of the haploid system provides unique genetic tractability and resolution. Upon positive selection, these screens typically employ analysis of loss-of-function (LOF) alleles and are thus limited to non-essential genes. Many relevant compounds, including anti-cancer therapeutics, however, target essential genes, precluding positive selection of LOF alleles. Here, we asked whether the use of random and saturating chemical mutagenesis might enable screens that identify essential biological targets of toxic compounds. We compare and contrast chemical mutagenesis with insertional mutagenesis. Selecting mutagenized cells with thapsigargin, an inhibitor of the essential Ca2+ pump SERCA2, insertional mutagenesis retrieved cell clones overexpressing SERCA2. With chemical mutagenesis, we identify six single amino acid substitutions in the known SERCA2-thapsigargin binding interface that confer drug resistance. In a second screen, we used the anti-cancer drug MG132/bortezomib (Velcade), which inhibits proteasome activity. Using chemical mutagenesis, we found 7 point mutations in the essential subunit Psmb5 that map to the bortezomib binding surface. Importantly, 4 of these had previously been identified in human tumors with acquired bortezomib resistance. Insertional mutagenesis did not identify Psmb5 in this screen, demonstrating the unique ability of chemical mutagenesis to identify relevant point mutations in essential genes. Thus, chemical mutagenesis in haploid embryonic stem cells can define the interaction of toxic small molecules with essential proteins at amino acid resolution, fully mapping small molecule-protein binding interfaces.
Collapse
Affiliation(s)
- Moritz Horn
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Nicole Schuller
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Stephan Miethe
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne D-50931, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty University of Cologne, Cologne D-50931, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Martin S Denzel
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany.,CECAD-Cluster of Excellence University of Cologne, Cologne D-50931, Germany
| |
Collapse
|
37
|
Bublitz M, Kjellerup L, Cohrt KO, Gordon S, Mortensen AL, Clausen JD, Pallin TD, Hansen JB, Fuglsang AT, Dalby-Brown W, Winther AML. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS One 2018; 13:e0188620. [PMID: 29293507 PMCID: PMC5749684 DOI: 10.1371/journal.pone.0188620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022] Open
Abstract
We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles inhibit adenosine triphosphate (ATP) hydrolysis of the fungal H+-ATPase, depolarize the fungal plasma membrane and exhibit broad-spectrum antifungal activity. Comparative inhibition studies indicate that many tetrahydrocarbazoles also inhibit the mammalian Ca2+-ATPase (SERCA) and Na+,K+-ATPase with an even higher potency than Pma1. We have located the binding site for this compound class by crystallographic structure determination of a SERCA-tetrahydrocarbazole complex to 3.0 Å resolution, finding that the compound binds to a region above the ion inlet channel of the ATPase. A homology model of the Candida albicans H+-ATPase based on this crystal structure, indicates that the compounds could bind to the same pocket and identifies pocket extensions that could be exploited for selectivity enhancement. The results of this study will aid further optimization towards selective H+-ATPase inhibitors as a new class of antifungal agents.
Collapse
Affiliation(s)
- Maike Bublitz
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lasse Kjellerup
- Pcovery, Copenhagen N, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | |
Collapse
|
38
|
Abbott GW. Chansporter complexes in cell signaling. FEBS Lett 2017; 591:2556-2576. [PMID: 28718502 DOI: 10.1002/1873-3468.12755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Ion channels facilitate diffusion of ions across cell membranes for such diverse purposes as neuronal signaling, muscular contraction, and fluid homeostasis. Solute transporters often utilize ionic gradients to move aqueous solutes up their concentration gradient, also fulfilling a wide variety of tasks. Recently, an increasing number of ion channel-transporter ('chansporter') complexes have been discovered. Chansporter complex formation may overcome what could otherwise be considerable spatial barriers to rapid signal integration and feedback between channels and transporters, the ions and other substrates they transport, and environmental factors to which they must respond. Here, current knowledge in this field is summarized, covering both heterologous expression structure/function findings and potential mechanisms by which chansporter complexes fulfill contrasting roles in cell signaling in vivo.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
39
|
Intracellular Requirements for Passive Proton Transport through the Na +,K +-ATPase. Biophys J 2017; 111:2430-2439. [PMID: 27926844 DOI: 10.1016/j.bpj.2016.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/21/2022] Open
Abstract
The Na+,K+-ATPase (NKA or Na/K pump) hydrolyzes one ATP to exchange three intracellular Na+ (Na+i) for two extracellular K+ (K+o) across the plasma membrane by cycling through a set of reversible transitions between phosphorylated and dephosphorylated conformations, alternately opening ion-binding sites externally (E2) or internally (E1). With subsaturating [Na+]o and [K+]o, the phosphorylated E2P conformation passively imports protons generating an inward current (IH), which may be exacerbated in NKA-subunit mutations associated with human disease. To elucidate the mechanisms of IH, we studied the effects of intracellular ligands (transported ions, nucleotides, and beryllium fluoride) on IH and, for comparison, on transient currents measured at normal Na+o (QNa). Utilizing inside-out patches from Xenopus oocytes heterologously expressing NKA, we observed that 1) in the presence of Na+i, IH and QNa were both activated by ATP, but not ADP; 2) the [Na+]i dependence of IH in saturating ATP showed K0.5,Na = 1.8 ± 0.2 mM and the [ATP] dependence at saturating [Na+]i yielded K0.5,ATP = 48 ± 11 μM (in comparison, Na+i-dependent QNa yields K0.5,Na = 0.8 ± 0.2 mM and K0.5,ATP = 0.43 ± 0.03 μM; 3) ATP activated IH in the presence of K+i (∼15% of the IH observed in Na+i) only when Mg2+i was also present; and 4) beryllium fluoride induced maximal IH even in the absence of nucleotide. These data indicate that IH occurs when NKA is in an externally open E2P state with nucleotide bound, a conformation that can be reached through forward Na/K pump phosphorylation of E1, with Na+i and ATP, or by backward binding of K+i to E1, which drives the pump to the occluded E2(2K), where free Pi (at the micromolar levels found in millimolar ATP solutions) promotes external release of occluded K+ by backdoor NKA phosphorylation. Maximal IH through beryllium-fluorinated NKA indicates that this complex mimics ATP-bound E2P states.
Collapse
|
40
|
Wang S, Zhang Y, Zhang Q, Peng S, Shen C, Yu Y, Zhang M, Yang W, Wu Q, Zhang Y, Li S, Qiao Y. Content decline of SERCA inhibitors saikosaponin a and d attenuates cardiotoxicity and hepatotoxicity of vinegar-baked Radix bupleuri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:129-137. [PMID: 28412648 DOI: 10.1016/j.etap.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 05/27/2023]
Abstract
Improper usage of unprocessed Radix bupleuri root (chaihu) may cause cardiotoxicity and liver injury. Baking herb with vinegar is believed to attenuate the adverse responses. However, the chemical and molecular basis involved remained unclear. To this end, we investigated the in vitro toxicity of saikosaponin a, c, d, and their hydrolysates saikosaponin b1 and b2. Results showed that SSa and SSd possessed higher affinity with sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) by molecular docking, and exhibited stronger toxic responses on cardiomyocytes and hepatocytes than the other three saikosaponins in equivalent concentrations. Further, SSa and SSd induced LC3 puncta formation in U2OS-mCherry-EGFP-LC3 cells. Blockage of autophagy by 3-methyladenine did not abrogate the cytotoxicities induced by SSa and SSd. In parallel, none of SSc, SSb1, or SSb2 caused cell injury. Our study reveals how changes in chemical ingredients are connected to the toxicity of Chaihu during vinegar baking process and also provides a guidance for structure optimization to reduce drug induced toxicity.
Collapse
Affiliation(s)
- Shifeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuxin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qiao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Sha Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chen Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yangyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Minyu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Yang
- ACEA Biosciences Inc., Hangzhou 310030, China
| | - Qinghua Wu
- HD Biosciences Co., Ltd, Shanghai 201201, China
| | - Yanling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shiyou Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanjiang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
41
|
Rui H, Artigas P, Roux B. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion. eLife 2016; 5. [PMID: 27490484 PMCID: PMC5026471 DOI: 10.7554/elife.16616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023] Open
Abstract
The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI:http://dx.doi.org/10.7554/eLife.16616.001 A protein called the sodium-potassium pump resides in the membrane that surrounds living cells. The role of this protein is to 'pump' sodium and potassium ions across the membrane to help restore their concentration inside and outside of the cell. About 25% of the body's energy is used to keep the pump going, rising to nearly 70% in the brain. Problems that affect the pump have been linked to several disorders, including heart, kidney and metabolic diseases, as well as severe neurological conditions. The sodium-potassium pump must be able to effectively pick out the correct ions to transport from a mixture of many different types of ions. However, it was not clear how the pump succeeds in doing this efficiently. Rui et al. have now used a computational method called molecular dynamics simulations to model how the sodium-potassium pump transports the desired ions across the cell membrane. The pump works via a so-called 'alternating-access' mechanism, repeatedly transitioning between inward-facing and outward-facing conformations. In each cycle, it binds three sodium ions from the cell’s interior and exports them to the outside. Then, the pump binds to two potassium ions from outside the cell and imports them inside. Although the bound sodium and potassium ions interact with similar binding sites in the pump, the pump sometimes preferentially binds sodium, and sometimes potassium. The study performed by Rui et al. shows that this preference is driven by how protons (hydrogen ions) bind to the amino acids that make up the binding site. The simulations also suggest that the pump uses a ‘self-correcting’ mechanism to prevent the pump from transporting the wrong types of ions. When incorrect ions are present at the binding sites, the pump cycle pauses temporarily until the ions detach from the pump. Only when the correct ions are bound will the pump cycle continue again. In the future, Rui et al. hope to use long time-scale molecular dynamics simulations to show the conformational transition in action. In addition, the 'self-correcting' mechanism will be directly tested by letting the wrong and correct ions compete for the binding sites to see whether the pump will transport only the correct ions. DOI:http://dx.doi.org/10.7554/eLife.16616.002
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|